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Abstract: Grain growth is a well-known and complex phenomenon occurring during annealing of
all polycrystalline materials. Its numerical modeling is a complex task when anisotropy sources
such as grain orientation and grain boundary inclination have to be taken into account. This article
presents the application of a front-tracking methodology to the context of anisotropic grain boundary
motion at the mesoscopic scale. The new formulation of boundary migration can take into account
any source of anisotropy both at grain boundaries as well as at multiple junctions (MJs) (intersection
point of three or more grain boundaries). Special attention is given to the decomposition of high-
order MJs for which an algorithm is proposed based on local grain boundary energy minimisation.
Numerical tests are provided using highly heterogeneous configurations, and comparisons with a
recently developed Finite-Element Level-Set (FE-LS) approach are given. Finally, the computational
performance of the model will be studied comparing the CPU-times obtained with the same model
but in an isotropic context.

Keywords: grain growth; anisotropy; front-tracking; remeshing; finite element method; interface
dynamics

1. Introduction

Grain growth phenomenon in polycrystals has been studied for many decades, both
from an experimental and numerical point of view [1]. The majority of experimental
observations at this scale suggest that the migration of boundaries is, in general, a strongly
heterogeneous phenomenon involving complex dynamics and topological transformations
of the grain boundary (GB) network. However, in the literature, it is frequently accepted
that the microstructure of given materials behave homogeneously enough to ignore their
heterogeneities when considering polycrystal modelling. This hypothesis is used in numer-
ical environments to propose Full-Field (FF) models of microstructural evolutions, using
homogeneous values in space of the grain boundary energy γ and mobility µ, e.g., isotropic
grain growth (GG).

If this hypothesis remains acceptable when low levels of anisotropy are involved,
it constitutes, however, a strong approximation when a strong texture with particular γ
values are involved, or when special GBs (e.g., twin boundaries) are present [2].

Commonly, in the literature [1], the source of GB anisotropy, i.e., the reduced mobility
defined as the µγ product, is considered a function of the crystallographic misorientation
and of the inclination of the interface. Typically, the misorientation Mlw between two
adjacent grains l and w, is computed using the three Euler angles (ϕe1, Φ, ϕe2) of these
grains and the inclination is considered through the local normal vector ~n of the corre-
sponding GB. This gives a system with a total of 5 degrees of freedom (DOF) defining GB
properties. These kinds of systems at the polycrystal scale need to be modelled through
the use of a numerical approach able to take into account this kind of data set. As such,
in the same manner as in [3–5], here we will differentiate three kinds of numerical models:
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isotropic, heterogeneous, and anisotropic models. Isotropic models consider constant GB
properties in their formulation. On the contrary, Anisotropic models are those using a
formulation where, any assumption regarding the invariability of these quantities in space
is discarded, being able to use properties dependent on the tuple (Mlw,~n) (i.e., X(Mlw ,~n)
where X is either γ or µ). Of course, anisotropic models are much more complex than
those using an isotropic hypothesis, since, in this context, special attention must be given,
for example, to the meaning of the surface tension component of interfaces, as one must be
aware that torque terms, derived from the variation of the GB energy γ on the parametric
space of a surface may appear [6]. As such, deriving a mathematical model ready to use an
anisotropic set of GBs properties is a complex task and, historically, authors in the litera-
ture have proposed alternatives: heterogeneous models. Heterogeneous models consider
within their formulation the existence of a variation of properties, only in function of Mlw
(X(Mlw)

), neglecting its dependence on ~n. In this context, each GB is given homogenised
intrinsic properties (constant in its parametric space), but different from the ones of other
GBs. i.e., GB properties only change at multiple junctions (MJ) (or multiple lines in 3D)
when crossing from one GB to another.

Several approaches have been proposed in the literature to model heterogeneous and/or
anisotropic GG. Beginning with the Monte Carlo and extending to Phase-Field, Level-Set and
Vertex approaches, heterogeneous (X(Mlw)

) [7–10], and anisotropic (X(Mlw ,~n)) [3–5,11,12] models
have been proposed. However, all these methods are constrained by different reasons each,
typically: (i.) the use of regular grids [13,14] (which can lead to difficulties to model large deforma-
tion), (ii.) high computational cost [4,5,8], and (iii.) the no-discretization of grain interiors [12,15]
(which can lead to difficulties when intragranular phenomena are of interests). Additionally
to these aspects, in the context of anisotropic boundary properties modelled using Phase-Field
models, although being an appropriate numerical environment, showing interesting results in
this context, one should be aware of inherent numerical instabilities, especially for high hetero-
geneous/anisotropic systems [10,16]. Finally, in anisotropic models, the GB energy dependence
on the inclination is classically defined without inquiring if additional torque terms in solved
equations are needed with the notable exception of the vertex approaches [12,15].

As an alternative to model microstructural evolutions with anisotropic GB properties,
we propose the TRM model presented in [17–19]; this article will present the needed
implementations in order to model fully anisotropic grain properties with the TRM model.
Special attention will be given to the development of a robust high order Multiple Junction
(MJ) decomposition algorithm and to the reformulation of the velocity equation at triple
junctions extending the methodology presented in [15] to an anisotropic context, using
the notions used in [12] for its discrete formulation. Finally, the TRM model will be tested
in multiple heterogeneous environments identical to the ones presented in [8,9] while
the numerical tests in a fully anisotropic environment will be discussed in a forthcoming
publication [20].

2. Numerical Method

This section will introduce the TRM model’s necessary concepts and new implemen-
tations to model GBM using anisotropic GB properties. The topological changes that
may occur in this context have the same level of complexity as the ones produced under
the influence of stored energy, presented in a previous work [19]. Additionally, in [17],
the decomposition of high-order multiple junctions (MJs) was simplified for isotropic
GB properties. A more developed algorithm is needed to obtain valid predictions in an
anisotropic context. This section will cover these notions.

Hereafter, we will consider γ as a function of (Mlw,~n), while the mobility term µ will
be considered constant in space. Before considering a misorientation in the computation
of grain boundary properties, each grain requires an orientation. In this work, these
orientations are generated at random using a uniform distribution for each of Euler’s
angles (ϕ1, Φ, ϕ2). Figure A1 (bottom-right) gives un example of the disorientation angle
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distribution obtained with this approach and compares it to the Mackenzie distribution [21]
for disorientation angles in a cubic sample.

2.1. Grain Boundary Motion by Capillarity: Anisotropic Context for the TRM Model

In [12], a formulation for the computation of the velocity of GBs and triple junctions
using anisotropic GB properties was proposed in the context of the Vertex model. This
formulation uses the tensile character of the capillarity forces exerted at every node based
on a discrete analysis, similar to the one used in [19] for the computation of a velocity from
a stored energy field at triple junctions. The model in [12] writes for the velocity at MJs:

~vci = µi

(
∑

j

γij~tij + τij~nij

|Ni Nj|

)
, (1)

where the index i denotes the node representing the MJ Ni and j their connection to node Nj,
µi is the mobility of node Ni, γij,~tij and~nij are, respectively, the boundary energy, the unit
tangent vector and the normal of the segment Ni Nj. Note that γij = γji but~tij = −~tji and
the direction of the normal~nij is arbitrary. Finally, note the apparition of the term τij, which
corresponds to the torque experienced by the segment Ni Nj due to the change of the GB
energy given by its dependence on the inclination angle ω [6]. This torque term is defined
as follows:

τij = −
dγ

dωij
. (2)

In [15], three formulations were given for the computation of the velocity at MJs in
the context of isotropic GB properties, from which we have used the so-called model II to
find our velocity at MJs in previous works [17,19]. This formulation can be rewritten in the
context of heterogeneous grain boundary properties (hence, in the absence of torque terms)
and for MJs of arbitrary order, in a very similar way as in Equation (1):

~vci = µi

(
∑j γij~tij

c−1 ∑j |Ni Nj|

)
, (3)

where c is the number of connections of the MJ, and where the only difference with
Equation (1) is that the terms in the numerator contribute all in the same amount to the
summation, instead of being escalated each by the term |Ni Nj|−1. Indeed, in our experience,
the homogenization of the contributions of the numerator term by the separated summation
∑j |Ni Nj| has proven to be more stable than the one given in Equation (1), especially when
the value of any |Ni Nj| approaches to zero (or when |Ni Nj| << |Ni Nk| for all k 6= j).
For this reason, the use of Equation (3) is preferred here but maintaining the torque terms
of Equation (1):

~vci = µi

(
∑j γij~tij + τij~nij

c−1 ∑j |Ni Nj|

)
. (4)

Finally, note that torque effects also need to be considered at GBs. For this purpose,
the analytical model introduced in [22] for single surfaces can be used:

~vci = µi

(
−γi +

∂2γi

∂n2
ix

)
κi~ni, (5)

where nix is the projection of the variable normal vector ~n, onto the tangent vector to the
interface at node i. In practice, we have found that applying Equation (5) might produce
oscillatory effects on the computation of velocity ~vc given by the second derivatives of γ.
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To avoid such instabilities, we use a combination of the discrete approach given in [12] and
the standard approach of the TRM model:

~vci = µi

(
−γiκi~ni +

∑j τij~nij

c−1 ∑j |Ni Nj|

)
, (6)

where the terms κi and~ni are computed using the numerical approximation by splines at
node i. Note that~ni 6= ~nij, as~nij denotes the normal of the segment Ni Nj and~ni the normal
to the numerical approximation at node i.

2.2. Minimal-State Energy of High-Order MJs

The grain growth phenomenon is driven by the minimization of GB energy. In an
isotropic context, this means that a GB network will continuously reduce its total surface,
producing numerous topological changes (interface destruction/creation and grain disap-
pearance) in their structure over time. In [17], it was explained how, when using anisotropic
GB properties, the topological changes can diverge from the isotropic behaviour, mainly
during the decomposition of multiple junctions occurring after an interface destruction.
This section provides an insight of the decomposition of high-order MJs when considering
anisotropic GB properties.

The main challenge here is to explore all possible configurations that may proceed after
a decomposition process. The size of the possibilities set P(z) is only dependent on the MJ’s
order z to be decomposed. A fourth-order MJ (i.e., four grain boundaries meeting in a point)
can be decomposed only in two ways. However, the set of possibilities P(z) grows much
higher when the MJ’s order increases. Consider the configuration given in Figure 1, here
we provide a fifth-order MJ, as well as the firsts five possible decompositions given by the
separation of consecutive interface pairs. Note, however, that each possibility regroups one
fourth-order and one third-order MJ, from which the fourth-order one might decompose
in two third-order MJs. In total, for a fifth-order MJ, five final possible decompositions
are allowed when decomposing all MJ with z > 3 (P3

(5) = 5 where the upper script means

that all final MJs are z = 3, see Figure 2). P3
(z) increase rapidly with the MJ’s order z:

for z = (2, 3, 4, 5, 6, 7, 8, . . . ), P3
(z) = (1, 1, 2, 5, 14, 42, 132, . . . ). In general, the number of

possible combinations in this context is given by the Catalan numbers [23] formula Cn:

P3
(z) = C(z−2) =

(2(z− 2))!
(z− 1)!(z− 2)!

(7)

Of course, the probability of encountering a MJ of order z decreases as z increases,
as for a MJ of order z to form, it would require that all P(z−1) possible decompositions
were stable. This notion of stability is related to the total minimum energy state able to be
reproduced for a given initial configuration. Note that this notion also suggests that one
could obtain a total minimal energy state for a MJ with z > 3, in which case this MJ should
not be decomposed [12]. As such, not only the configurations given by P3

(z) need to be
considered, but also those in between (e.g., the ones given in Figure 1), hence producing
P(z) >> P3

(z).
We have simplified this aspect by accepting configurations presenting local minimal en-

ergy states and by not testing all possible configurations P(z). Details of the decomposition
algorithm are given below.
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Figure 1. Possible decompositions of a fifth-order MJ. Data regarding the orientation of each grain
are given. One possible decomposition for every phase involved is depicted. The decomposition of a
5th order MJ results in a 4th order MJ and a third-order MJ.

Figure 2. Final possible decompositions of the MJ of Figure 1 into MJ of 3rd order, the background
colour of each final configuration matches similar configurations.
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2.3. Algorithm for the Decomposition of High-Order Multiple Junctions

Algorithm 1 summarizes the TRM implementation of MJ decomposition. Here we
have used the function Eb(B) which gives the total surface energy of the internal boundary
segments B, of a given element patch ep, obtained thanks to the function Boundaries(ep).
Furthermore, we use the function GL(i, j, N) to return a list of size i with the jth set
of consecutive (consecutiveness is measured in this context by following the angular
coordinate in the polar coordinates system) boundary segments attached to Node N (i.e.,
for the case given in Figure 1, GL(2,1,Nj)

= {NjN3, NjN4}, GL(2,2,Nj)
= {NjN4, NjN5},

GL(2,3,Nj)
= {NjN5, NjN1}, GL(3,1,Nj)

= {NjN3, NjN4, NjN5}. . . ).

Algorithm 1 MJ decomposition algorithm for the TRM model

1: for all Points: Pi do
2: if z(Pi)

> 3 then
3: Ni ← Node representing Pi
4: ep0 ← Elements(Ni)
5: B0 ← Boundaries(ep0)
6: E0 ← Eb(B0)
7: Emin ← ∞
8: S0 ← tuple (ep0, B0)
9: i← 2

10: for all number of connections of Ni : j do
11: {Lj} ← GL(i,j,Ni)

12: Separate {Lj} from Ni by adding a new Node Nj

13: Create new boundary (PP-Connection) Ni Nj

14: Bj ← Ni Nj ∪ B0
15: if Eb(Bj) < Emin then
16: Emin ← Eb(Bj)
17: epj ← Elements(Nj) ∪ ep0
18: Smin ← tuple (epj, Bj)

19: if Emin < E0 then
20: Replace S0 by Smin
21: else if i < z(Pi)

/2 then
22: i← i + 1
23: goto 10:

Algorithm 1 first searches between each pair of consecutive segments, the one that
would reduce the boundary energy the most if it is separated from the MJ (just as depicted
in Figure 1), and selects this configuration. Then, if this configuration reduces the initial
GB energy given by the initial state, the initial configuration is replaced, and the algorithm
continues to the next MJ. If not, instead of searching between pairs, the algorithm will
re-iterate between consecutive triplets of lines if the order z of the MJ is sufficiently high (at
least z = 6) and so on. Finally, if no configuration tested has lower energy than the initial
configuration, the algorithm considers the MJ as stable and continues to the next. Note that
the decompositions are made one at a time for a given call of Algorithm 1 over a given MJ.
This means that a MJ of order z = 5 might be entirely decomposed in two increments and
one with z = 6 in three.

This procedure accepts configurations with higher energy than the total minimal
energy state (the configuration with the total minimum boundary energy), especially for
MJs of high order (z > 6). However, in practice, such configurations have a very low
probability of appearance in real microstructures.

3. Numerical Results

In this section, the TRM model will be tested in a heterogeneous context, meaning
that the influence of the inclination angle ω over the value of γ will be ignored. Then,
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γ depends only on the disorientation angle θ and is equal for all segments defining the
boundary between two given grains but different from all other boundaries. In such a
context, the torque term τ is equal to 0 for all boundary segments, and the velocity of all
nodes can be computed using Equation (3).

All tests performed in this section have been inspired by the ones presented in [8,9] in
the same heterogeneous context. In [8], the classical FE-LS formulation of [24–26] has been
reformulated with the primary objective of taking into account the gradients terms pro-
duced by a variation of γ, that were otherwise neglected in a homogeneous context (where
γ is constant in Ω). Given that this formulation considers all variational terms relevant in
this context, it will be named hereafter the heterogeneous FE-LS formulation. The numerical
testing of this approach was divided into two parts: firstly, in [8], the numerical analysis is
focused on the evolution of multiple junctions as a means to test the heterogeneous FE-LS for-
mulation presented in the same publication. Secondly, in [9], the same heterogeneous FE-LS
formulation was tested in the context of heterogeneous GG, using different formulations
for the computation of the grain boundary energy γ, as a function of the disorientation
angle. The approach used for the computation of the misorientation and disorientation
angles can be found in Appendix A.

We reproduce these studies in the following with the TRM model:

3.1. Triple Junction Test Case

The first test corresponds to an academic triple junction test. Here, the motion of MJs
is dictated by the GB energies of the interfaces meeting at the central node. Figure 3 (left)
illustrates this aspect, where the term γij denotes the GB energy between grains Gi and Gj
and φi is the angle measured at the junction between the interfaces of grain Gi and the other
two grains. For this test, γ13 = γ23, this will provoke a vertical movement of the junction
for any value of γ12 6= γ23, until it arrives at its equilibrium position. As such, we will study
the motion and the equilibrium of the junction in function of the ratio r = γ23/γ12. This test
used dimensionless simulations, the value of the grain boundary energies γ13 = γ23 = 0.1
and the mobility term µ = 1 were held constant; moreover, for practical reasons (for
r < 1, the MJ moves downwards, which when using Neuman type boundary conditions,
induces a global movement of the interfaces in the same direction, and eventually leads
to the contact of the junction with the base of the triangle. This behaviour is not wanted
in this context), Dirichlet boundary conditions with ~vi = 0 ∀ Ni ∈ ∂Ω were imposed,
hence impeding the movement of the nodes at the intersection of the GBs and the edges
of the triangular domain. Finally, the mesh size parameter htrm = 0.006 and the time step
dt = 5× 10−5 will be used for all tests. These values were selected correspondingly to the
limit of the stability region of the TRM model when using piece-wise polynomials (splines)
as a means to obtain values of curvature, and normal [17]. The initial mesh is illustrated in
Figure 3.

Figure 3. Initial state for the triple junction test: three grains are considered in an equilateral triangular
domain. Dirichlet conditions ~vi = 0 ∀ Ni ∈ ∂Ω are considered in the domain border. The initial grain
interfaces and the initial mesh are displayed.



Materials 2021, 14, 4219 8 of 21

While there is not an analytical formulation for the movement of the triple junction
during its transient state in this context, triple junctions present stationary dihedral angles
relying on the energies of the grain boundaries meeting at the junction [22]. In the absence
of torque terms, i.e., when the energy of each interface is maintained constant, the dihedral
angles φ1, φ2 and φ3 (see Figure 3) verify the Young’s equilibrium, leading to the relation:

sin φ1

γ23
=

sin φ2

γ13
=

sin φ3

γ21
. (8)

Similarly to [8], we tested ratios in the range of r = [0.53, 10], and the obtained
equilibrium angles were compared to the analytical equilibrium state obtained thanks to
Equation (8). Figure 4 (left) illustrates the evolution of the ϕ3 angle for different values of r
obtained with the TRM model. These values are compared to the ones obtained in [8] (see
Figure 4 (right)), where we have found that the TRM model evolves faster to its equilibrium
state than the heterogeneous FE-LS method for values of r > 1.67. Furthermore, the TRM
model can reproduce more accurately the analytical values of ϕ3 for r < 1.0. Figure 5 also
illustrates this aspect, where the final value of ϕ3 is plotted against the grain boundary
energy ratio r and compared to the analytical equilibrium value via an L2-Error plot.

Figure 4. Triple junction test case: Evolution of the ϕ3 angle for different values of r, (left) TRM and
(right) LS-FE models. The plotted data for the LS-FE model was taken from [8].

Figure 5. Triple junction test case: (left) Final value for the ϕ3 angle plotted against the grain
boundary energy ratio r and compared to the analytical equilibrium value, and (right) L2-Error.
The plotted data for the LS-FE model was taken from [8].

Figure 6 illustrates the final interface states for both approaches at the end of the
simulation. In [8], it was found that, while the equilibrium angles of φ3 were accurately
described for values of r > 2.5 near the junction, the behaviour of the interfaces was
strongly affected by the boundary conditions applied to the FE resolution, inducing non-
minimal energy configurations. This behaviour was not found nor expected with the TRM
model as boundary conditions only affect the velocity of nodes belonging to the boundary,
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and as a result, the TRM model reduces in all cases (until the equilibrium) the total energy
of the system. This result can be found in Figure 7 where the evolution of the normalised
GB energy EΓ (each curve was scaled to start from a value equals to 1), has been plotted as
a function of time.

Figure 6. Triple junction test case: final interface states for the (left) TRM and (right) LS-FE models.
The displayed for the LS-FE model was taken from [8].

Figure 7. Triple junction test case: evolution of the normalised total grain boundary energy EΓ for
the (left) TRM and (right) LS-FE models. The plotted data for the LS-FE model was taken from [8].

3.2. 2D GG with Heterogeneous GB Properties

Similarly to the triple junction test, in this section, we reproduce the same testing
approach of [9] for heterogeneous FE-LS simulations of 2D-GG.

The first set of simulations measures the accuracy of the TRM model to reproduce
results using different sets of mesh size and time step (htrm, dt). Results of these simulations
are given in Appendix B. These simulations used a Read–Shockley (RS) type function [27]
for the determination of the GB energy γ as a function of the disorientation angle θ:

γ =

{
γmax

(
θ

θmax

)(
1− ln

(
θ

θmax

))
θ < θmax

γmax θ ≥ θmax
(9)

where γmax is the maximal grain boundary energy equals to 1.012 J m−2, θmax corresponds
to a threshold angle of 30◦ and the mobility term µ has been held constant and equal to 0.1
mm4J−1s−1. These values are identical to the ones used in [9] for pure Nickel at 1400 K,
where the authors have explained that contrary to the common usage of the RS function
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(using values for θmax in the range of [10, 15] ◦) a value of θmax = 30◦ enables to numerically
increase the system’s heterogeneity.

However, even with this choice, the heterogeneity level using a RS type function
remains minimal. Indeed, only a narrow percent of the grain boundaries present a disori-
entation angle in the “variational” zone of the RS function (see Figure A1 (bottom-right)
for the values with a disorientation angle θ < 30◦.) while the majority of the interfaces
present a disorientation angle θ ≥ 30◦, and thus they acquire a value of γ = γmax. In [9],
as a means to extend the representativity of the heterogeneous LS-FE formulation, multiple
functions were used to compute the value of γ as a function of θ. This section will test the
TRM model using two of the proposed functions. As such, the results presented here can be
directly compared to those detailed in [9]. These functions correspond to the Read–Shockley+
and the Gaussian functions, which produce the most heterogeneous configurations. These
functions are defined as follows:

RS+

γ =


γ′max

(
θ

θmax

)(
1− ln

(
θ

θmax

))
θ < θmax

γ′max θmax ≤ θ ≤ θthresh

0.1γ′max θ > θthresh

(10)

where γ′max = 1.1 Jm−2 and θthresh = 55◦

Gaussian

γ = γg exp
−(θ − θµ)2

2θ2
σ

, (11)

where γ′q = 1.54 Jm−2, θµ = 40◦ and θσ = 10◦.
These formulations were used along with the RS function and a homogeneous formu-

lation (γ = 1.012 Jm−2) in the TRM model for the full-field modelling of annealing. These
simulations were performed over four different initial Laguerre–Voronoi tessellations [28]
based on an optimized sphere packing algorithm [29] and representative of the same
statistical grain size distribution given in [9] with approximately 40,000 grains each. One
example of initial tessellation is given in Figure 8. Hereafter, all results will contain data
taken from the results of the four initial states and mean quantities will be averaged.

Figure 8. Example of the initial state of a 2D heterogeneous GG test case with 40,000 initial grains,
(left) grain size field, (right) zoom of the circular section.
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Figure 9 shows the evolution of this tessellation in time and for different γ functions,
here, the colours are representative of the GB energy of each interface. These figures
illustrate how the RS formulation is too “homogeneous”, presenting just a few variations
in the GB properties (even at the end of the simulation), while the RS+ and Gaussian are
more heterogeneous. Additionally, in the RS+ and Gaussian cases, interfaces with a high
GB energy seem to be eliminated during the early stages of the simulations, giving a higher
predominance to low-energy GBs, which is not the case for the RS configuration. Another
essential aspect observed in the final states of the RS+ and Gaussian cases is the appearance
of stable high-order multiple junctions as predicted in Section 2.2.

Figure 9. Examples of the evolution of the microstructure, from top to bottom as a function of time,
and using the functions from right to left: RS, RS+, and Gaussian. A much higher heterogeneity is
found in the cases using the Gaussian and RS+ functions. These figures illustrate the presence of
stable high-order multiple junctions.

Figure 10 illustrates the normalised GB disorientation distributions of the heteroge-
neous configurations for every hour of annealing. Results show how the RS maintains
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its shape near the Mackenzie plot, hence not giving almost any preference to low energy
GBs. Contrarily, the Gaussian and RS+ cases tend to avoid the disorientation angles with
high energy. The plot shows maximum values at disorientation angles with low energy
(e.g., for the RS+ configuration, finds one maximum at θ > θthresh = 55◦). These results can
also be observed in terms of the normalised grain boundary energy distributions given
in Figure 11. In only one hour of annealing, the Gaussian and RS+ configurations tend to
dissipate high energy GBs, giving a much higher predominance to low energy GBs and
promoting their permanency (or their appearance) as time advances. In contrast, for the RS
configuration, the changes in the distribution of energy remain negligible. The Gaussian
configuration is a perfect example of how the TRM algorithm responds to grain boundary
energy minimisation when opposed to a highly heterogeneous configuration.

Figure 10. Probability density plot of the disorientation angle weighted by GB length, for the cases
using the Gaussian, RS, and RS+ functions for the computation of the GB energy γ, and for different
times. Each class of data contains the results of four different initial states representative of the same
initial grain size distribution.
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Figure 11. Normalised grain boundary energy distribution using various functions for the compu-
tation of the GB energy γ. The distributions are given for every hour of thermal treatment. Each
class of data contains the results of four different initial states representative of the same initial grain
size distribution.

Low energy GBs predominance may produce a deceleration of the evolution of the
grain size in the domain. Figure 12 illustrates the grain size distribution of the different
test cases showing how the RS configuration produces a grain size distribution with larger
sizes while the RS+ and Gaussian configurations promote smaller grains.

Figure 13 gives the evolution of the mean grain size, the total number of grains,
the total GB energy, and the total grain boundary length. The minimisation of the GB
energy is much higher for the most heterogeneous cases (RS+ and Gaussian), even though
their number of grains and mean size appears to have a “slower” evolution than the RS
and homogeneous cases. Furthermore, the responses of the homogeneous and the RS cases
are very similar.

Figure 14b gives the total GB length plotted against the number of grains of the
simulation showing how the Gaussian and RS+ cases have a higher value than the RS and
the homogeneous cases. This result can not be anticipated as one could have guessed the
contrary, by seeing the evolution curves of the total GB energy given in Figure 13 (bottom-
left) as a function of time and as illustrated in Figure 14a as a function of the number of
grains. This result is a product of the preference of the higher heterogeneous cases for grain
boundaries of low energy, but also by the more frequent apparition of high-order multiple
junctions that decelerate the reduction of the total GB length.
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,

Figure 12. Grain size distributions weighted by surface using various functions for the computation
of the GB energy γ. The distributions are given for every hour of thermal treatment. Each class
of data contains the results of four different initial states representative of the same initial grain
size distribution.

,

, ,

,

Figure 13. Evolution of different parameters as a function of time, for the 2D heterogeneous GG
test case simulated with the TRM model: (top-left) mean grain size pondered by surface, (top-right)
number of grains, (bottom-left) total grain boundary energy EΓ and (bottom-right) total lenght
of GBs.
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Figure 14. Evolution of different parameters as a function of the number of grains, for the 2D
heterogeneous GG test case simulated with the TRM model: (a) total grain boundary energy EΓ and
(b) total lenght of GBs.

Table 1 gives the CPU-time of each simulation, showing how the computational cost of
the TRM model in this context may be more related to the length of boundaries than to the
number of grains (see Figure 14b). Additionally, the differences between the computational
cost of the homogeneous and the heterogeneous cases are very high. This can be explained
by the fact that for the homogeneous case, it is not necessary to compute the misorientation
at GBs nor the lowest energy configuration in the event of a separation of MJs. These
operations are very demanding as both rely on an iterative computation of the lowest
rotation angle between two orientations in a set of 24 possible rotations, where all of them
have to be tested. Table 1 also shows that the higher the heterogeneity of the case, the higher
its computational cost. This behaviour can be anticipated by seeing the evolution of the
number of grains and the total length of boundaries (Figure 14), as the more homogeneous
cases reduce these quantities much faster.

Table 1. CPU-time of all simulations. Mean values are averaged over the four simulations of each γ function, each simulation
uses a different initial state (IS).

γ Function IS 1 IS 2 IS 3 IS 4 Mean

Homogeneous 0 h 56 min 16 s 0 h 55 min 16 s 0 h 57 min 53 s 0 h 58 min 11 s 0 h 56 min 54 s
RS 7 h 5 min 48 s 6 h 58 min 36 s 7 h 5 min 15 s 7 h 0 min 17 s 7 h 2 min 29 s

RS+ 7 h 30 min 8 s 7 h 19 min 21 s 7 h 25 min 35 s 7 h 21 min 25 s 7 h 24 min 7 s
Gaussian 7 h 49 min 6 s 7 h 48 min 22 s 7 h 50 min 28 s 7 h 51 min 30 s 7 h 49 min 51 s

The results presented here are very similar to the ones obtained in [9] in the context
of the heterogeneous FE-LS formulation. This suggests that both methodologies are valid
to predict microstructural states in a full-field context, as even though the mechanisms
behind their evolution are the same, they have been modelled using a completely different
numerical scheme and still produce a very similar outcome. It mush be highlighted that
simulations in [9] where performed with initial states with around 5000 grains while
here we performed simulations eight times larger (for simulations using the same initial
grains as in [9] see [30]). Moreover, the computational power needed to produce these
results using the heterogeneous FE-LS may be much higher than the one needed by the
TRM. The TRM model performed all sequential simulations in less than eight hours for the
heterogeneous configurations and in less than one hour for the homogeneous ones, using
an AMD Ryzen 73,600× processor.

4. Discussion, Conclusions and Perspectives

This article has provided the necessary implementation for modelling grain growth us-
ing heterogeneous grain boundary properties with the TRM model. These implementations



Materials 2021, 14, 4219 16 of 21

consist of: (i.) a numerical framework on top of the TRM base code to measure neighbors’
misorientation. The algorithm only takes these measurements at grain interfaces, namely,
L-Nodes and PP-Connections. (ii.) A decomposition algorithm for high-order multiple
junctions, which searches for the lowest energy configuration among all possible decompo-
sitions. These decompositions are obtained by the separation of pairs of interfaces from the
MJ, storing for each, the total GB energy change ∆EΓ and applying the one with the lowest
∆EΓ only if it is negative (as for events with a minimum value of ∆EΓ > 0 the original
configuration should remain stable). Finally, (iii.) a formulation for the computation of the
velocity using anisotropic data was established using a discrete formulation inspired by the
literature [12,15]. The new methodology implemented for the TRM model was tested in the
context of heterogeneous grain boundary properties, using identical test cases like the ones
presented in [8,9]. Results show that the TRM model can produce more accurate results
regarding the equilibrium angles of triple junctions compared to the analytical values given
by Young’s equilibrium. Additionally, the TRM model ensures at all times low-energy
stable configurations contrary to the heterogeneous LS-FE model presented in [8] which may
produce stable configurations with non-minimal energy states. Furthermore, the TRM
model was tested in a GG context using heterogeneous grain boundary properties in
function of the disorientation angle. The initial configurations of all tests were statistically
identical to the one presented in [9] with around 40,000 initial grains. Sensitivity analyses
were performed, resulting in a tendency of the model to converge to a fixed solution when
decreasing the set of parameters (htrm, dt), controlling the mesh size and the time step,
respectively. Then, multiple formulations for the determination of the grain boundary
energy γ as a function of the disorientation angle θ were used, namely the Read–Shockley
(RS) [27], the modified Read–Shockley (RS+), and the Gaussian formulations used in [9].
Results showed a similar statistical behaviour to the results presented in [9] in a LS-FE
context, hence validating both approaches at this scale.

Results also show that the CPU-time depends on to the total length of GBs. Addi-
tionally, the computational needs of the heterogeneous cases are higher than when using
a homogeneous configuration. This result is strongly related to the computation of the
disorientation angle which, even if it is only performed at the interfaces, it remains a brute
force algorithm, which in [30] showed a poor performance, taking up to 60% of the total
CPU-time in the heterogeneous configurations.

The proposed test cases use properties which are representative of pure Nickel at
1400 K (as in [9] ), however, the scope of this article remains purely academic, validating the
approach through comparisons with well-known numerical models (i.e., the LS-FE model)
and not with existing experimental data. Furthermore, although the LS-FE approach has
been validated using experimental data in other contexts [31], it is not the case concerning
the impact of anisotropic grain boundary properties. This is given by the fact that it is
experimentally extremely difficult to measure local dynamics of grain boundaries and to
correlate these data to their anisotropic properties (this is in fact an active field of research).
Of course, It remains a perspective of the present work to test the TRM model in a fully
anisotropic environment, where the influence of the inclination of the interface on the
computation of γ is taken into account, producing variations of properties over curved
GB and torque terms. Such a study will be presented in a forthcoming publication [20]
on statistical behaviour of GB when using anisotropic GB properties that is more in accordance
with the way that in situ experimental data at the polycrystalline scale are classically
presented [32], paving the way to experimental-numeric correlations.

Finally, the TRM model (and its implementation for isotropic GB properties) can
be extended to 3D by following the same set of rules defined for 2D modeling in [17].
These rules remain principally, the selective remeshing procedure that needs to carefully
reconnect mesh entities (nodes, facets and elements) that belong to GBs. Then, a 3D surface
approximation able to compute curvature and normal at GBs needs to be stablished. This
constitutes a particularly difficult task since local gradients of curvature are needed to
establish proper GBs’ dynamics; however, the literature offers some workarounds [33].
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Finally, the discrete methods presented to compute DRX dynamics [19] and anisotropic
behavior need to be developed, the latter, being addressed in the past in [22,34].
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Appendix A. Computation of the Disorientation Angle

We will compute the misorientation and the disorientation angle similarly as in [9].
Two neighbours grains Gl and Gm with orientations Ol and Om, respectively, form a
misorientation expressed as:

M∗lw = O−1
l Ow (A1)

It is, however, necessary to compute a misorientation taking into account the minimisa-
tion of the disorientation angle θ(Ol , Ow). Hence for all possible symmetric representations
of the misorientation M∗lw, with (Si, Sj) ∈ H2 the space group of the crystal:

Mlw = S−1
i M∗lwSj

mini,j θ(OlSi ,OwSj)

(A2)

The search for minimal disorientation uses a brute force algorithm. Every misorienta-
tion computation needs to iterate over all possible symmetric representations and select
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the one with the lowest θ. In this work, we will consider only cubic-type crystals, hence 24
symmetric representations must be iterated.

TRM model performs these operations during two stages of the algorithm:
First, a misorientation computation is held before the computation of the nodes’

velocities vi, as all boundary properties must be defined at this stage. The computation is
performed once per Line, which attributes all misorientations and disorientation angles
for all L-Nodes and segments of the Lines entities. Note that a Line can only compute
one misorientation, hence, it is unnecessary to compute it for every node lying on the
Line. Then, some edges still need to define their orientation: the ones describing a PP-
Connection, namely, the edges defining a connection between two Point entities (see [17] for
more information about the data structure used by the TRM model). This computation is
necessary, as, even though the notion of grain boundary energy does not hold at MJs in the
same way as for normal boundaries, the GB properties of all interfaces attached to the MJ
are needed.

Secondly, the TRM model performs a misorientation computation during the decom-
position of MJs for all possible new interfaces (see line 13–15: of Algorithm 1). This could
be a very demanding procedure as, for instance, each possible decomposition seeks the
minimal disorientation angle among all 24 equivalent symmetries defined for the crystal.
We study the relative cost of the misorientation computation at the end of Section 3.

Appendix B. Sensitivity Analysis on GG Simulations: Mesh Size and Time Step

This section uses a squared RVE domain of 1.5 mm of side length to model annealing.
Figure A1 (top-left) illustrates the initial state of the polycrystal used in this sensitivity
analysis. This polycrystal contains exactly 5089 initial grains and its grain size distribu-
tion (pondered by surface) is given in Figure A1 (top-right). Additionally, in all cases,
the mobility term has been held constant and equal to 0.1 mm4J−1s−1.

Figure A1 (bottom-left) shows the initial microstructure colored following the orien-

tation magnitude e =
√

ϕ2
1 + Φ2 + ϕ2

2 of each grain. Disorientation angles (θ) have been
computed for each Line, L-Node and PP-Connection (i.e., for all nodes and segments belong-
ing to the GBs) of the interface using the methodology presented in Appendix A. Figure A1
(bottom-right) gives the disorientation angle distribution of the initial microstructure,
which shows a good agreement with the Mackenzie plot.

Figure A2 (top) gives the evolution of various parameters for the first 3 h of simulated
time using a constant mesh size of htrm = 0.003 mm and for various time steps dt. The mean
grain size, the number of grains, and the total GB energy have been plotted, showing a
tendency to converge to a fixed solution when the time step decreases. Figure A2 (bottom)
gives the L2-difference of each iteration taking as a reference the curve using dt = 5 s,
confirming these results. Similarly, the simulations were repeated using a constant time
step dt = 50 s and for various mesh sizes. Similarly, as before, decreasing the mesh size
produces a tendency to converge to a fixed evolution (see Figure A3), reducing the L2-
difference to the reference curve (here the one using htrm = 0.002 mm) with every iteration.
This study shows that one can expect good accuracy when using a set of parameters
(htrm, dt) in the surroundings of (0.003 mm, 50 s). These values will be used in all other
polycrystal simulations.
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Figure A1. Initial state of the 2D heterogeneous GG test case with 5000 initial grains, (top-left) grain
size field, (top-right) grain size distribution weighted by surface area, (bottom-left) grain orientation
field and (bottom-right) probability density plot of the disorientation angle weighted by length
of interface.

,

,

, ,

,,

Figure A2. Sensitivity to the time step dt for the 2D heterogeneous GG test case using the TRM model
and htrm = 0.003 mm. The evolution of different parameters is given when using the RS function
for the determination of the GB energy γ as a function of the disorientation angle θ: (left) grain size,
(center) number of grains, and (right) total GB energy. Each value (top) is compared to the evolution
of the smallest dt. L2-difference values are given (bottom).
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Figure A3. Sensitivity to the mesh size htrm for the 2D heterogeneous GG test case using the TRM
model and dt = 50 s. The evolution of different parameters is given when using the RS function for
the determination of the GB energy γ as a function of the disorientation angle θ: (left) grain Size,
(center) number of grains, and (right) total GB energy. Each value (top) is compared to the evolution
of the smallest htrm. L2-Difference values are given (bottom).
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