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Abstract: Tribological properties of engineering components are a key issue due to their effect on the
operational performance factors such as wear, surface characteristics, service life and in situ behavior.
Thus, for better component quality, process parameters have major importance, especially for metal
matrix composites (MMCs), which are a special class of materials used in a wide range of engineering
applications including but not limited to structural, automotive and aeronautics. This paper deals
with the tribological behavior of Cu-B-CrC composites (Cu-main matrix, B-CrC-reinforcement by
0, 2.5, 5 and 7.5 wt.%). The tribological characteristics investigated in this study are the coefficient
of friction, wear rate and weight loss. For this purpose, four levels of sliding distance (1000, 1500,
2000 and 2500 m) and four levels of applied load (10, 15, 20 and 25 N) were used. In addition,
two levels of sliding velocity (1 and 1.5 m/s), two levels of sintering time (1 and 2 h) and two
sintering temperatures (1000 and 1050 ◦C) were used. Taguchi’s L16 orthogonal array was used to
statistically analyze the aforementioned input parameters and to determine their best levels which
give the desired values for the analyzed tribological characteristics. The results were analyzed by
statistical analysis, optimization and 3D surface plots. Accordingly, it was determined that the most
effective factor for wear rate, weight loss and friction coefficients is the contribution rate. According
to signal-to-noise ratios, optimum solutions can be sorted as: the highest levels of parameters except
for applied load and reinforcement ratio (2500 m, 10 N, 1.5 m/s, 2 h, 1050 ◦C and 0 wt.%) for wear
rate, certain levels of all parameters (1000 m, 10 N, 1.5 m/s, 2 h, 1050 ◦C and 2.5 wt.%) for weight loss
and 1000 m, 15 N, 1 m/s, 1 h, 1000 ◦C and 0 wt.% for the coefficient of friction. The comprehensive
analysis of findings has practical significance and provides valuable information for a composite
material from the production phase to the actual working conditions.

Keywords: Cu-B-CrC composites; tribology; powder metallurgy; optimization; wear rate

1. Introduction

Today, copper (Cu) is widely used for industrial products such as antennas, filaments,
contacts and electrodes, due to its properties such as high thermal conductivity, high
electrical conductivity and good machinability [1]. Many applications in the manufactur-
ing and electronics industries require material components with improved mechanical
properties as well as high thermal and electrical conductivity, high oxidation and corrosion
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resistance [1–3]. Today, scientists are constantly trying to improve the mechanical and
workability properties of these materials, which can be produced cost-effectively and with
low density [4–7]. One way to improve the mechanical and machinability properties of
copper is by adding a second phase [8]. Composite materials, which are formed by the com-
bination of more than one material, have properties such as high hardness, high strength,
low thermal expansion, power damping and excellent wear resistance [9,10]. Metal matrix
composites (MMCs) are materials with significantly improved properties [11,12]. It has
been stated previously that MMCs—especially copper matrix composites (Cu-MMC)—are
the most suitable materials that can be used in the industry for the aforementioned prop-
erties [13,14]. The powder metallurgy method (P/M) is a metal forming process which
involves mixing elemental or alloy powders to form MMCs [8,15,16]. The P/M method
is often preferred due to its advantages such as high production speeds, low cost, the
manufacturing of complex shapes, low material loss and high melting temperature [17–22].
In addition, ceramic reinforcements have been attracting attention due to their high melting
temperature, hardness and corrosion resistance. A number of application fields such as
automotive, military and electronics prefer to use ceramics today [23,24]. On the basis of
above discourses, CrC was employed as the ceramic reinforcement particle thanks to their
superior mechanical properties. In light of the outlined information, this study focuses on
the tribology behavior of Cu-B-CrC composites.

Despite Cu carrying significant properties for several types of engineering materials
utilized in the automotive, electric and electronic sectors, there are limitations for its appli-
cations. To overcome these restrictions, the key factor is to select the accurate additives to
improve the its mechanical properties [25]. An important improvement has been procured
by CrC particles in terms of material hardness, abrasion resistance and tensile strength by
the effect of superior hybrid properties of this ceramic such as wear resistance, thermal sta-
bility and corrosion resistance [26]. On the other hand, the addition of boride to the material
structure of different types of metal matrix [27–30] in the past improved their mechanical
properties. Many initiatives have been presented in the past for better copper matrix prop-
erties. One of the main reinforcement materials is graphene due to its excellent heat and
electrical conductive properties [31–33]. Graphene is a single layer of carbon atoms which
are stacked together in a honeycomb-like lattice structure. For example, Cao et al. [34]
experimentally tested graphene and tungsten additives under different loads according to
wear and tribological aspects. Important improvements were obtained in this way, inspired
by researchers, after Ma and Lu [35] addressed the influence of sliding distance on the
tribological behavior of Cu-based composites reinforced by graphene. A work conducted
by Mai et al. [36] selected nickel as the additive element in different ratios. According to the
results of this study, a critical level of graphene brings significant improvements to the cop-
per matrix. Xiao et al. [37] evaluated the tribological behavior of the Cu matrix reinforced
by MoS2 and AISI 52100 steel in order to find the optimum reinforcement ratio of MoS2.
It was verified that MoS2 is an effective lubricant for copper matrix composites against
steel. This situation was attributed to the friction coefficient decreased by adding 20 vol%
of the MoS2. Wu et al. [38] studied the effect of Ti2SnC reinforcement on Cu considering its
electrical and mechanical properties. According to the authors, the coefficient of friction
and wear rate of the Cu matrix was improved significantly. Rajkumar and Aravindan [39]
measured the size effect of the graphene particles on Cu-based composites, and found that
nano-sized particles provide an important improvement in the wear and friction properties.
Su et al. [40] investigated the surface integrity and tribological aspects of copper-based
composites by adding graphene particles. Graphene reinforcement procured considerable
impact on these properties from the improvement perspective. Xiao et al. [41] researched
friction and wear properties for Cu composites. The tribological performances demon-
strated little sensitivity to friction cycles in the determined temperatures. Tang et al. [42]
compared the tribological properties of pure copper and carbon-fiber-strengthened copper
matrix composites and found that the latter showed superior properties. Kumar et al. [43]
evaluated the performance of Cu-based, copper–tin and MoS2-reinforced composites ac-
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cording to their microstructures and tribological conditions. Accordingly, the developed
composite demonstrated a lower coefficient of friction and wear rates compared to the
prepared composites. Zhao et al. [44] investigated the coefficient of friction, wear rate
and microstructures of tungsten added composites. Superior tribological properties were
obtained by the formation of these tribo-films. Huang et al. [45] indicated that Cu-based
composites can be improved by adding carbon nanotubes by means of mechanical and
tribological aspects. In the work of Zou et al. [46], Cu and graphene were prepared as the
mother matrix reinforced by SiO2 particles in order to improve the tribological and mechan-
ical properties. According to the authors, the addition of SiO2 leads to increasing friction
stability and friction coefficient, and decreasing wear rate. Rajkumar et al. [47] proposed
hybrid composites fabricated by Cu and reinforced by TiC and graphene particles. Better
tribological properties were obtained with these ceramic particles. Zhan and Zhang [48]
also produced hybrid composites by adding SiC and graphene particulates. They obtained
higher wear and tribological properties by the ceramic reinforcements. Rajkovic et al. [49]
used Al2O3 ceramics in order to develop the main Cu matrix which was the same with
Hwang et al. [50]. They reported the superior properties and positive effect of the ceramic
additives. Triantou et al. [51] evaluated different ratios of Al2O3 ceramics and obtained
higher tribological characteristics. Sap [52] used cobalt and titanium powders in order
to strengthen the Cu-based matrix by means of microstructural and mechanical aspects.
Accordingly, the reinforcement ratios were relatively more effective compared to the other
parameters. Uzun and Cetin [26] added cobalt and chrome carbide to the Cu-based matrix
for the evaluation of microstructure characterization. The reinforcement particle ratio of wt.
10% was the optimum reinforcement ratio for this study. Gong et al. [53] added SiO2 and
CrC to the Cu-based composites for improved microstructural and tribological properties.
When looking into the open literature, it can be seen that there is a handful of studies
which looked into the influence of adding different types of additives on the tribological
performance of Cu-based composites. Uzun et al. [54,55] researched the influence of dif-
ferent ratios of CrC particulate reinforcements on the microstructure, hardness and wear
properties of a Cu-based matrix. Gautam et al. [56] addressed tribological behavior of
Cu–Cr–SiCp in situ composites considering wear rate, volume loss, surface roughness and
coefficient of friction. Briefly, Cu provides convenient conditions for particle addition to a
wide range of materials. Increasing demand on the advanced mechanical and tribological
performance of the end product has led researchers and manufacturers to discover different
new-generation composite materials with specific high strength, lightweight properties
and enhanced surface aspects. In this context, various studies have been performed on
the mechanical and tribological properties of different metal-based matrix composites
produced by powder metallurgy routes. However, no published study has been encoun-
tered that deals with the effect of production parameters on tribological properties, both
experimentally and statistically, particularly herein the Cu-B-CrC system.

Despite the fact that there has been a significant amount of published literature
about the tribological aspects of Cu-based composites, this study is the first considering
the influence of adding B-CrC as a reinforcement element. The paper focuses on the
tribological behavior of Cu-B-CrC composites produced by powder metallurgy. Taguchi-
based orthogonal array (L16) was adopted to the experimental design using four levels of
each of the following: sliding distance, applied load and reinforcement ratio. Moreover,
two levels of the following: sliding velocity, sintering time and sintering temperatures were
used The aim is to evaluate the tribological behavior, coefficient of friction and wear rate
of Cu-B-CrC composite and using Taguchi’s signal-to-noise ratios for optimization, with
ANOVA for statistical analysis and 3D plots for changing parameter effects.

2. Materials and Methods
2.1. Composite Materials Production Process

High commercial purity Cu powders were used as the main matrix for the composite
materials produced in this study. Elemental powders of Cu (<45 µm, irregular particle
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shapes), and B (~2 µm, irregular particle shapes) and ceramic powder of Cr3C2 (~300 µm,
prismatic morphology) were purchased from Nanografi Nanotechnology, Co. Ltd., Ankara,
Turkey. The purity rates of the powders used are greater than 99%. Boron powders, known
for their resistance to heat at high temperatures, and Cr3C2 powders, which provide excel-
lent abrasion resistance, were used as reinforcement materials. The reinforcing particles
used can improve certain properties (such as wear resistance and hardness) of the base
matrix used for the composite material. Scanning Electron Microscope (SEM) (JEOL Ltd.,
Tokyo, Japan) images of the main matrix and reinforcement particles used in this study are
given in Figure 1.

Figure 1. SEM images of powders used in composite material production (a) Cu [26] (b) B (c) CrC
(d) mixed powder (5 wt.%), and (e) EDX mapping analysis of Figure 1d.

The composite materials used in the experiment were produced by the powder met-
allurgy method. Commercial grade B-Cr3C2 supplement powder particles were added
to the Cu main matrix at a ratio of 0–2.5–5–7.5 wt.%, as shown in Table 1. Elemental
powders were mixed for 4 h at a rotational speed of 50 rpm with the help of a turbula to
distribute homogeneously. The powders that became homogeneous were pressed by the
cold pressing method under 600 MPa pressure in a hydraulic press (Hidrometal, Konya,
Turkey).

Table 1. The properties of powder materials.

Samples Cu Ratio
(wt.%)

B Ratio
(wt.%)

Cr3C2 Ratio
(wt.%) Number of Samples New

Representation

Pure Cu 100 – – 3 Cu

Cu-B-Cr3C2 (2.5 wt.%) 97.5 1 1.5 3 Cu-B-1.5-Cr3C2

Cu-B-Cr3C2 (5 wt.%) 95 2 3 3 Cu-2B-3Cr3C2

Cu-B-Cr3C2 (7.5 wt.%) 92.5 3 4.5 3 Cu-3B-4.5 Cr3C2

Pressed samples were sintered under protective argon atmosphere (dry argon having
a dew point of −55 ◦C) in a Protherm HLF-50 sinter furnace (Prothermfurnaces, Ankara,
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Turkey) according to L16 Taguchi orthogonal array. In the sintering process, 1000 ◦C and
1050 ◦C, 1 h and 2 h parameters were selected for the temperature. After sintering, 12 mm
diameter and 30 mm length cylindrical test specimens were obtained. The experimental
scheme is shown in Figure 2.

Figure 2. The experimental scheme the experimental scheme.

2.2. Microstructural Evaluation

In order to obtain microstructural images of the produced samples, the P200-400-600-
800-1000-1200 grid was sanded with paper backing SiC discs, respectively. After sanding,
3 µm diamond suspension was used for polishing. The etched samples, which were etched
by %5 Nital and ammonium persulfate (10 g (NH4)S2O3 + 90 g deionized water) and their
dilution with ethanol, were made ready for SEM. The samples were cleaned with ethyl
alcohol to avoid any residue on the surface of the samples. Metallographic analysis of the
samples was carried out on the JEOL JSM 6510 branded SEM device (JEOL Ltd., Tokyo,
Japan).
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2.3. Density and Hardness Measurements

After the microstructural characterization of the powders, the mechanical properties
of the sintered samples were determined using density and Brinell hardness measurements.
According to the information available in the literature survey [57,58], the Brinell hardness
method was selected because it has high accuracy and repeatability for metals and their
alloys. Plus, the indenter spherical ball used by different sizes allows more effortless
measurement on the material surface than Vickers hardness. These properties of the Brinell
hardness technique makes it highly influential in evaluating the hardness relationships
between the matrix and reinforcement element in a multiphase material system. In order
to obtain information about the pores formed in the produced composites, the relative
density of the samples was determined. The Brinell hardness method was used to evaluate
the macro hardness of the produced composite materials. The hardness measurements
were carried out using a BMS hardness tester (Bulut Makina, Kocaeli, Turkey) by applying
a 10 kg load to the flat and polished surface of the samples for 10 s (Figure 3). For each
sample, the hardness measurement was repeated five times and the average of the five
readings was reported in the results.

Figure 3. Brinell hardness test.

2.4. Taguchi-Based Experimental Design and Optimization with Signal-to-Noise Ratios

Taguchi is a form of experimental design methodology which is often used to reduce
the number of tests required when the experiment contains a large number of factors
and levels [59]. Taguchi is a frequently utilized method in many industrial applications
and engineering fields. It also supplies reliable and high accuracy results. Further, it
is a promising approach for tribological aspects which has been applied by the authors
recently [60,61]. In this context, a Taguchi-based statistical design was chosen in the present
study to reduce the number of runs (tests) which are formed from weight loss, wear rate
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and the coefficient of friction. In addition, the optimization using Taguchi is achieved using
signal-to-noise ratio–smaller-the-better principle, as shown in Equation (1) [62].

Signal-to-noise smaller is the better = −10 log
[

1
n ∑n

i=1 y2
i

]
(1)

where y shows the responses of the machinability characteristics, for a trial condition
repeated several times.

2.5. Wear Analysis

Wear tests of Cu-B-CrC composite samples produced at different ratios were per-
formed on the TURKYUS model pin-on-disc tribometer device and optimized by the
Taguchi method. The Taguchi method was used to reduce the number of runs required in
the wear test. The diameters of the samples produced for the wear test were reduced to
10 mm. The disc used as an abrasive was produced from the AISI D2 tool steel by the wire
erosion method and its surfaces were hardened by nitriding. An abrasive disc wear test
was applied to test specimens and these samples with a diameter of 10 mm and a length of
30 mm were prepared according to the ASTMG99-95a standard. The wear test was started
with a circular motion by contacting the test specimens on the rotating disc surface. Before
the test, the surfaces of the disk and cylindrical test specimens were cleaned by washing
them with ethyl alcohol. The friction force produced during the wear test was measured
using a strain gauge sensor. The fixed variables used for testing were as follows: the disc
diameter at which the wear test was carried out was 96 mm, the disc speed was 200 and 300
RPM, the sliding distance was 1000–1500–2000–2500 m, the sliding speed was 1–1.5 m/s
and the applied loads were 10, 15, 20 and 25 N. Weight losses and variation of the friction
coefficient were investigated. All wear tests were performed under dry conditions in a
normal laboratory atmosphere (55–70% relative humidity, 20–25 ◦C).

3. Results and Discussion
3.1. SEM-EDX Analysis

SEM micrographs showing the microstructures of composites produced at different
ratios are shown in Figure 4. When the microstructures of the composites are examined, it
is seen that there are light and dark regions. The light-colored regions represent the copper
main matrix and the dark-colored regions represent the reinforcement particles. Sap [8]
produced composite materials by adding different proportions of Co-Mo hybrid powder
particles into the Cu main matrix. She reported that light and dark areas were detected in
the composite samples produced. The sharp edges of the additive particles directly affect
the formation of porosity. Thus, it can cause a decrease in the relative density. However, it
was thought that the main matrix could improve the mechanical properties due to better
adhesion to the edges. CrC particles were detected in the copper-rich microstructure.
Boron was not seen in the microstructure due to its smaller grain size. In general, it can
be said that there is a homogeneous distribution in the microstructure. Additionally, no
agglomeration was found.

SEM/EDX analysis of composite samples with different reinforcement ratios is shown
in Figure 5. In Figure 5a, it is seen that the copper peaks are high. Since the sintering
process was carried out with protective argon gas, no oxygen or oxidation was found on
the sample surfaces as a result of the analysis. In addition, no undesirable compounds
were encountered. In the EDX analysis of composites, the ratios of the elements in the grain
boundaries and the main matrix support each other.

3.2. Density and Hardness Analysis

The relative density graphs of composites sintered at different times and temperatures
are shown in Figure 6. When the graph is examined, it is seen that the highest density
values are in the pure copper sample. In general, it was determined that the relative density
values increased with increasing sintering time and temperature [14]. The amount of pores
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formed during sintering directly affects the mechanical properties of the material [64].
Especially during sintering, neck formation and diffusion rate are directly related to sin-
tering temperature. Therefore, the highest density value (93.4%) was found in the sample
sintered at 1050 ◦C for 2 h. The increase in sintering time and temperature increases the
relative density.

Figure 4. SEM micrographs of pure Cu [63] and composites produced at 5 wt.%.

Figure 5. SEM-EDX micrographs of composites produced at different ratios: (a) pure sample,
(b) 2.5 wt.% B-CrC, (c) 5 wt.% B-CrC, (d) 7.5 wt.% B-CrC.
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Figure 6. Relative density graph of composites sintered at different times and temperatures.

The hardness of the composites produced using different sintering times and temper-
atures is shown in Figure 7. The results showed that the hardness values were higher in
the 7.5 wt.%-reinforced samples. It was determined that the hardness increased with the
increase in the weight of the hardness reinforcement particles, which are the indicators of
resistance to plastic deformation. In general, it was observed that the samples sintered at
1050 ◦C for 1 h had higher hardness values. The highest hardness value (67.48 HB) among
all samples was found in the 7.5 wt.%-reinforced sample, which was sintered for 1 h at
1050 ◦C. Therefore, it can be said that the sintering temperature have a greater effect on
hardness than the sintering time.

Figure 7. Hardness graph of composites sintered at different times and temperatures.



Materials 2021, 14, 4217 10 of 25

3.3. Optimization and Graphical Analysis for Wear Rate

As mentioned previously, four levels of sliding distance (1000–1500–2000–2500 m),
applied load (10–15–20–25 N) and reinforcement ratio (0–2.5–5–7.5 wt.%), two levels
of sliding velocity (1–1.5 m/s), sintering time (1–2 h) and temperature (1000–1050 ◦C)
were adopted to the Taguchi experimental design. Table 2 outlines these inputs and the
obtained results, namely weight loss (g), wear rate and coefficient of friction (µ). A total of
16 experiments were performed, which are further analyzed for each output, respectively.

Table 2. Design parameters and related experimental results after the tribological tests.

Exp.
No

Reinforcement
Ratio

(wt.%)

Sliding
Distance

(m)

Applied
Load
(N)

Sliding
Velocity

(m/s)

Sintering
Time

(h)

Sintering
Temperature

(◦C)

Weight
Loss
(g)

Wear
Rate

(×10−4 mm3/Nm)

Coefficient
of Friction

(µ)

1 0 1000 10 1 1 1000 0.007600 9.49701 0.512543
2 0 1500 15 1 1 1050 0.016000 12.76947 0.553592
3 0 2000 20 1.5 2 1000 0.018100 10.90451 0.585360
4 0 2500 25 1.5 2 1050 0.023800 11.37495 0.557652
5 2.5 1000 15 1.5 2 1000 0.007200 9.47045 0.754312
6 2.5 1500 10 1.5 2 1050 0.006300 5.56853 0.749834
7 2.5 2000 25 1 1 1000 0.028700 18.96008 0.691095
8 2.5 2500 20 1 1 1050 0.029900 15.66025 0.708838
9 5 1000 20 1 2 1050 0.017900 26.81273 0.641499
10 5 1500 25 1 2 1000 0.038500 36.7995 0.707800
11 5 2000 10 1.5 1 1050 0.031300 23.43129 0.787704
12 5 2500 15 1.5 1 1000 0.033500 18.63495 0.64229
13 7.5 1000 25 1.5 1 1050 0.014400 21.53336 0.68217
14 7.5 1500 20 1.5 1 1000 0.028300 28.7164 0.667579
15 7.5 2000 15 1 2 1050 0.020200 15.21726 0.658962
16 7.5 2500 10 1 2 1000 0.016500 9.82809 0.671620

Wear rate shows the amount of wear of the materials used in the experiments. It
is important to measure the wear characteristics of the engineering parts. Therefore,
the optimum conditions for procuring the minimum wear rate value are required. The
main effects plots calculated by signal-to-noise ratios for wear rate results are depicted in
Figures 8 and 9, which show the optimum solutions for each input parameter. Accordingly,
the highest levels of parameters (2500 m, 1.5 m/s, 2 h and 1050 ◦C) and lowest values of
other parameters (10 N and 0 wt.%) should be selected for the minimum wear rate.

Figure 8. Signal-to-noise ratios of wear rate for tribological parameters.
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Figure 9. Signal-to-noise ratios of wear rate for production parameters.

When looking at the tendency of the parameter levels, the specific wear rate increases
with the increase in sliding distance, reinforcement ratio and applied load first, then
decreases to the maximum value of them. A higher wear rate is expected due to harsh
tribological conditions with the increase in the sliding distance and applied load. This
result was found for the composite materials before [65]. A larger load and long-distance
produce a high amount of heat and pressure at the contact zones, which make easier
wear conditions. The sliding distance produces the best wear conditions at the maximum
value. This behavior can be evaluated as the lubricating effect of carbon atoms in the wear
zone of the worn reinforcement material CrC. Additionally, a higher reinforcement ratio
increases the hardness of the material and aggravates the wearability [66]. There is an
unexpected disposition from 5 wt.% to 7.5 wt.%, which defines better wear characteristics
for the high amount of reinforcement. This can be attributed to the wear tests. It can be
said that the graphene additives in the materials form a significant amount of lubricating
film in the later stages of the wear test [67]. In addition, higher velocity prevents the
favorable contact conditions between the pin and disk materials and causes a decrease
in wear [68]. As a representative parameter group, the sintering time and temperature
influence interfacial bonding and resultant structural integrity [69]. Therefore, it is critical
to determine the optimum temperature and time during the sintering operation in order to
reach better material structures. Here, it can be said that using the samples with a 2.5 wt.%
reinforcement ratio, higher sintering parameters can be operated for Cu-B-CrC composites.

Figure 10 shows the 3D plots for a wide range of design parameters and their combined
impact on the wear rate. When increasing the applied load, the wear rate shows an
increasing trend irrespective of the second parameter, which is depicted in Figure 10a,e–g,l,
due to the elevated contact between the pin and disk. Additionally, sintering parameters
have a minor impact on the wear rate, as can be seen in Figure 10e,f,m–o. It should be
noted that some parameter couples have a minor effect which is accepted as unimportant,
represented in Figure 10, i.e., Figure 10b–d,h–j. The combinations of sliding distance and
velocity, and sintering time and temperature have less effect on the wear rate. A slight
wear rate reduction can be observed when looking at the higher sintering time and sliding
velocity at Figure 10f,g, respectively. Increasing wear rate can be seen in samples with high
reinforcement, as shown in Figure 10k–o, except for the highest ratio. As explained before,
it is thought that this situation occurs owing to the lubricating effect of CrC in the material
structure. Cu is a relatively porous material and is frequently preferred as a plain bearing.
Due to the fact that the worn structures partially fill the pores less, it can be evaluated that
the C in the eroded CrC acts as a better lubricant on the surface [26]. Similar mechanisms
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for all parameters were mentioned before, so it is unnecessary to address them again. In
summary, the sliding distance, applied load and reinforcement ratio contribute most to the
wear rate during tribological tests of Cu-B-CrC composites.

Figure 10. Cont.
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Figure 10. 3D surface plots for wear rate for the effect of (a) Sliding distance and applied load
(b) Sliding velocity and sliding distance (c) Sintering time and sliding distance (d) Sintering tem-
perature and sliding distance (e) Sintering temperature and applied load (f) Sintering time and
applied load (g) Sliding velocity and applied load (h) Sintering time and sliding velocity (i) Sintering
temperature and sliding velocity (j) Sintering temperature and sintering time (k) Reinforcement
and sliding distance (l) Reinforcement and applied load (m) Reinforcement and sliding velocity
(n) Reinforcement and sintering time (o) Reinforcement and sintering temperature.
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3.4. Optimization and Graphical Analysis for Weight Loss

The main effects plot of design parameters for weight loss is depicted in Figures 11 and 12.
Here, similar to the wear rate results, a smaller is better type objective function was applied.
Additionally, according to this, higher signal-to-noise ratios, namely, first levels of sliding
distance, applied load (1000 m, 10 N) and second levels of sliding velocity, sintering time,
sintering temperature and reinforcement ratios (1.5 m/s, 2 h, 1050 ◦C and 2.5 wt.%) need to
be chosen for the best weight loss result. According to the figures demonstrated, decreasing
the sliding distance and applied load produces less weight loss. As expected, a higher load
and longer distance cause bigger losses. This phenomena was observed in a study about
tribological behavior composites [70]. As observed in the wear rate results, the second
level of sliding velocity causes less weight loss [68]. Sintering time and temperature are the
functions of plastic deformation [71]. Thus, they mostly affect the matrix reinforcement
interface and bonding between particles [72]. Insufficient sintering time and temperature
cause a lack of diffusion activity and result in necking and at the later stages turn into
particle consolidation. In addition to that, sintering time and temperature may cause
coarsened grain; thus, the strength of the material may be negatively affected. Therefore, it
can be said that second levels of sintering parameters seem to give minimal weight loss.
According to the reinforcement ratios, the best value is 2.5 wt.%. This can be attributed to
the better structural integrity of the samples fabricated at this ingredient. Despite the fact
that the hardness of the samples increases with a higher reinforcement ratio, it is thought
that the additives create a lubricating effect between the surfaces. Seemingly, the findings
for weight loss are compatible with the wear rate results.

Figure 11. Signal-to-noise ratios of weight loss for tribological parameters.

Weight loss becomes an important issue, especially for the components that work as
tandem parts under harsh tribological conditions. As outlined in explanations according
to Figure 12, 3D plots for the weight loss are presented here in Figure 13. Due to the
weight loss being affected by the wear conditions, similar trends according to different
parameter combinations are expected. Figures belonging to the applied load and sliding
distance (Figure 13b–g,l) show that increasing values also increase the weight loss. Then,
the increase in the weight loss up to a certain value and the decrease with reinforcement
can be seen, especially in Figure 13k,l. It is useful to see the linear and quadratic models of
reinforcement here for a better description of its effect on weight loss.
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Figure 12. Signal-to-noise ratios of weight loss for production parameters.

Figure 13. Cont.
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Figure 13. 3D surface plots for weight loss for the effect of (a) Sliding distance and applied load
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(b) Sliding velocity and sliding distance (c) Sintering time and sliding distance (d) Sintering tem-
perature and sliding distance (e) Sintering temperature and applied load (f) Sintering time and
applied load (g) Sliding velocity and applied load (h) Sintering time and sliding velocity (i) Sintering
temperature and sliding velocity (j) Sintering temperature and sintering time (k) Reinforcement
and sliding distance (l) Reinforcement and applied load (m) Reinforcement and sliding velocity
(n) Reinforcement and sintering time (o) Reinforcement and sintering temperature.

3.5. Optimization and Graphical Analysis for Coefficient of Friction

The coefficient of friction can be defined as the compelling force between the con-
tacted surfaces. In the tribological aspect, high-strength materials are hard to be worn
and therefore tend to produce much more friction when in contact with other materials.
According to the main effects plot in Figures 14 and 15, the smallest coefficient of friction
can be obtained by applying the following levels for each of the input parameters: sliding
distance = 1000 m, applied load = 15 N, sliding velocity = 1 m/s, sintering time = 1 h,
sintering temperature = 1000 ◦C and reinforcement ratio = 0 wt.%.

Figure 14. Signal-to-noise ratios of coefficient of friction for tribological parameters.

With increasing sliding distance, the material is subjected to greater abrasive impact
and therefore, an elevated coefficient of friction is expected. This effect can be seen from
1000–2000 m in Figure 6. However, up to the 2500 m sliding distance, better frictional
conditions are observed, and the coefficient of friction is reduced. This situation is attributed
to the self-lubrication property of the reinforcement particles. The sliding distance may
have a fluctuating effect on the coefficient of friction under different applied loads and
composites, seemingly [65]. When looking at the applied load, from 15 N to 25 N, a gradual
increase can be seen in the coefficient of friction. However, at 10 N loads, the highest
frictional force appears. A similar observation was reported by Zhang et al. [73]. Seemingly,
the applied load has little effect on the coefficient of friction compared to other tribological
parameters. In addition, higher velocity also expedites the coefficient of friction and heat
generation at the surfaces and wear rate. Therefore, it is understandable that the lower level
of sliding velocity is found to be more efficient. This is in line with the results of [73,74]. As
mentioned before, the sintering time and temperature have a great effect on the material
structure and density [69]. Here, sintering properties have less effect on the coefficient of
friction and lower levels are considered suitable for Cu-B-CrC composites. Due to its softer
structure, Cu produces a smaller coefficient of friction compared to reinforced samples.
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Thus, with the increasing hardness of the reinforced materials, the coefficient of friction
demonstrates a decreasing trend with the same reason on weight loss and wear rate.

Figure 15. Signal-to-noise ratios of coefficient of friction for production parameters.

As it can be seen in Figure 16, colored surfaces reflect the effectiveness of the design
parameters on the coefficient of friction. Especially for the sliding distance versus sintering
properties, no important change can be seen in Figure 16c,d. On the other hand, slight
changes are observed for many parameters, for example, in Figure 16e,f,j. Owing to the
dominance of reinforcement on the coefficient of friction, these parameters stay in the
background. It is seen with the increase in the sliding velocity, the coefficient of friction
demonstrates increasing behavior (Figure 16b,g,h,I,m). Sintering parameters have no
influence on the coefficient of friction at all (Figure 16c–f,h–j,n,o). Despite the fact that the
applying load has no major influence on the combinations of other parameters, sliding
distance makes it important according to Figure 16a. Therefore, this combination needs
to be considered in future studies. Lastly, the reinforcement ratio makes the maximum
variation in coefficient of friction as it can be seen in Figure 16k,l, and 13m–o. In the
quadratic models, the curve for the high reinforcement samples indicates a better coefficient
of friction conditions. Lastly, it can be noted that reinforcement is the dominant parameter,
followed by tribological parameters. Additionally, sintering parameters have much less
effect on the coefficient of friction.

3.6. ANOVA Results for Wear Rate, Weight Loss and Coefficient of Friction

ANOVA is a widely preferred statistical analysis method that gives the efficiency of the
design parameters on the quality characteristics [75,76]. In this work, wear rate, weight loss
and coefficient of friction were taken into account as quality parameters while production
and tribology parameters mentioned before were presented as the design parameters or
sources. The main objective here is to calculate the degree of effectiveness of each source
with several statistical values. The sum of squares (SS) is calculated by the difference
between the mean value and the result of each experiment. Despite the fact that there is a
sum of impact for each source, the remaining values from them describe the error value
which can be accepted as the undetermined factor. The mean square (MS) is calculated
by dividing the SS value by the degree of freedom (DOF). Then, the F value is found
by dividing the SS value of each parameter by the error value. An important parameter,
p-value, shows if a parameter is statistically important or not in the confidence interval
(95%). This implies that if the value is smaller than 5%, then it is important at the range
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of the confidence interval. The last parameter is the percent contribution (PC%) that is
calculated by dividing each SS value by the total SS.

Figure 16. Cont.
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Figure 16. 3D surface plots for the coefficient of friction for the effect of (a) Sliding distance and ap-
plied load (b) Sliding velocity and sliding distance (c) Sintering time and sliding distance (d) Sintering
temperature and sliding distance (e) Sintering temperature and applied load (f) Sintering time and
applied load (g) Sliding velocity and applied load (h) Sintering time and sliding velocity (i) Sintering
temperature and sliding velocity (j) Sintering temperature and sintering time (k) Reinforcement
and sliding distance (l) Reinforcement and applied load (m) Reinforcement and sliding velocity
(n) Reinforcement and sintering time (o) Reinforcement and sintering temperature.
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Table 3 outlines the ANOVA results for signal-to-noise ratios of wear rate, weight loss
and coefficient of friction, respectively. When looking at the PC values, reinforcement is
the dominant parameter on wear rate (51.6%) and the coefficient of friction (79.9%). In
addition, according to p-values, reinforcement affects the coefficient of friction (0.048 < 0.05).
It is noteworthy to mention that for better p values, a higher number of samples need
to be considered for weight loss and wear rate. Weight loss seems to be affected by the
sliding distance (36.7%) first, followed by the reinforcement ratio (27.25%) and applied
load (24.5%), respectively. The applied load also seems efficient on the wear rate, with a
high PC value (30.07%). F values confirm the dominance of the mentioned parameters.
Accordingly, except for the sorted parameters, other ones can be ignored at least for the
statistical evaluation. However, the total effect of the remaining parameters reveals a
considerable impact that needs to be considered with further analysis. It can be said
that from the production process to the tribological tests, effective parameters have been
included, which is understood from the low values of errors (4.44%, 3.15% and 8.3%). In a
nutshell, the tribological performance is affected mostly by the sliding distance, applied
load and reinforcement ratio.

Table 3. Analysis of variance for signal-to-noise ratios of wear rate, weight loss and coefficient
of friction.

Source DOF SS MS F Value p-Value PC (%)

Wear Rate
Sliding Distance 3 8.659 2.886 0.34 0.801 3.04

Applied Load 3 85.649 28.550 3.34 0.137 30.07
Sliding Velocity 1 5.721 5.721 0.67 0.459 1.85
Sintering Time 1 25.156 25.156 2.94 0.162 8.83

Sintering Temperature 1 0.489 0.489 0.06 0.823 0.17
Reinforcement 3 146.476 48.8252 8.22 0.110 51.6

Error 3 12.687 4.2291 - - 4.44
Total 15 284.837 - - - 100

Weight Loss
Sliding Distance 3 132.303 44.1011 4.70 0.085 36.7

Applied Load 3 88.347 29.4491 3.14 0.149 24.5
Sliding Velocity 1 5.243 5.2434 0.56 0.496 1.4
Sintering Time 1 24.858 24.8576 2.65 0.179 6.9

Sintering Temperature 1 0.686 0.6861 0.07 0.800 0.1
Reinforcement 3 97.947 32.6491 8.59 0.055 27.25

Error 3 11.397 3.7989 - - 3.15
Total 15 360.782 - - - 100

Coefficient of Friction
Sliding Distance 3 0.6421 0.21403 0.07 0.971 3.9

Applied Load 3 0.2379 0.07929 0.03 0.993 1.4
Sliding Velocity 1 0.8345 0.83445 0.29 0.621 5
Sintering Time 1 0.1021 0.10208 0.03 0.861 0.8

Sintering Temperature 1 0.1151 0.11515 0.04 0.852 0.7
Reinforcement 3 13.1271 4.37570 9.58 0.048 79.9

Error 4 1.3703 0.45677 - - 8.3
Total 15 16.4290 - - - 100

4. Conclusions

This paper investigates the effect of process parameters used in the production of Cu-B-
CrC composites, namely reinforcement ratio, sintering time and sintering temperature and
tribological parameters, i.e., sliding velocity and applied load, to evaluate the tribological
performance of the composite in terms of its coefficient of friction, wear rate and weight loss.
The Taguchi design of experiment and ANOVA analysis were performed to further analyze
the effect of process parameters on the analyzed outputs. The current study provides
significant information about the real-life conditions of Cu-B-CrC composites in terms of



Materials 2021, 14, 4217 22 of 25

its tribological performance. The following conclusions can be made from the analysis and
evaluation of the Cu-B-CrC composites:

1. As a result of the density and hardness tests of the composites sintered at different
times and temperatures, the highest relative density value was determined as 93.4%.
The increase in sintering time and temperature caused an increase in its density. The
highest hardness value was determined as 67.48 HB in the 7.5 wt.% reinforced sample
(at 1050 ◦C for 1 h). It was observed that the increase in reinforcement ratios affected
the hardness positively. In addition, the lowest hardness value was observed in the
pure Cu sample with approximately 45.5 HB.

2. As a result of the SEM analysis, it was observed that the pores decreased with
the reinforcement particles and the density increased accordingly. In addition, it
was observed in SEM analysis that the added B-CrC reinforcement elements were
homogeneously distributed.

3. According to signal-to-noise ratios, at conditions of 2500 m, 10 N, 1.5 m/s, 2 h,
1050 ◦C and 0 wt.%, the minimum wear rate can be obtained. Similarly, at 1000 m,
10 N, 1.5 m/s, 2 h, 1050 ◦C and 2.5 wt.% and 1000 m, 15 N, 1 m/s, 1 h, 1000 ◦C and
0 wt.% conditions are recommended for minimal weight loss and a reduced coefficient
of friction.

4. From ANOVA results, it is understood that among the input parameters, the reinforce-
ment ratio has considerable influence on the wear rate (51.6%), weight loss (27.25%)
and coefficient of friction (79.9%). The applied load is one of the important parameters
that affect the wear rate (30.07%) and weight loss (24.5%), respectively. It should be
noted that sliding distance is the most effective parameter on weight loss (36.7%). In
addition, other parameters except the mentioned ones have a small effect that can
be ignored.

5. R-square values of the statistical analysis demonstrate that the effective parameters
have been successfully detected for each result (wear rate—95.56%, weight loss—
96.85% and coefficient of friction—91.7%). It is important since, from the design stage
of the composite material, influential factors can be determined. This provides a tool
which assists in the production of durable materials for specific applications.
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