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Abstract: A multi-scale fatigue analysis method for braided ceramic matrix composites (CMCs)
based on sub-models is developed in this paper. The finite element shape function is used as the
interpolation function for transferring the displacement information between the macro-scale and
meso-scale models. The fatigue failure criterion based on the shear lag theory is used to implement
the coupling calculation of the meso-scale and micro-scale. Combining the meso-scale cell model
and the fatigue failure criterion based on the shear lag theory, the fatigue life of 2D SiC/SiC is
analyzed. The analysis results are in good agreement with the experimental results, which proves
the accuracy of the meso-scale cell model and the fatigue life calculation method. A multi-scale
sub-model fatigue analysis method is used to study the fatigue damage of 2D SiC/SiC stiffened plates
under random tension–tension loads. The influence of the sub-models at different positions in the
macro-model element on the analysis results was analyzed. The results shows that the fatigue analysis
method proposed in this paper takes into account the damage condition of the meso-structured of
composite material, and at the same time has high calculation efficiency, and has low requirements
for modeling of the macro finite element model, which can be better applied to the fatigue analysis of
CMCs structure.

Keywords: 2D braided CMCs; multi-scale fatigue life analysis method; sub-model; 2D SiC/SiC
stiffened plates; random tension–tension loading

1. Introduction

CMCs have the advantages of high-temperature resistance, high specific strength and
specific modulus, etc., and are ideal materials for high-performance aircraft [1,2]. According
to the meso-structure, CMCs can be classified into three types: unidirectional, laminated,
and braided [3–5]. Braided CMCs have better mechanical properties than unidirectional
and laminated CMCs, which overcomes the problem of low interlayer performance, easy
delamination and cracking [6,7]. The braided CMCs are the key components of advanced
aircraft [8]. The components of braided CMCs in aircraft often be subjected to fatigue load.
Therefore, the fatigue analysis is the key problem in the application of braided CMCs.

The fatigue life analysis methods of CMCs mainly include the macroscopic phe-
nomenological method and the method based on microscopic damage mechanism [9].
The macroscopic phenomenological method is to establish the macroscopic mechanical
property decline model of CMCs, such as residual stiffness model and residual strength
model, based on a large number of fatigue test data. Wu et al. [10] derived the residual
stiffness model of composite materials under random loads based on the macroscopic
phenomenological residual stiffness model of composite materials under constant am-
plitude loads, and determined the parameters in the model through experimental data.
Fang et al. [11] proposed a two-dimensional residual strength model of needled CMCs
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considering wear and running-in mechanisms. The tensile fatigue tests and residual ten-
sile strength tests of 2-D needled CMCs were carried out, and the relevant parameters
in the residual strength model were identified by the date of tests. However, the macro-
scopic phenomenological method usually requires a lot of fatigue test data, which will
take up high time cost and economic cost, and it is difficult to reflect the fatigue damage
status of the meso-structure. The method based on microscopic damage mechanism is
to establish the mechanical model of fatigue damage based on the meso-fatigue failure
mode [12]. Min et al. [13,14] established a multi-scale fatigue calculation model based
on micro mechanics for plain woven C/SiC CMCs, and verified the effectiveness of the
proposed method by comparing it with fatigue test data of plain-woven C/SiC CMCs.
Based on the fatigue hysteresis behavior of CMCs, Li et al. [15–18] established a fatigue
life prediction model which considering the decline of interfacial shear stress and fiber
strength during the fatigue cycle. The fatigue life S–N curves of unidirectional; laminated;
and 2D, 2.5D, and 3D braided CMCs are predicted, which are in good agreement with the
experimental results. However, it is difficult to establish the meso-mechanical analysis
model, which requires the theoretical modeling of the complex meso-structure of braided
CMCs. In recent years, due to the promotion of commercial finite element software [19],
many researchers have developed the fatigue life calculation method of composite materi-
als based on finite element model. Naderi et al. [20] established the macroscopic equivalent
finite element model of carbon/epoxy resin laminated composites, and used Gaussian
distribution to simulate the discrete type of material strength and stiffness parameters. The
macro finite element model was used to analyze the fatigue life of carbon/epoxy resin
laminated composites, and the analysis results were in good agreement with the test results.
Yang et al. [21] established the meso-structure geometric model of 3D braided composites,
studied the fatigue behavior under three-point sinusoidal waveform bending by means of
tests and finite element analysis, and obtained the fatigue damage of yarn and matrix. The
damage patterns of experiments and finite element analysis results were very consistent.
Taking two-dimensional braided C/SiC composites as the research object, Wang et al. [22]
established the meso-cell model and micro-cell model respectively, and fitted the fatigue
damage evolution equation of fiber bundle by using the uniaxial tensile fatigue test data
of two-dimensional braided C/SiC composites. The fatigue damage process of a unit
cell model was analyzed under uniaxial, biaxial, and shear loads, and the relationship
between the damage degree and the number of cycles in each direction was obtained.
Equivalent stress equation and anisotropic macroscopic damage evolution equation of
plane braided C/SiC composites are established. Finally, the equivalent stress formula
and anisotropic macroscopic damage evolution equation are used to estimate the random
vibration fatigue life of C/SiC composite plane braided plate, which is in good agreement
with the experimental results. The fatigue life analysis method based on finite element can
avoid the complicated meso-geometric theory modeling. However, the above methods are
mainly applied to the fatigue life analysis of material scale, and are difficult to be directly
applied to the fatigue life analysis of ceramic matrix composite structures.

The fatigue life analysis of composite material structure first needs to obtain the stress
state of the fatigue hot spot of the structure under the action of fatigue load [23]. Since the
braided CMCs material has obvious structural characteristics, it has three scales: micro-
scales, meso-scales, and macro-scales. When performing finite element fatigue analysis
on the CMCs structure, the macroscopic large-scale grid finite element model modeling
and calculation efficiency High, but the calculation accuracy is difficult to guarantee;
the calculation accuracy of the fine model that can characterize the meso-structure is
high, but the modeling difficulty is high and the calculation efficiency is low. In order to
solve the problems of computational accuracy and efficiency caused by mesh size in the
finite element modeling process, the local mesh refinement method [24,25], substructure
method [26,27] and sub-model method [28,29] are mainly adopted at present. The local
mesh refinement method adopts small size mesh in the key parts of the structure and large
size mesh in other areas. However, for braided CMCs, due to the complex meso-structure
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shape and the large-scale difference between the meso-structure and the macro structure,
the modeling of the transition region is too difficult and the mesh quality is difficult to
guarantee. The substructure method can reduce the order of large composite structures by
substructure division, polycondensation and modal synthesis, but the calculation accuracy
of substructure method has a great relationship with the selection of polycondensation
mode, residual structure and the number of polycondensation nodes, so it is difficult
to guarantee the accuracy of calculation results [30]. Sub-model method cuts out the
key areas of the structure from the overall structure as sub-models, performs refined
modeling on the sub-models, and simultaneously solves the overall model and the sub-
models. [31,32]. Jiang et al. [33] used a multi-scale method to study the damage and
crack debonding of braided composite materials under impact load. A macro model and
a meso model are established respectively. The microscopic failure conditions such as
matrix cracking and fiber/matrix interface debonding are analyzed based on the meso
model, and the macroscopic model of impact failure is analyzed based on the macro model.
Daghia et al. [29] proposed a meso-micro-scale calculation method based on a discretization
model and a continuity model. The coupling calculation between the macro- and meso-
models is carried out by establishing the interface between the macro-model and the
meso-model. The meso model can be calculated by the standard finite element method,
and the micro model needs to be calculated by the dedicated LATIN method. However,
this method requires that the boundary of the meso-model is consistent with the spatial
position of the micro-model, which limits the application of this method. A multi-scale
fatigue analysis method based on sub-model is proposed in this paper. With the finite
element shape function as the interpolation function and the node displacement of the
macro model as the boundary condition of the meso model, the coupling calculation of
macro and meso model is realized.

Combined with the sub-model method and the CMCs fatigue failure criterion based
on the shear lag theory, this paper implemented the coupling calculation of three scales:
macroscopic, mesoscopic, and microscopic. The fatigue life calculation of the braided
CMCs based on 2D SiC/SiC meso sub-model was carried out in this paper. Taking the
stiffened plate structure as the research object [34], the fatigue life of 2D SiC/SiC cross
stiffened plate under amplitude load is analyzed. The influence of the embedding position
of different meso-models in the macro-model on the calculation results is then studied.
The accuracy and applicability of the multi-scale fatigue life analysis method based on
sub-model is also verified.

2. Multi-Scale Fatigue Analysis Method Based on Sub-Model
2.1. Fatigue Failure Criteria for CMCs

The fatigue failure modes of CMCs mainly include matrix cracking, interface debond-
ing, fiber fracture, etc. [35]. When subjected to fatigue load, if the fatigue peak stress is
greater than the matrix cracking stress, the initial crack will occur in the matrix and debond-
ing will occur at the fiber/matrix interface. In the subsequent fatigue loading process, due
to the continuous unloading and reloading, the fiber and matrix will slip and friction at the
fiber/matrix interface, which will lead to the wear of the fiber and fiber/matrix interface.
With the increase of the number of fatigue load cycles, fiber strength will decrease with the
cycle due to fiber wear. At the same time, due to the wear of the interface, the ability of
the interface to transfer load between the fiber and matrix will decrease, and the fiber will
bear more load with the increase of the number of cycles. These two factors will cause the
failure probability of fiber increased with the increase the number of cycles. Fatigue failure
of composite material can be determined when the failure probability of fiber reaches
critical value.

For 2-D braided CMCs, only consider the damage caused by the sliding friction of the
fibers and matrix inside the yarn, and the damage caused by the sliding friction between
the yarn and the yarn or between the yarn and the matrix outside the yarn is ignored.
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Therefore, the fatigue failure analysis of 2-D braided CMCs can be simplified to the fatigue
analysis of yarn, and the yarn belongs to unidirectional CMCs in nature.

For unidirectional CMCs, it is assumed that when some fibers fail, the intact fibers
and the broken fibers share the load, then the stress exerted on the composite distal end
and the stress borne by the intact and broken fibers satisfy the following relationship [36]

σ

Vf
= T[1− P] + TbP (1)

where Vf represents fiber volume fraction, σ represent the stress carried by composite
material, T represent the stress carried by intact fibers, Tb represents the stress carried by
broken fiber. Then, the probability of fiber failure can be expressed as

P = 1− exp

[
−
(

T
σc

)m f +1
]

(2)

where σc represents characteristic fiber strength, mf represents the Weibull modulus of fiber.
The critical fraction of broken fibers is given as [37]

P∗ = 2/(m f + 2) (3)

Due to the slip and friction between the fiber and the fiber/matrix interface during
the fatigue loading process, the interface will wear, and the load transfer capacity of the
interface decreases with the loading cycles. Fibers will wear and tear, and fiber strength
decreases as the loading cycles progresses. Evans et al. [38], proposed an empirical formula
for the decay of the interface shear stress of CMCs with loading cycles

τ(N)− τ(0)
τmin − τ(0)

= 1− exp
(
−ωNλ

)
(4)

where τmin represents the shear stress of the interface after wear to a stable state, τ(0) is the
initial interfacial shear stress, τ(N) represents the interfacial shear stress at the cycle N, ω,
λ are empirical parameters.

Lee et al. [39] proposed the empirical formula of fiber strength decline with cycle

σ0(N)

σ0
= 1− P1(log N)P2 (5)

where P1 and P2 are empirical parameters.
The fiber failure probability of each loading cycle can be determined by substituting

Equations (4) and (5) in Equation (2)

P(N) = 1− exp

[
−
(

T
σc

)m f +1( σ0

σ0(N)

)m f τ(0)
τ(N)

]
(6)

where σ0 represents fiber reference strength within the reference length l0, σ0(N) represents
the fiber strength at the cycle N, σc can be calculated from the tensile strength σuts

σuts = Vf σc

(
2

m f + 2

) 1
m f +1

(
m f + 1
m f + 2

)
(7)

As shown in Figure 1, when the fiber is broken, the fiber/matrix interface is bonded in
the area far away from the breaking point of the broken fiber, so the load can be transferred
between the fiber and matrix through the interface. At the breaking point, the interface is
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unable to transfer load due to debonding. Assuming that the fiber does not bear load at
the breaking point, the stress borne by the broken fiber can be expressed as

Tb(x) =
2τi(N)

r f
x (8)
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After the fiber is broken, the load it bears will drop instantly. In order to restore the
stress borne by the broken fiber to before the break, the broken fiber needs to continue
sliding relative to the matrix. Suppose that the slip length required by the stress borne by
the broken fiber to restore to its pre-fracture stress is

l f =
r f T

2τ(N)
(9)

The probability density function f(x) of fiber fracture within the range ±lf from the
matrix crack plane is [40]

f (x) =
1

P(N)l f

(σc

T

)m f +1
(

σ0(N)

σ0

)m f τ(N)

τ(0)
P(N), x ∈

[
0, l f

]
(10)

According to Equations (5)–(7), the average stress borne by the broken fiber can
be obtained

Tb =
∫ l f

0
Tb(x) f (x)dx (11)

Combined with Equations (1), (4)–(6), and (10), the relationship between stress exerted
by composite materials, number of cycles and stress borne by intact and fractured fibers
can be obtained [36]

σ = Vf T
(σc

T

)m f +1
(

σ0(N)

σ0

)m f τ(N)

τ(0)

{
1− exp

[
−
(

T
σc

)m f +1( σ0

σ0(N)

)m f τ(0)
τ(N)

]}
(12)
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The fatigue failure judgment process of unidirectional CMCs is as follows: first, input
the macroscopic overall fatigue peak stress σ and the number of cycles on the composites
N, the stress T borne by the intact fiber can be solved by Equations (4), (5), and (12). Then
put the stress T borne by the intact fiber into Equation (6) to calculate the volume fraction
p(N) of the failed fiber, when the volume fraction of the failed fiber reaches the critical
value p*, the composite material fails; At this point, the number of cycles N is the fatigue
life of the composite material under the fatigue peak stress.

2.2. Fatigue Damage Accumulation Theory

Miner believed that under constant amplitude fatigue load, the network absorbed by
the material is equal with each cycle, the amount of damage to the material in each cycle
was the same

∆W
W

=
1
N

(13)

where N is the fatigue life of the material under the constant amplitude fatigue load
The dimensionless damage factor d was introduced. The amount of damage caused to

the material by constant amplitude fatigue cycle load was related to the number of cycles n
under this load and the fatigue life N corresponding to this fatigue load level [41]

d =
n
N

(14)

For multi-stage fatigue load, the total fatigue damage is linear accumulation of the
fatigue damage caused by each stage. Define Ni as the fatigue life at the fatigue load level
of σi, and ni is the number of cycles at this fatigue load level, then the damage quantity D
can be expressed as

D =
N

∑
i=1

ni
Ni

(15)

The fatigue failure of the composite material occurs when the total damage D = 1.
Assuming t is the multi-stage fatigue loading time, the fatigue life of the structure can

be expressed as

T =
t
D

(16)

2.3. Sub-Model Method Based on Shape Function Interpolation

The principle of the multi-scale finite element analysis method based on sub-model is
to obtain the stress and strain information at the meso-scale by constructing the multi-scale
basis function for downscaling calculation on the basis of solving the response of the
macro model [42]. This method can obtain more accurate analysis results when solving the
macro-structure response. The sub-model method based on node displacement information
transmission is adopted in this paper. Its principle is that the node displacement response
results of the macro equivalent model are applied to the meso-fine model as boundary
conditions, and then the high-precision response results are obtained by solving the meso-
fine model.

Since the number of nodes on the boundary of meso-fine model is far more than the
number of nodes on the boundary of the macro-model, when the macro-model transmits
the node displacement information to the meso-fine model, some nodes on boundary of
the meso-fine model cannot correctly match the displacement information, which will lead
to inaccurate results. In this paper, the finite element shape function [43,44] is used as the
displacement interpolation function, and the displacement response information of the
nodes in the macro-equivalent model corresponds to the boundary nodes of the meso-fine
model for interpolation operation.

As shown in Figure 2a, an element of eight-node hexahedron is taken as an example,
define the geometric center of the 6-hedron as the origin of the coordinate axes, and each
side is parallel to the X, Y, and Z axes respectively. The side lengths of the hexahedron
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element are 2 a, 2 b, and 2 c respectively. When the displacement of eight nodes along the
directions x, y, and z is known to be ui, vi, wi. If the displacement of 8 nodes along the three
directions x, y, and z is known to be ui, vi, wi, then any point p inside the hexahedral unit,
whose coordinate is (x, y, z), its displacement component u, v, w along the three directions
x, y, and z are trilinear, which can be expressed as

u= d1 + d2x + d3y + d4z + d5xy + d6xz + d7yz + d8xyz

v= d9 + d10x + d11y + d12z + d13xy + d14xz + d15yz + d16xyz

w= d17 + d18x + d19y + d20z + d21xy + d22xz + d23yz + d24xyz

(17)
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Parameter di can be solved by the displacement of 8 nodes, then Equation (16) can be
expressed as

u =
8

∑
i=1

Niui, v =
8

∑
i=1

Nivi, w =
8

∑
i=1

Niwi (18)

where, Ni is the finite element shape function

N1 = 1
8
(
1 + x

a
)(

1− y
b
)(

1− z
c
)
, N2 = 1

8
(
1 + x

a
)(

1 + y
b
)(

1− z
c
)

N3 = 1
8
(
1− x

a
)(

1 + y
b
)(

1− z
c
)
, N4 = 1

8
(
1− x

a
)(

1− y
b
)(

1− z
c
)

N5 = 1
8
(
1 + x

a
)(

1− y
b
)(

1 + z
c
)
, N6 = 1

8
(
1 + x

a
)(

1 + y
b
)(

1 + z
c
)

N7 = 1
8
(
1− x

a
)(

1 + y
b
)(

1 + z
c
)
, N8 = 1

8
(
1− x

a
)(

1− y
b
)(

1 + z
c
)

(19)

As shown in Figure 2b, assuming that the meso-model is in the macro-element, the
geometric center of the macro-element is used as the origin of the coordinates to determine
the coordinates of the boundary nodes of the meso-model. According to the displacement
of the eight nodes of the macro-element, the displacement of each node of the meso-
model boundary can be obtained after interpolation, that is, the boundary condition of the
meso-model.

Since the elastic material parameters of the macro model are equivalently derived
from the meso model through the homogenization period, and the boundary conditions
of the meso model are interpolated from the node displacement of the macro model, the
overall deformation energy of the meso model is equivalent to that of the macro model. The
deformation energies of the corresponding regions of the model elements are consistent.
Moreover, the boundary of the sub-model does not need to be exactly the same as the
boundary of the macro-element, which greatly reduces the requirements for finite element
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meshing. The method proposed in this paper can be better applied to the fatigue analysis
of braided composite structures.

The flow chart of multi-scale fatigue analysis method for ceramic matrix composites
based on sub-model is shown in Figure 3. Firstly, establish the macro-equivalent model of
CMCs structure, and apply fatigue load to obtain the stress and strain results of the macro
model. Then establish the meso-cell model of CMCs. The node displacement information
of the elements at the fatigue hot spots of the macro model was extracted, and the boundary
node coordinates of the corresponding meso-cell model were interpolated by the shape
function. The displacement information obtained after the interpolation was used as the
boundary condition of the meso-cell model. Finally, the stress and strain responses of yarn
and matrix are obtained by solving the meso model. The stress of the yarn was extracted,
and the damage amount corresponding to each peak stress was calculated by the fatigue
damage accumulation theory. After the accumulation, the damage result and residual
life of the single cell model under the fatigue load could be obtained. Assuming that the
structure fails at the hot spot, the structure will fail, the fatigue life of CMC structure can
be obtained.
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3. Case Study
3.1. Validation: Fatigue Life Calculation of 2D SiC/SiC Composites

2D 4 SiC/SiC braided CMCs were used as the research object and analysis its fatigue
life. In order to obtain the stress distribution of yarn and matrix under fatigue load, it is
necessary to select a representative volume element of 2D SiC/SiC to establish a finite
element model. As shown in Figure 4 it is the schematic diagram of 2D SiC/SiC meso-
structure, and its mesoscopic geometric dimension parameters are shown in Table 1 [45].
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The material parameters of yarn and matrix are shown in Table 2 [45]. The matrix is an
isotropic material and the yarn is a transversely isotropic material. The density of the
matrix is 3.22 (g/cm3) [46]. Think of yarn as unidirectional CMCs, the density of the yarn
is selected as 2.55 (g/cm3) [47]. Based on the above parameters, a meso-cell finite element
model of 2D SiC/SiC was established, as shown in Figure 4. The yarns along the axial
direction were defined as warp and the yarns along the axial direction as weft.
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Table 1. Meso-geometric parameters of 2D SiC/SiC CMCs.

Meso-Geometric Parameters t (mm) g (mm) a (mm) h (mm)

Value 0.21 0.62 1.55 0.58

Table 2. Material parameters of 2D SiC/SiC CMCs.

Material Parameters Yarn Matrix

E1(GPa) 190.01 350
E2(GPa) 190.01 350
E3(GPa) 222.31 350
G12(GPa) 64.78 145.8
G13(GPa) 79.53 145.8
G23(GPa) 79.53 145.8

ν12 0.16 0.25
ν13 0.17 0.25
ν23 0.17 0.25

For 2D SiC/SiC CMCs, it is assumed that only the effect of interface slip between
fiber and matrix in yarn is considered under fatigue load, while the effect of interface slip
between yarn and yarn and between yarn and matrix is ignored. Therefore, only the internal
fatigue damage of the yarn is considered, and the yarn is regarded as a unidirectional
ceramic matrix composite material. Firstly, the fatigue peak stress S was applied to the
meso-cell sub-model. After solving the sub-model, the maximum axial stress of the yarn
was extracted, which was taken into the failure determination process in Section 2.1 as the
fatigue peak stress σ. Then, the number of cycle N when the yarn fatigue fails is calculated
through the calculation process, which is the fatigue life of 2D SiC/SiC under the fatigue
load with the peak stress. Because yarns can be considered as unidirectional CMCs, σuts
was determined as 380 (MPa) according to Morishita’s work [48], and the data when the
thickness of the interface layer is 0.1 micron is selected. The empirical parameters P2 = 1
which refers to Li’s work [49]. The empirical parameters P1 = 0.057 which is determined by
fatigue ultimate stress. Other parameters are shown in Table 3 [49]
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Table 3. Relative parameters of SiC/SiC ceramic matrix braided composites.

Parameter τmin (MPa) τ(0) (MPa) ω1 ω2 mf Vf

Value 5 50 0.04 1 2 0.4

One end of the 2D SiC/SiC meso-sub-model was applied with a fixed constraint
and the other end with a tensile load, and the loading direction was defined as the X
direction. The stress distribution of yarn in the X direction is shown in Figure 5. According
to Saint-Venant principle, the region near the constraint boundary is greatly affected by the
boundary condition, while the region far away from the constraint condition is less affected
by the boundary condition. As can be seen from the figure, the boundary area of the outer
yarn is affected by the loading mode, so there is a large local stress. The maximum stress in
the other positions occurs at the lap of warp and weft, where the yarn is more bent and far
away from the boundary, so the stress analysis results here can more accurately reflect the
internal stress distribution of the yarn in the real situation.
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Figure 5. Yarn stress distribution in X direction.

The meso-sub-models of 2-D SiC/SiC with peak fatigue loads of 155 MPa, 150 MPa,
145 MPa, 140 MPa, 135 MPa, and 130 MPa were calculated respectively, and the fatigue
performance analysis was carried out by using the fatigue life calculation process of ceramic
matrix composites based on the above sub-model, calculate the life of 2-D braided ceramic
matrix composites under the corresponding stress level. Take the experimental data in [50]
as reference. Due to the limitation of manufacturing process, factors such as initial defects
inevitably exist in CMCs, and their fatigue performance often has greater uncertainty, so
the test results in [50] have greater dispersibility. The research in this article temporarily
ignores the influence of material fatigue performance uncertainty. This paper does not
consider low-cycle fatigue with a stress level higher than 155 Mpa. The experimental
data with better fatigue performance at fatigue load levels of 130 MPa, 135 MPa, 140 MPa,
145 MPa, 147 MPa, and 150 MPa in the reference [50] were selected, and the experimental
data with poor fatigue performance due to material defects were ignored, as shown in
Figure 6a. The comparison between the analysis results and the test results [49,50] is shown
in Figure 6b. It can be seen from the analysis results that the fatigue analysis results based
on the 2D SiC/SiC meso-sub-model are in good agreement with the test results. The
accuracy of the 2D SiC/SiC meso-sub-model and the fatigue life analysis method based on
the sub-mode are proved.
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Figure 6. Comparison between the calculated results of fatigue life based on the submodel and the experimental results.

3.2. Application: Fatigue Life Analysis of Stiffened Plates

In this paper, 2D SiC/SiC stiffened plate is taken as the research object, and its
geometric size is shown in Figure 7. The macro-equivalent material of 2D SiC/SiC is a
transversely isotropic material, and the material parameters are shown in Table 4 [45].
The axis direction is defined as the main direction of the material. The finite element
model of 2D SiC/SiC stiffened plate was established. The mesh was divided by eight-node
hexahedral elements with a mesh size of 4 mm. Four layers of grids were divided in the
direction of the thickness of the stiffened plate and the direction of the stiffened plate. One
end of the stiffened plate finite element model was subjected to a fixed constraint, and the
other end to a random tension-tensile fatigue load along the X direction.
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Table 4. Material parameters of 2D SiC/SiC stiffened plate.

E1/GPa E2/GPa E3/GPa G12/GPa G13/GPa G23/GPa ν12 ν13 ν23 ρ/(g/cm3)

229.76 229.76 189.78 92.15 72.58 72.58 0.16 0.17 0.17 2.5
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The form and size of the load applied to the stiffened plate are shown in Figure 8. The
load only retains the peak value and valley value. Peak load points are random numbers
between and generated by a Gaussian stochastic process. The load unit is N, and the fatigue
load stress ratio is 0.1, that is, the load valley value is 0.1 times of the corresponding peak
stress. The fatigue load duration is, a total of 50 fatigue load peaks and 50 fatigue load
valleys, and the loading frequency is 2.5 Hz. After applying the above load to 2D SiC/SiC
stiffened plate, the finite element analysis was carried out to obtain the response results of
element stress and element node displacement.
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Figure 8. Forms of applied load.

The stress analysis results of 2D SiC/SiC stiffened plate finite element model under
fatigue load is shown in Figure 9. It can be seen that under tensile load, the stress of the
stiffened plate is large on the upper surface of both sides of the stiffened plate and just
below the stiffened position and in the middle area of the cross stiffened plate. The high
stress area of 2D SiC/SiC stiffened plate is defined as the fatigue hot spot, and three fatigue
hot spots A, B, and C are selected. The elements stress results of the three fatigue hot spots
are shown in Figure 10. The 2D SiC/SiC meso-cell model established in Section 3.1 was
adopted as the sub-model. As shown in Figure 11, it is assumed that the geometric center
of the mesoscopic single cell model coincides with the geometric center of the macroscopic
element at the fatigue hotspot. The constraint conditions of each point on the boundary of
the mesoscopic single cell model were obtained by the displacement response results of 8
nodes of the element at the fatigue hot spot of the macro model through interpolation in
Equations (18) and (19).

The 2D SiC/SiC mesoscopic single cell model was analyzed by finite element method
after boundary conditions were applied. According to Saint-Venant principle, the influence
of boundary conditions can be ignored in the region far away from boundary constraints.
According to the analysis in Section 3.1, the maximum stress in 2D SiC/SiC meso-model
yarn under tensile load occurs in the yarn-to-yarn lap area, far away from the boundary
point. Therefore, the maximum stress in the yarn was selected as the fatigue peak stress in
the subsequent fatigue damage analysis of the yarn. The maximum stress in X direction in
the yarn is shown in Figure 12.
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Figure 9. Stress in X direction distribution of 2D SiC/SiC stiffened plates under fatigue load.
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Figure 10. Element stress in X direction at the fatigue hot spots of the macro model.
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Figure 11. Sub-model at the center in macroscopical element.
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Figure 12. Maximum stress in X direction in yarn. (a) Calculation results of fatigue hot spot A; (b) Calculation results of
fatigue hot spot B; (c) Cal-culation results of fatigue hot spot C.
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Extract the maximum stress peak value of the schedule, yarn into 2.2 failure determi-
nation process of ceramic matrix composites, and under each peak stress calculation of
the fatigue life of CMCs. Then, calculate the fatigue damage of each peak stress by Miner
linear fatigue damage accumulation theory. Finally, the total fatigue damage under 20 S
random fatigue load was accumulated according to Equation (14), and then the fatigue
life of the cross-stiffened plate was calculated according to Equation (15). The calculated
results are shown in Table 5. The analysis results show that the stress of the fatigue hotspot
A is the largest, so the fatigue damage is the largest and the fatigue life is the smallest. The
damage amount of hot spot B is the next, while the damage amount of hot spot C is the
least and the fatigue life is the largest.

Table 5. Fatigue analysis results of 2-D braided ceramic matrix composite cross stiffened plates.

Amount of Damage D Life T

Fatigue hot spot A 0.000863654 23,157.42 s
Fatigue hot spot B 0.000394991 50,634.07 s
Fatigue hot spot C 0.000178935 111,772.43 s

In actual modeling, it is difficult to ensure that the macroscopic unit size is consistent
with the mesoscopic model size. When the size of the macroscopic element is larger than
the size of the mesoscopic model, in order to study the influence of the position of the
mesoscopic model in the macroscopic element on the calculation results, the fatigue life of
the fatigue hot spot A at position I and position II as shown in Figure 13a,b is calculated
respectively. When the mesoscopic model is at positions B and C, the maximum stress
in the X direction of the yarn is calculated, as shown in Figure 14. The calculated fatigue
damage amount and life results are shown in Table 6. Compare the analysis results of
the sub-model at the center of the macroscopic element with those of other positions, it
can be seen that the difference of the maximum stress in the X direction of the yarn with
different sub-model position is very small, and the fatigue damage amount and fatigue life
are close to each other under different positions of the macroscopic element. The results
show that the positions of different mesoscopic models in the macroscopic elements have
little influence on the fatigue life calculation results.

Table 6. Fatigue analysis results of 2D SiC/SiC stiffened plates with different meso-model positions.

Fatigue Damage D Life T

Position I 0.0006534 30,607.95 s
Position II 0.00110485 18,101.96 s
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The multi-scale fatigue analysis method based on dynamic sub-models takes into
account the characteristics of the mesoscopic non-uniformity caused by the complex mi-
crostructure of the braided composite material, and can more realistically reflect the fatigue
damage of the structure under the fatigue load. This method has a low requirement on the
modeling of macro model. When the element size of macro model is larger than the size of
meso model, the position of meso model in the macroscopic element has little influence on
the calculation results.

When the size of the macro unit is larger, because the shape function interpolation is a
linear interpolation, the different positions of the sub-models in the macro-scale element
have little effect on the calculation results. However, too large macro-scale element division
will increase the calculation error of the macro-scale model itself, resulting in an increase in
the calculation error of the sub-model. Therefore, when building the macro-scale model, it
is necessary to minimize the size of the macro-scale element to ensure its size is close to
the size of the meso-scale model. The method proposed in this paper is also applicable to
the situation where the macro-scale element size is smaller than the meso-scale model size.
The node displacements of multiple macro-scale elements can be used. Firstly, determine
the macro-scale element where the boundary of the meso-scale model is located, and use
the shape function to interpolate the displacement of the corresponding macro-element
nodes, then the boundary conditions of the meso-scale model can be obtained. However, a
too small macro-scale element size will reduce the calculation efficiency of the macro-scale
model, and at the same time increase the difficulty of obtaining the boundary conditions of
the meso-scale model.

Moreover, the multi-scale fatigue analysis method based on the dynamic sub-model
can calculate the fatigue damage at different positions of the structure, which provides
more references for the fatigue life design of the structure.

4. Conclusions

In view of the fatigue life analysis of CMCs structure, a multi-scale fatigue life analysis
method based on sub-model for braided CMCs is proposed in this paper. Combining
the sub-model method based on the finite element shape function and the fatigue failure
criterion based on the shear lag theory, the multi-scale fatigue analysis of CMCs is imple-
mented. Firstly, a meso-cell finite element model of 2D SiC/SiC CMCs was established,
and the fatigue life of 2D SiC/SiC was analyzed by using the fatigue failure criteria of
CMCs. The S–N curves were obtained and compared with the experimental results in
the literature. Then, the multi-scale fatigue life analysis method based on sub-model was
used to analyze the fatigue damage and life of 2D SiC/SiC cross stiffened plate under
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random tension–tensile loading. The fatigue damage and life of different fatigue hotspots,
and different position of mesoscopic model in the macroscopic element were studied, the
results show that:

(1) The fatigue life analysis results of the braided CMCs based on the sub-model are
in good agreement with the experimental results in the literature, which proves the
accuracy of the micro-cell finite element model of 2D SiC/SiC ceramic matrix braided
composites established in this paper.

(2) The multi-scale fatigue method based on dynamic sub-model can reflect the meso-
fatigue failure state of ceramic matrix composite materials, and has high computa-
tional efficiency. It can calculate the fatigue damage state of multiple positions of
the structure, and the requirement for macroscopic modeling is low, only the size
of the macro-scale element needs to be similar to the size of the meso-scale model,
and the position of mesoscopic model in the macroscopic element has low influence
on the fatigue life analysis, which is well applicable to the fatigue life analysis of
two-dimensional braided CMC structures.
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