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Current temporary metal implants made from titanium or stainless steel are not
absorbable. Thus, a second surgery is needed to remove the implants after the tissue
heals, or (for children) after they outgrow their implants. This second surgery is costly
and involves additional risks of infections and pain for the patient. Therefore, absorbable
metals are currently generally preferred and being investigated. Absorbable metals have
shown significant clinical potential as an alternative to polymers in implant applications,
where the material is eventually replaced by healthy, functioning tissue. However, several
challenges remain before these metals can be translated to humans. First, the metal alloys
with sufficient strength contain aluminum, yttrium, or lithium, all of which pose serious
concerns for long-term toxicity. Second, in some cases such as magnesium alloys, they
degrade too rapidly, and as a result, also generate possibly harmful hydrogen gas pockets.
Consequently, these implants lose their mechanical integrity before the host tissue heals.

Innovations and further improvements are required, especially for load-bearing im-
plants. The main focus of this Special Issue is to therefore collect scientific contributions
dealing with the development of absorbable metals with improved and unique corrosion
and mechanical properties for applications in highly loaded implants, or cardiovascular
and urethral stents. This Special Issue assembles a group of highly original manuscripts
that present a range of exciting innovations in alloying [1–3] and compositing [4], along
with their testing and assessments [5–7] to introduce novel medical implants based on mag-
nesium [2–4,8,9], zinc [1,7], or iron [10,11]. As the biointerface plays an important role in
implant–tissue interactions, contributions to implant coating and surface engineering strate-
gies and their effects on the implant properties and corrosion are also discussed [8,10,12].
Two studies on mechanical testing of implants made of biodegradable polymer com-
posites provide a complimentary benchmark toward clinical application of absorbable
metal implants [13,14].

Finally, the concept of absorbable metal implants might result in a significant impact on
the future work of standardization agencies. However, standardization must be balanced
with the main challenge in the field, which remains the successful translation of this
innovative concept into medical products that guarantee the growth of the absorbable
metal field. Genetic-based methods and biomarkers should be studied with more depth to
evaluate their biocompatibility and bioactivity.

Contributions have been solicited from scientists working in the fields of biomaterials,
tissue engineering, bioengineering, and medicine. Finally, the Editors give special thanks to
the authors, and to the editorial team of Materials, for collaborative and peer-review process.

We hope you will enjoy reading this issue as much as we had the pleasure of assem-
bling it.
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