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Abstract: High performance fiber-reinforced concrete (HPFRC) has been frequently investigated in
recent years. Plenty of studies have focused on different materials and types of fibers in combination
with the concrete matrix. Experimental tests show that fiber dosage improves the energy absorption
capacity of concrete and enhances the robustness of concrete elements. Fiber reinforced concrete has
also been illustrated to be a material for developing infrastructure sustainability in RC elements like
façade plates, columns, beams, or walls. Due to increasing costs of the produced fiber reinforced
concrete and to ensure the serviceability limit state of construction elements, there is a demand
to analyze the necessary fiber dosage in the concrete composition. It is expected that the surface
and length of used fiber in combination with their dosage influence the structure of fresh and
hardened concrete. This work presents an investigation of the mechanical parameters of HPFRC
with different polymer fiber dosage. Tests were carried out on a mixture with polypropylene and
polyvinyl alcohol fiber with dosages of 15, 25, and 35 kg/m3 as well as with control concrete without
fiber. Differences were observed in the compressive strength and in the modulus of elasticity as well
as in the flexural and splitting tensile strength. The flexural tensile strength test was conducted on
two different element shapes: square panel and beam samples. These mechanical properties could
lead to recommendations for designers of façade elements made of HPFRC.

Keywords: high performance fiber reinforced concrete (HPFRC); polypropylene fiber (PP); polyvinyl
alcohol fiber (PVA); compressive strength; residual flexural strength; splitting tensile strength

1. Introduction

Since the development of concrete, RC constructions allow for more and more filigree
and lightweight elements with the contemporary growth of structure loads [1]. Reduced
cross-sections of components are associated with advanced technologies and materials
based on higher material properties [2]. With an increase in concrete specifications like
compressive strength, the post crack behavior of concrete becomes worse. In concrete
compositions, different kinds of fibers are added to avoid brittle fracture behavior and
ameliorate the ductility of those materials [3]. Fiber reinforcement concrete (FRC) has
already been used successfully in many horizontal and vertical structural as well as non-
structural elements [4]. For example, using fiber reinforcement together with traditional
steel bar reinforcement decreases crack propagation and displacement of concrete slabs
like industrial floors [5]. In buildings and bridges in seismic areas, fiber reinforced concrete
improves the behavior of structural parts like columns, beams, or walls [6].

Recently, FRC has also been used for the production of pre-cast elements in which the
fibers—in combination with ultra-high-performance concrete—enhance the durability of
cracked concrete [7]. As studies show, a decisive role is played by the dense microstructure
of concrete pre-cast elements. This can be ensured by low water–cement and water–binder
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ratios. Mateckova et al. [8] report that high-performance concrete with its dense structure
presents higher resistance to chemical penetration in comparison to ordinary concrete. The
character of used materials in HPC can improve the acid attack by FRC through better
integrity of the binder matrix to fiber inclusion. Ali et al. [9] showed the influence of fibers
and silica fume on the mechanical and durability performance of concrete concerning a
reduction in the materials’ permeability.

The possible benefits of using HPFRC are in sustainable resource management. A
good example for the use of FRC are façade panels in building constructions, leading to a
considerable reduction in the material volume [10]. Therefore, the major advantage of fiber-
reinforced concrete elements is the reduced thickness, thus leading to a reduction in CO2
footprint. Without steel rebars, façade panels can be just a few centimeters thick [11]. For
concrete elements without steel reinforcement, a corrosion protection system like concrete
cover can be omitted [12].

Vertical exterior elements of buildings exposed to environmental factors are investi-
gated for structural performance under gravity and wind load. Concrete elements such as
façade panels for certain boundary conditions are under flexural load. The wind pressure is
distributed as area load, which causes tensile and compressive stresses in the cross-section
of the building’s façade and results in deformation [13]. Therefore, exterior elements are
designed to transfer loads to the main structural system of the building. This is why
the flexural tensile strength of fiber reinforced concrete is one important design parame-
ter [14]. Moreover, the impact of panel behavior and damage to the FRC is evaluated as a
safety factor.

To understand the behavior of HPC and UHPC as well as concrete in general with fiber
addition, scientific measurement methods in experimental research study have recently
been published [15]. Typical fibers for HPFRC are made of steel [16], carbon [17], or
polymers [18]. Examining the available research literature demonstrates that another
material like wool [19], basalt [20], or glass [21] could be successfully added to concrete.
The fibers differ according to their origin, mechanical properties, and their corrosion
resistance [22]. The analysis of this material focuses particularly on a unique combination
of concrete and fiber reinforcement [23]. The damage process and the mechanical properties
of HPFRC can be taken into account for different dimensions and different shapes of
samples [24]. Results of the experimental tests should implement the anisotropy of fiber
orientation in the concrete matrix [25]. The location of deformation and the position of the
cracked zone can lead to difficulties during examination [26]. By means of a clip gauge, it
is possible to estimate the behavior of specimens in the cracked region. The clip gauge is
used to measure the crack mouth opening displacement (CMOD) [27]. The details of the
classic experimental setup and the examination with a clip gauge will be presented in the
Section 2.

The aim of this work was to investigate the influence of fiber addition on the properties
of high-performance concrete. As is known from other publications, the addition of
fiber does not always have a positive effect on the mechanical properties. Other studies
have also focused on other types of fibers in connection with HPFRC. Therefore, in this
study, it was proposed to also consider the fiber type and shape variation of the concrete
sample. Furthermore, this paper expands the database with an overview of the mechanical
properties in HPFRC with polypropylene and polyvinyl alcohol fiber. It is suspected that
the surface and length of used fiber influence the structure of fresh and hardened concrete.
Optimization and a better quantity of fiber dosage will allow for a reduction and also a
better use of the materials in the concrete mix design. Mechanical parameters of HPFRC
enable the economical design of filigree, safe, and lightweight elements.
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2. Experimental Program
2.1. Materials

In this study, only fine aggregates and particles were used to improve the homogeneity
of high-performance concrete [28]. In the following sections, the properties of the fibers
and the concrete mix design are discussed.

2.1.1. Fiber

In this study, the influence of two fiber types on the fresh concrete and the mechanical
properties of hardened concrete is investigated: polypropylene fibers (PP) and polyvinyl
alcohol fibers (PVA) (see Figure 1). The characteristic of PP- and PVA-fibers are given in
Table 1. Compared to steel, both fibers are corrosion-resistant.
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Figure 1. (A) Polypropylene fiber MasterFiber 235 SPA (PP). (B) Polyvinyl alcohol fiber MasterFiber 401(PVA) used in the
present study.

Table 1. Mechanical parameters of the used fiber.

Type of Fiber Tension Strength
[MPa]

E-Modul
[MPa]

Diameter
[mm] Length [mm] Specific Gravity

[kg/m3]

MasterFiber 235 SPA (PP) 500 >8.000 0.70 30 910
MasterFiber 401 (PVA) 800 29.000 0.16 12 1.300

2.1.2. Concrete Mix Design

For this experimental research, five different concrete mixtures with the same amount
of cement, aggregates, and additives (Table 2) were prepared. They only differed in the fiber
type (Table 1) and fiber dosage (Table 3). Mix ID 1 contained 35 kg/m3 of the MasterFiber
401 (PVA). For comparison with the MasterFiber 235 SPA (PP), Mix ID 2 contained 35 kg/m3.
To investigate the influence of the fiber dosage, Mix IDs 3, 4, and 5 contained 25 kg/m3,
15 kg/m3, and 0 kg/m3 of fibers, respectively. The mixtures were prepared by using a
55-L-capacity horizontal forcing type concrete mixer.

Table 2. Concrete mix design.

Material Raw Density [kg/m3] Weight [kg/m3]

Cement (CEM I 42.5 R) 3100 650
Aggregate 0 to 3 mm 2600 990

Silica fume 700 50
Limestone powder 2700 415

Plasticizer MasterGlenium ACE 430 1060 18
Water 1000 210
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The appropriated HPFRC was produced with cement CEM I 42.5 R [29], quartz sand
0.1/0.6 [30], limestone powder, and silica fume. The limestone powder and the silica fume
provide a dense microstructure of concrete and are used as fillers. The aggregates were
dried sand and basalt [31]. Figure 2 presents the grain size curve of the material used
in the present study [32]. For better workability, a plasticizer, MasterGlenium ACE 430,
was used [33]. The water–cement (w/c) and water–binder (w/b) ratio in the concrete
composition was 0.323 and 0.238, respectively.
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Figure 2. Grading of the fines for the material used in the present study. Sand, basalt, and quartz own studies. Silica
fume [34], limestone powder [35].

2.2. Testing Procedure

In this study, tests were carried out on fresh and hardened high-performance concrete
with and without fibers. The compressive strength tests on the hardened concrete were
performed on 150 mm cubes according to EN 12390-1 [36]. Cylinders of 150 mm in
diameter and 300 mm in height were used to test the modulus of elasticity and splitting
tensile strength according to EN 12390-3 [37].

Table 3. Overview of tested samples.

Series Fiber Dosage [kg/m3] Number of Specimens

panel specimens
(250 × 250 × 35 mm3) in

accordance with EN 12467 [38]

0 3
15 3
25 3
35 3

beam specimens
(100 × 100 × 400 mm3) in

accordance with EN 14651 [39]

0 3
15 3
25 3
35 3

A test program based on the different fiber dosage was conducted (Table 3). The flexu-
ral tensile strength test was conducted on square panel specimens (250 × 250 × 35 mm3)
in accordance with EN 12467 [38] and beam specimens with a cross-section (100 × 100
× 400 mm3) in accordance with EN 14651 [39]. For comparison purposes in both tests,
we used the classical measurement method with the force–displacement relationship. Si-
multaneously, for the measurements of beam deformation, we applied the test method of
crack mouth opening displacement (CMOD), which has been recently mentioned in the
experimental investigations of HPFRC [27,40]. For this purpose, the bottom surface of the
beam specimens had a notch with a depth of 17 mm and a width of 5 mm according to the
procedure in EN 14651 [39] (see Figure 3). The notch was milled for the determination of
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strain during the crack initiation in the middle of the span. Near the notch were glued metal
plates to attach the clip gauge (see Figure 4). The clip gauge measures the displacement
between two points that are on two different edges of the crack [41].
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As shown in a study by Bi et al. [42], the distribution of fiber during concrete flow
influences the mechanical properties of HPFRC. Mostly, fibers are randomly distributed
but computer tomography shows that fibers accumulate in the upper part of the specimens.
It has been observed that the flexural strength of HPFRC is higher with more fibers located
in the tension zone. Therefore, during the bending tests, the upper side of the beams is
turned backwards.

Three-point bending tests were carried out on plates and beams in order to be able
to estimate the flexural strength [38]. The stresses fL were calculated according to the fib
Model Code 2010 [43], as follows:

fL =
3·F·l

2·b·h2 (1)

where F represents the cylinder force in [N]; b and h are the width and height of the
specimens, respectively; and l is the distance of the supports. The distance for the plates
equaled l = 0.75·L and for the beams, l = b/0.3. Dimensions are provided in [mm].

In their study, Schultz-Cornelius [24] investigated flexural strength for many different
thicknesses of façade panels separately. They observed an effect in size for specimens with
a depth below 50 mm. The tests showed a linearly increasing bending tensile strength with
decreasing thickness. In order to examine the impact of fiber dosage on the bending tensile
strength, only panels with a thickness of 35 mm were tested.

The specimens were cured and stored at a temperature of 20 ◦C and a relative air
humidity of 60%. Each test on hardened concrete was performed after 30/31 days. The
measurements were processed by Catman AP software. All bending tests were performed
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based on controlled displacement with the same testing speed and the same measuring
rate of clip gauge.

3. Analysis of the Results

In this study, the properties of fresh concrete as well as the mechanical parameters of
hardened concrete like compressive strength, modulus of elasticity, bending, and splitting
tensile strength were investigated. The test results are discussed in the following sections.

3.1. Properties of Fresh Concrete

The slump test was performed according to EN 12350-5 [44]. The results presented in
Table 4 show that both PP and PVA fibers performed well during the slump flow test. The
slump flow diameter was measured on the base plate in two directions, from which the
average value was calculated. It should be mentioned that the plasticizer MasterGlenium
ACE 430 dosage in each concrete mixture was identical. With increasing fiber dosage,
the workability of HPFRC increases. Tests show that the slump flow measure increased
from 595 mm to 650 mm based on a PP fiber dosage of 15 kg/m3 and 35 kg/m3. The
phenomenon of higher fiber dosage and a concurrently larger slump flow diameter was also
observed in investigations of self-compacting concrete with PP and steel fiber batches [45].
For HPFRC with PVA fibers, a smaller slump flow diameter is recognized than for HPFRC
with PP fibers. If a PVA fiber with a smaller diameter is used, the mixtures tend to absorb
much more water and hence change the consistency of fresh concrete. This is due to the
high specific surface area of PVA fibers. Chen [46] reported that fine fibers were responsible
for reducing the mixture workability and suggested a combination of small and medium
fibers for the best balance of fresh concrete and hardened material properties. The progress
of the slump experiment and a picture of a fresh concrete mixture are shown in Figure 5.

Table 4. Fresh concrete properties of the investigated concrete mixtures.

Mix
ID Type of Fiber Fiber-

Dosage
Air

Void
Bulk Density

[st. dev]
Slump Flow Diameter

[st. dev]

[kg/m3] [%] [kg/m3] [mm]

1 MasterFiber
401 (PVA) 35 3.8 2288 [6] 418 [25]

2
MasterFiber
235 SPA (PP)

35 4.2 2239 [8] 650 [42]
3 25 3.8 2251 [21] 635 [21]
4 15 3.5 2278 [16] 595 [7]
5 0 2.8 2307 [20] 565 [7]
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Table 4 shows the air depending on the fiber dosage of each mixture. This was
determined according to EN 12350-7 [47]. The concrete with less pore volume had a higher
bulk density. Furthermore, the air impacts mechanical properties like compressive strength
and modulus of elasticity. Hassan [48] stated that concrete with lower porosity was resistant
against chloride penetration. Furthermore, it showed a lower fluid and gas permeability,
which impacts the frost resistance of HPFRC.

3.2. Compressive Strength

Figure 6 shows the compressive strength of the concrete after 28 days with different
fiber dosages. The results showed that the compressive strength decreased with increasing
fiber dosage. Lower dosages of fiber in normal concrete, in contrast, behave differently (e.g.,
under 30 MPa). In general, the mechanical properties of concrete with a lower compressive
strength will be improved through the addition of fibers [49,50]. The space between
concrete and fibers is filled with air, which already starts to accumulate during the mixing
process between the adhesive surfaces. The air voids are linked to the small interaction
between the PP and the cement paste. A small air volume reduces the compressive strength
of high-performance concrete. Furthermore, the higher fiber dosage reduces the volume of
the concrete–matrix dosage and at the same time reduces the compressive strength and
modulus of elasticity of the concrete.
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Figure 6. Compressive strength results of concrete with different fiber dosages of MasterFiber 235 SPA (PP).

3.3. Modulus of Elasticity

The modulus of elasticity was determined according to EN 12390-13 [51]. Figure 7
shows the test results for the cylindrical specimens [36]. The modulus of elasticity’s value
depends on the fiber dosage. An increase in the volume fraction of PP fiber in concrete
leads to a decrease of the modulus of elasticity, which is due to the compressive strength
of HPFRC. Similar results were obtained in a study on fiber reinforced concrete with a
compressive strength up to 100 MPa [52].

3.4. Splitting Tensile Strength

The addition of fibers to the concrete mix has a major impact on the tensile strength
of FRC. The test results showed an increase from 4 MPa for concrete without any fibers
to 6.9 MPa for concrete with a fiber dosage of 35 kg/m3 (see Figure 8). Furthermore, the
results showed that the difference in the splitting tensile strength between a fiber dosage of
25 kg/m3 and 35 kg/m3 was lower compared to a fiber dosage of 15 kg/m3 and 25 kg/m3.
It can be assumed that this effect is caused by the strength of the fiber–matrix interface. The
strength depends on the volume of the concrete surrounding the fibers. With increasing
fiber dosage, this volume decreases and hence the pull-out-strength of the fibers in the
cracking zone is reduced. It can therefore be concluded that the splitting tensile strength
was at most 72.5% higher due to the addition of fibers.
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Figure 7. Modulus of elasticity of concrete with different fiber dosages of MasterFiber 235 SPA (PP).
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Figure 8. Split tensile strength of concrete with different fiber dosages of MasterFiber 235 SPA (PP).

3.5. Residual Flexural Strength

For façade panels, the most important mechanical property is the bending tensile
strength [53]. Fibers in concrete enhance the concrete’s mechanical properties. They absorb
post-crack energy and improve ductility of the FRC. For thin concrete elements like façade
panels, a higher bending tensile strength leads to an improved resistance against area loads
caused by wind and impacts.

The experimental setup and the dimensions of the test specimens are discussed in
Section 3. The plates according to EN 12467 [38] reached higher bending-tensile strengths
up to 10.5 MPa for a fiber dosage of 35 kg/m3. The test results with average values for
plates with PP fiber are presented in Figure 9.

The stress–deflection curves in Figure 9 show a linear behavior at the beginning of
the loading. After the first crack, stress deflection curves are non-linear. In HPFRC, the
deflection, and concurrently the stress, still increases. Once the maximum value of stress
has been reached, they decrease slowly. A similar effect of decreasing stresses after the first
crack was described by the Association Francaise de Genie Civil [54] (AFGC). In concrete
without fibers, the stress–deflection curves reached 5.61 MPa after the first crack and then
collapsed. In contrast, the specimens with fiber dosage had an inclined plateau phase. This
behavior is facilitated by a bond length of the PP fibers in the fiber–matrix interface, which
is activated as soon as a crack occurs. The longer the bond of the anchored fiber, the greater
the pull-out force. This behavior is the so-called bridging effect [55]. According to the first
crack [38], it was possible to estimate the bending tensile strength of the concrete with fiber
and concrete without fiber. The results with different fiber dosages are presented in Table 5.
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Table 5. Bending tensile strength of concrete with different fiber dosages of MasterFiber 235 SPA (PP)
in accordance with EN 12467 [38].

Mix ID Type of Fiber Fiber-Dosage
[kg/m3]

fL [st. dev]
[MPa]

Percentage
Increase [%]

2
MasterFiber 235

SPA (PP)

35 6.62 [0.20] 118
3 25 6.43 [0.16] 115
4 15 5.85 [0.38] 104
5 0 5.61 [0.40] 100

The test results in Table 5 clearly reflect the addition of fiber dosage: an increasing
bending tensile strength was observed with higher fiber dosage. The tests revealed an
increase of up to 4% for a fiber dosage of 15 kg/m3, 15% for 2d5 kg/m3, and 18% for
35 kg/m3. The experiments showed that by adding fibers, the failure mode changed from
brittle to ductile. Similar to the study conducted by Kahanji [56], the variation of the fiber
dosage has an enormous influence on the post-crack behavior of HPFRC.

The same results as for the panels were achieved with beams according to EN
14651 [39]. Figure 10 presents the test results with CMOD and Figure 11 shows the results
with a deflection in the middle span of the specimen. The stress–strain diagram shows that
the strain increased immediately after crack initiation. A comparison of the test results
obtained for mixtures ID 2 (35 kg/m3) and ID 3 (25 kg/m3) showed similar bending tensile
strengths. However, the dosage of fiber quantity for mixtures ID 2 and 3 differed. By
comparing these two fiber dosages, an increase in the bending tensile strength of up to
200% was evident. Mixture ID 4 showed increases of up to 84%. The strain of mixture
ID 4 measured with the clip gauge reached a plateau. Following this crack initiation, the
measured strains increased with higher load capacity. For concrete without fibers (mixture
ID 5), the stress–strain curve reached 3.14 MPa, then declined and reached zero.
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The test method for fiber reinforced concrete presented in EN 14651 [39] enables
the calculation of flexural tensile strength. The stresses fL in limit of proportionality
(LOP) were calculated according to the equation for the test method in concrete with
metallic fiber [39,57]. The required force was determined in the case of crack opening
CMOD = 0.05 mm (see Figure 12). The flexural tensile strength (limit of proportionality)
was calculated and listed in Table 6 (characteristic values with ks = 2.336). The correlation of
the stress–strain curves showed that with a fiber addition between 15 kg/m3 and 35 kg/m3,
the results of LOP were similar. A significant difference was found in the post crack
behavior due to the addition of fibers to the mix. The samples with Mix ID 5 failed when
the maximum flexural stresses were reached. This means that the CMOD with a value
higher than 0.5 mm could not be determined.
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Table 6. Flexural tensile force according EN 14651 [39].

Mix ID

Fiber-
Dosage Type of

Fiber
fL LOP Percentage

Increase
[%]

fL at Prescribed CMODj Values in MPa, [st. dev]

[kg/m3] [MPa] 0.5 [mm] 1.5 [mm] 2.5 [mm] 3.5 [mm]

2 35
MasterFiber

235 SPA
(PP)

3.89 [0.07] 124 5.66 [0.14] 8.57 [0.07] 8.03 [0.10] 7.34 [0.11]
3 25 4.10 [0.06] 131 6.30 [0.08] 8.04 [0.09] 9.16 [0.04] 9.24 [0.01]
4 15 4.04 [0.03] 129 3.06 [0.15] 4.17 [0.14] 4.78 [0.14] 4.94 [0.10]
5 0 3.14 [0.09] 100 0.11 [0.22] - - -

Based on experimental stress–strain curves, parameter fL was evaluated at four differ-
ent CMOD values: 0.5, 1.5, 2.5, and 3.5 mm. The residual bending tensile strength fL for
different fiber dosages was calculated and listed in Table 6 (characteristic values). This study
allows for the following conclusions to be drawn in post-crack bending tensile strengths.
With a fiber addition of 25 kg/m3 and 35 kg/m3, the maximum bending tensile strength
varied between 6.30 MPa and 5.66 MPa for CMOD of 0.5 mm and 9.24 MPa–7.34 MPa for
CMOD of 3.5 mm. For the fiber addition of 15 kg/m3, the residual post-cracking strength
reached 3.06 MPa for CMOD of 0.5 mm and 4.94 MPa for CMOD of 3.5 mm.

Figure 13 shows the stress–deflection curves of different fiber types. The first curve
reflects the long MasterFiber 235 SPA (PP), and the second the short MasterFiber 401 (PVA).
The short fiber is also thinner than the long fiber, which affects the mix design with a
much higher number of fibers in the concrete. Both concrete mixtures were made of the
same raw materials and comprised a fiber dosage of 35 kg/m3. Although the PP fiber was
longer than the PVA fiber, a similar maximum bending tensile strength was achieved with
both types of material, regardless of the fiber length. In the study by Yoo [58], the authors
reported that the use of a longer fiber led to higher flexural strength than the shorter fibers.
In the experimental test, only strains as a function of the length of the fiber were detected.
The stress–deflection curves for MasterFiber 235 SPA (PP) showed significantly better
results than the stress–deflection curves for MasterFiber 401 (PVA) following a deflection
of 6 mm. The stress–deflection curve of fiber type MasterFiber 401 (PVA) revealed a higher
increase in deflection compared to fiber type MasterFiber 235 SPA (PP), which may indicate
unfavorable adhesion forces between PVA fiber and the matrix. Shorter fibers pull-out of
the matrix faster than longer fibers. This is attributed to the bonding forces between the
fibers and the concrete matrix. The 30 mm long fibers provided a better friction range than
the 12 mm long fibers and also provided a better stress transfer in the matrix. However,



Materials 2021, 14, 3736 12 of 17

the smaller fiber had a higher tensile strength. Different types of fibers reflect the bonding
behavior between the fibers and the surrounding concrete [59].
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Figure 13. Bending-tensile strength of concrete with different fiber types (MasterFiber 235 SPA and MasterFiber 401) for a
fiber dosage of 35 kg/m3 in accordance with EN 12467 [38].

Figures 14–16 clearly show the cracking patterns of selected specimens in a three-point
bending test. The main crack occurred in the middle of the specimen. During the loading
tests, the crack width increased and lead to breakage or pull-out of the fiber. Due to the
high strain rate of the materials, two halves of a concrete slab held together. There was no
brittle failure because PP or PVA fibers under bending tensile load prevented the opening
of a crack and finally prevented the sudden destruction of the concrete. The fibers, which
were distributed along the axis of the beam, improved the bending tensile strength of the
concrete. Some of the fibers in the crack zone reached their tensile strength.
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4. Discussion

As tests of the fresh and hardened concrete show, HPFRC is strongly affected by the
density of used fiber and the presence of the air voids. The bulk density, compressive
strength, and modulus of elasticity decreased with fiber addition. This effect can be
attributable to fiber dosage in the concrete mix. Liu et al. [60] analyzed the permeability of
carbon fiber reinforced concrete and observed the same impact based on the water–cement
ratio. The fiber improves the impermeability of concrete only for the w/c ratio of 0.25. The
higher ratio reduces the impermeability of hardened concrete. Richardson [61] studied the
differences between plain concrete and concrete with fiber additions. Due to the higher
air content in the fiber-reinforced mixtures compared to normal concrete, the compressive
strengths differed from each other.

Another tendency showed in some cases of the normal strength concretes where the
higher dosage increased compressive strength and modulus of elasticity. Kilmartin-Lynch
et al. [62] tested a concrete mix with a compressive strength of 50.34 MPa and reached higher
values for the dosage of recycled polypropylene fibers. The increase of higher fiber dosage
can be noted because the fibers became more densely spaced, which therefore increased
compressive strength. Sekhar Das et al. [63] showed that the compressive strength of
36.9 MPa initially increased with fiber content up to 0.5% and then decreased with further
use of fibers. This content corresponds to a fiber dosage of 4.55 kg/m3, which was not
tested in the presented study. Therefore, the conclusion is that the correlation between
compressive strength and modulus of elasticity depends on fiber dosage. For further
studies, a lower fiber content should be tested.

In the experiment, the fiber dosage improved the flexural properties of concrete. The
flexural strength increased the maximal 31% for a fiber dosage of 25 kg/m3 in comparison
to the plain concrete. Rostami et al. [64] reported that the highest flexural strength was
94% relative to the control sample. Such a large difference may be due to the length of the
polypropylene fiber. In their experiment, Rostami et al. used longer PP fibers of 48 mm.
Similar observations were made by Zhou et al. [65] who reported that PP improved the
flexural strength of concrete. Unfortunately, the tests were carried out on another type of
fiber with a maximal length of 18 mm.

Not only are the values of the flexural strength reflected in the studies on FRC, but the
failure modes for specimens in flexural tests show similarities with other research. Abbas
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et al. [66] tested tunnel lining segments using UHPC with fiber dosage where the crack
developed during the progression of load in the middle part of the sample.

5. Conclusions

The objective of this work was to investigate how fiber dosage affects the mechani-
cal parameters of high-performance fiber reinforced concrete. This study allows for the
following conclusions to be drawn in the area of material properties:

• The percentage of air voids in the concrete corresponds to the compressive strength
and the modulus of elasticity of the concrete. A significant difference was found
in the compressive strength of the concrete due to the addition of fibers to the mix.
The fiber addition of 15 kg/m3 in the concrete composition reduced the compressive
strength from 83.2 MPa to 79.6 MPa. The higher fiber dosage showed a similar
trend. Furthermore, it reduced compressive strength and the modulus of elasticity of
the concrete.

• PP and PVA fibers have proven to be effective in increasing the splitting tensile strength
of concrete, which allows better utilization of material capacities and has an impact
on the production costs of FRC members. The comparison showed that the dosage
of fibers increased from 4.0 MPa to 5.0 MPa (for 15 kg/m3), 6.7 MPa (25 kg/m3), and
6.9 MPa (35 kg/m3).

• The analysis of the bending tensile tests revealed differences between MasterFiber 401
(PVA) and MasterFiber 235 SPA (PP) in the post-crack phase. MasterFiber 235 SPA is
intended to be used because of its higher ductility.

• The bridging effect, which improves the safety of the concrete components, was
identified in the bending tensile test. The bending tensile strength of concrete with
added fibers increased by up to 18% compared to materials without fibers. Some of
the fibers reached their tensile strength and were no longer involved in the transfer
of the load. The pull-out effect of the fiber changed the brittle fracture behavior of
concrete into the ductility behavior of these materials.

• In the present study, the highest PP fiber dosage examined in the concrete composition
amounted to 35 kg/m3. However, the addition of more than 25 kg/m3 of fibers to
the concrete mix had less influence on the bending tensile strength of the concrete.
This concrete mix had an overcritical fiber dosage and was characterized by tensile
strain-hardening behavior. A comparison of the stress–deflection curves with the
addition of 25 kg/m3 and 35 kg/m3 of fibers revealed that the cracking behavior of
concrete for these two fiber contents did not differ significantly.

• Further study of HPFRC comprises more mechanical experiments. New attempts
will be focused on anchorage techniques for façade plates in building construction. A
higher load capacity for the steel anchor system with a higher fiber dosage is expected.
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