
materials

Review

A Comprehensive Review on the Utilization of Recycled Waste
Fibers in Cement-Based Composites

Yang Ming 1,2,3,4,*, Ping Chen 1,2,3,4,*, Ling Li 1,2,3,4, Guoxing Gan 3,4 and Gelin Pan 3,4

����������
�������

Citation: Ming, Y.; Chen, P.; Li, L.;

Gan, G.; Pan, G. A Comprehensive

Review on the Utilization of Recycled

Waste Fibers in Cement-Based

Composites. Materials 2021, 14, 3643.

https://doi.org/10.3390/ma14133643

Academic Editor: Záleská Martina

Received: 29 May 2021

Accepted: 17 June 2021

Published: 29 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 College of Civil and Architecture Engineering, Guilin University of Technology, Guilin 541004, China;
2019049@glut.edu.cn

2 Guangxi Key Laboratory of New Energy and Building Energy Saving, Guilin University of Technology,
Guilin 541004, China

3 Guangxi Engineering and Technology Center for Utilization of Industrial Waste Residue in Building
Materials, Guilin 541004, China; ggx18737699886@sina.com (G.G.); pangelin137@sina.com (G.P.)

4 Guangxi Beibu Gulf Engineering Research Center for Green Marine Materials, Guilin 541004, China
* Correspondence: 2019048@glut.edu.cn (Y.M.); 2003124@glut.edu.cn (P.C.)

Abstract: Ecological problems such as natural resource depletion and massive quantities of waste for
disposal are now guiding progressive civilization towards sustainable construction. The reduction of
natural resources and the discarding of debris into open landfills are the two main environmental
concerns. As a result, managing these solid wastes is a major challenge worldwide. In comparison
to disposal, insufficient landfills, ecological degradation and the economic load on the relevant
agencies, recycling and reusing waste materials have a considerable influence. Waste fiber has been
studied for use as a cement-based composite (CBC) ingredient. Recycling waste fibers not only
makes the cement composite more cost-effective and long-lasting but also helps to reduce pollution.
Plastics, carpets and steels are among the various types of waste fibers reviewed in this study for
their applications in cement-based materials. The mechanical properties of CBCs with different kinds
of recycled-waste fibers were explored, including their compressive, flexural and splitting tensile
strength and durability properties. The use of recycled fibers in the construction industry can help to
ensure sustainability from environmental, economic and social standpoints. As a result, additional
scientific research is needed, as well as guidance for more researchers and experts in the construction
sector to examine the unknown sustainability paths. The barriers to the effective implementation
of waste fiber recycling techniques in the construction sector were reviewed, and various solutions
were proposed to stimulate and ensure their use in CBCs. It was concluded that CBCs containing
recycled fibers provide a long-term and cost-effective alternative for dealing with waste materials.

Keywords: recycled waste fiber; cement-based composites; mechanical properties

1. Introduction
1.1. Recycled-Waste Fibers in Cement-Based Composites

Concrete is a composite material composed of various constituents, including cement,
sand, coarse aggregates, additives and water [1]. Conventional concrete has shortcomings
in terms of its tensile strength, ductility, energy absorption, shrinkage cracking and crack
resistance [2–4]. In order to address these shortcomings, concrete mixtures have begun to
incorporate various types of fibers [2,5]. The incorporation of fibers in concrete is generally
intended to improve its mechanical performance for many applications, such as bridge
decks, concrete roads, slabs and buildings [6–8]. However, recycled-waste fibers are gaining
the attention of researchers to enhance the performance of concrete. Fibers are frequently
used in the production of lightweight cement-based composite (CBCs), which have a
minimal density and a higher thermal insulation capacity, and self-compacting concrete
(SCC), which can attain good compaction devoid of mechanical vibration [9]. In civil
engineering applications, fiber-reinforced composites (FRCs) are mostly used. Glass fibers
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are generally preferable for pre-cast members, sewer pipes, wall plaster, curtain wall facings,
concrete blocks and thin concrete shell roofs. Steel fibers (SFs) are frequently used in tunnel
linings, airport runways, blast-resistant structures, bridge decks, pipes, pavements, floor
slabs, roofs and pressure vessels. Synthetic fibers are frequently used in facing panels and
piles. Other applications include dam and well construction, tunnel concrete lining, and the
stabilization of slopes. Synthetic fibers enhance the performance of concrete, but they are
derived from nonrenewable and costly natural resources [10]. Moreover, synthetic fibers
are not decomposable and, when dumped, produce waste and have an adverse influence
on the environment. On the other hand, natural fibers are more economical and renewable,
making them a sustainable source of fibers for FRCs [11–13]. By utilizing recycled fibers
(RFs), the impact of the concrete industry on the environment, waste disposal, and waste
streams in landfills may be reduced. Earlier research has demonstrated that different kinds
of fibers recycled from various waste deposits are appropriate for the production of FRCs,
and are more economical than synthetic fibers [3]. This increasing use of waste in the
production of FRCs bolsters strategies for “closing the loop” in the execution of circular
economy practices [14]. From this vantage point, waste material reuse and recycling can be
effectively applied to the construction industry. [14].

1.2. Mechanical Properties of Fiber-Reinforced Composites

The addition of RFs to concrete may be a step towards making the material more
environmentally friendly. Plastic packaging production is a significant contributor to the
total municipal waste generated. Plastic waste is non-biodegradable, and is disposed
of in landfill sites, where it negatively impacts the environment [15]. Efforts have been
made to generate fibers from plastic waste, and to use them in concrete production. The
impacts of plastic waste fibers on the performance of CBCs have been studied in a variety
of ways. According to some studies, using 1–1.5% waste plastic fiber improves the flexural
strength (FS) by about 70%, while others report decreased strength as the waste plastic
fiber content increases [16–19]. Due to concrete’s high consumption and the importance of
recycling, the utilization of waste RFs in CBCs has been recommended, and has earned
researchers’ interest [20–24]. The application of waste recycled steel fiber (WRSF) to
enhance the mechanical properties (MPs) of FRCs has been reported [20–24]. Recently,
the influence of WRSF on the bending, tensile and post-cracking behavior of concrete
was investigated, and the results revealed that the incorporation of WRSF enhanced the
residual strength of concrete [24]. Utilizing waste tire crumb rubber and recovered coarse
aggregate in concrete preparation contributes to the construction industry’s long-term
sustainability [25]. Furthermore, the research on the mechanical properties and durability
of WRSF-reinforced CBCs has revealed that the addition of WRSF improved the impact
resistance, shrinkage behavior and crack propagation of concrete compared to that of plain
concrete [26–29]. A recent review concluded that the use of WRSF, which accounts for the
majority of the improvements in concrete behavior associated with industrial steel fiber
(ISF), is feasible [28]. Several studies have been performed to determine the impact of
waste recycled plastic fiber (WRPF) incorporation on the splitting-tensile strength (STS)
of concrete composites, and they found improvement in the STS of composites [30–33].
The incorporation of waste recycled carpet fibers (WRCFs) in cementitious composites
resulted in a decrease in their compressive strength (CS) [34–36]. Numerous pieces of
research have been performed to determine the effect of WRPFs on the FS of cementitious
composites. Several researchers reported an overall improvement in FS [32,37–41]. In
contrast, a decrease in FS was noticed with the addition of WRPF [42,43]. Generally, WRCF
increases the STS properties of the composites to a certain extent [44,45].
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1.3. Effect of Waste Fiber-Reinforced Composites on the Environment

One of the century’s major challenges is to adopt a sustainable development direction
in order to balance current and future generations’ environmental, economic and social
needs [46]. From this perspective, the construction sector is experiencing a critical period
to satisfy triple bottom line sustainability standards [47,48]. Taking the environmental
aspect into consideration, the construction industry consumes half of all raw materials and
industrial waste, and accounts for 40% of global energy consumption and 40–50% of green-
house gas emissions [49–51]. Moreover, the industry contributes to environmental concerns
such as eco-system deprivation, and water, air and soil contamination [1]. Concrete is an
extensively used material in construction, and it plays a critical part in ensuring the global
population’s health and safety, being the second most used resource after water [52,53].
Indeed, when appropriately prepared, concrete exhibits remarkable MPs and durability
properties, making it an admirably engineered material [54]. Presently, the production of
cement is around 4.4 billion tons per year worldwide, but this figure is estimated to be more
than 5.5 billion tons by 2050, with the fastest growth in developing countries [55]. Concrete
production consumes a large amount of raw resources and contributes significantly to
global greenhouse gas emissions. Concrete’s durability performance is critical for allowing
the material to reach its intended service life and avoid premature replacement because it is
placed in a variety of damage-inducing conditions [56]. As the most widely used building
material, concrete needs a global strategy to decrease its effect on the environment and
natural resources [57]. The adverse impact of concrete is mainly due to the manufacturing
of cement, which is its primary component. Cement accounts for about 5 to 7% of global
anthropogenic CO2 releases and 3% of global greenhouse gas emissions [1,58]. Addition-
ally, the specific environmental effects, the excessive utilization of natural resources and
fossil fuels, and the high level of waste produced must be considered [49]. In order to
reach a balance between industrial growth and the planet’s structural constraints, main-
taining the competitiveness of this building material, it is required of us to determine
solutions for the reduction of the environmental impact of concrete, and to develop new
“green” concrete principles [58]. Synthetic plastics are commonly disposed, polluting the
environment. To address this issue, plastic waste is recycled as fiber in concrete [59]. In
this regard, the concrete industry must move away from the straight route of traditional
production and consumption, and towards a rounded methodology which considers the
entire construction lifecycle [60]. Given the industry’s critical role in global economic, social,
and environmental growth, it can perform a vital role in attaining the United Nations’
Sustainable Development Goals [61]. Many of the 17 sustainable development objectives
will somehow be tackled in the growth of sustainable solutions for the sector with the
concrete supply chain. The key goals of these techniques are to reduce raw material use
by utilizing waste and recycled materials, to design buildings with more durability, and
to apply processes of construction with lower levels of effect [49]. Municipal solid waste
products are components that interact closely with pollutants, most notably greenhouse
gas emissions, which contribute to global climate change [62]. According to World Bank
estimates, the majority of the average and low-income countries generate approximately
1.3 billion tons of waste annually in terms of solid waste, with solid waste estimated to
reach 2.2 billion tons by 2025. [63]. In most developed countries, the common strategy for
overcoming the environmental challenge is the reuse of waste and renewable resources
for construction materials [62]. Waste recycling and reusing discarded materials helps to
conserve renewable resources while also reducing emissions and landfilling [64–66]. Green
and environmentally sustainable structures can be constructed by utilizing these waste
products as aggregates and fibers in place of natural raw materials [67].
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2. Importance and Significance of the Current Literature Review

The primary focus of this research is on environmentally friendly construction materials.
Furthermore, this state-of-the-art study examines the influence of RFs on the MPs of CBCs.
The key aim of this review is to evaluate and thoroughly examine the existing literature on
the impacts of various kinds of RFs on the overall behavior of composites. The compressive,
flexural and tensile strength, and the durability of RF-reinforced CBCs are analyzed. This
study will provide a baseline for future studies on RF-reinforced CBCs. Researchers will
benefit from the study’s comprehensive overview of RF output characteristics.

3. Types of Waste Fibers Used in Cement-Based Composites

The waste RFs used in CBCs are broadly classified into three categories, namely,
WRPF, WRCF and WRSF. In order to produce WRPF, post-consumer plastics are processed
and washed before being sliced manually through a paper shredder or a compact disk
(CD) cutter device. The bottom and neck of the plastic bottles are removed for other
uses [16,17,68–70]. Other scientists have used long plastic chips made of machined steel
waste pieces in commercial vehicle plants [71]. In technological plants, plastic fibers are
produced. Wasted polyethylene terephthalate (PET) bottles are used as raw materials
for the replication of plastic fibers; after spinning, stretching, stabilization, winding and
polygraphing, the process begins with crystallization, drying and a pneumatic conveyor,
and then progresses to the dose, extrusion and filtering. The fibers have tensile forces
between 263 and 550 MPa, and a specific gravity of 1.34 kg/m3 [72]. Some scientists
used maleicon hydride grafted polypropylene to cover the surface of the WRPF for the
de-bonding among the fiber and concrete. This enhances the distribution of RFs [2]. The
waste carpet recycling process begins with the sorting of waste carpets according to fiber
type and production, and then progresses to mechanically separating the fibers from the
backing using a series of screening, shredding, cutting, tearing, screening, sifting and
cleaning tools. The end product can finally meet the quality management standards [34].
A portion of the waste recycled carpet fibers used in concrete come from waste carpet
recycling plants [36], [44,45,73]. The majority of WRSFs are produced from expired vehicle
tires. WRSF can be separated mechanically from expired tires through shredding and
cryogenic methods; it can also be produced through anaerobic thermal degradation, such
as microwave-induced and conventional pyrolysis. Some of the RF used in cementitious
composites are depicted in Figure 1.
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4. Mechanical Properties of Waste Fiber-Reinforced Cement-Based Composites
4.1. Compressive Strength

The addition of WRSF may be advantageous for the CS of CBCs. If a higher RF content
is required, extra water to address workability concerns may have a negative impact on
the CS of CBCs because of an increase in porosity [20]. Comparably, the incorporation of
WRSF causes ductile failure and can delay CBC failure. It was discovered that by adding
high-density WRSF at a volume fraction of 5% to the concrete composite, the dry density
increased, resulting in a 59% improvement in CS [83]. At volume fractions of 1 and 0.5%, a
positive synergetic influence was noticed among ISF and WRSF, respectively; improved crack
resistance and anchorage capability resulted in a 50% increase in CS [84]. On the other hand,
the use of hybrid RF and ISF in CBC caused decreased workability and increased porosity,
resulting in a decrease in CS. Concerns about the dispersion of WRSF in concrete have been
addressed [20,85,86]. It was observed that when a similar kind and fraction of WRSF were
used, and a traditional concrete mixer was used, the SFs were not evenly dispersed, preventing
the maximum potential of WRSF from being consumed. The results indicated that using
0.26% WRSF increased the CS by 12% when a conventional concrete mixer was used; using a
planetary concrete mixer resulted in an improved fiber dispersion in the matrix and enhanced
the CS by 20% even at a 0.23% WRSF content. The use of a planetary vertical mixer resulted
in the most homogeneous and well-dispersed SFs and an increase in the fiber content to
0.46% by volume [20]. The fiber content has a considerable effect on how concrete reacts to
compressive stresses. At small fiber fractions, no significant change in the CS of concrete was
observed [87]. A study demonstrated that adding a combination of ISF and WRSF up to the
highest volume fraction of 0.5% did not result in a significant increase in strength, with CS
only increasing from 36.69 to 37.37 MPa. In conclusion, at low proportions of WRSF, the CS of
concrete is primarily determined by the internal matrix structure of the concrete, compared
to SFs [21,88]. Table 1 shows various steel fibers, and their physical parameters, proportions
used and influence on the MPs of CBCs.



Materials 2021, 14, 3643 6 of 28

Table 1. Mechanical properties of the different waste recycled steel fiber (WRSF) used in cement-based composites.

Fiber
Name

Fiber Length
(mm)

Fiber
Diameter (mm)

Aspect
Ratio Content (%) Compressive

Strength (%)
Flexural

Strength (%)
Tensile

Strength (%) Reference

Recycled
steel fibers

20 0.15 133 20 −11.6 22.7 45.16 [89]
50 0.15 333 1.5 40 25 - [90]
55 0.125 440 1.5 −9.3 40.5 - [91]

31.4 0.24 131 0.46 25.45 −15 - [92]
22 0.2 110 6 - 23.07 - [93]

16.5 - - 1 0 - −21.4 [94]
50 1.2 42 0.75 −8 40 28 [95]
35 1 35 2.4 13.9 - 35.9 [96]
40 0.15 267 0.75 18 25 30 [97]
50 0.6 83 1.6 8.6 67.85 32.3 [26]
20 0.18 111 0.6 - - 14 [98]
25 0.26 96 2 23.3 55.27 - [99]
35 0.2 175 10 0.66 −7 - [100]

25.4 0.25 102 1 12.5 31.27 22.85 [101]
60 0.27 222 4 26.7 - 78.6 [102]

13.94 0.25 56 0.46 −3 - −10 [23]
208 2 104 4 1.8 - 172.8 [103]

26.17 0.25 105 2 22.2 30 42.8 [104]
26 0.258 101 0.23 19.95 15.87 - [20]

The addition of silica fume (SF) creates a dense and compact cement matrix, and
increases the bond strength among the fiber surface and the surrounding matrix, thereby
improving the CS and ductility of WRSF concrete [105,106]. However, increasing the fiber
content beyond the threshold value has a detrimental effect on the cement matrix structure,
ultimately resulting in the fall of the concrete’s CS. This investigation was conducted
using WRSF fibers with varying volume contents up to 0.75%. The results indicated a 5%
increase in CS with a 0.5% fiber content, but an unfavorable impact of fiber incorporation
was noted when the WRSF was 0.75% content by volume, resulting in non-uniform fiber
dispersion and a non-homogeneous cement matrix; this inconsistency in the composites
matrix eventually resulted in an 8% decrease in CS [95]. Similarly, 3% of WRSF by mass
was recommended as the optimal dosage for higher roller-compacted concrete’s CS [107].
With a fiber volume content of 0.46%, a decrease in CS from 33.61 to 31.60 MPa was
observed, and it was determined that the random distribution of WRSF in CBCs might
cause fiber congestion, resulting in a small decrease in CS. [23]. Another study discovered
an optimal content of hybrid WRSF and ISF. By combining 30% ISF and 70% WRSF with a
total content of 1%, the CS improved by 5–10%, while a fiber fraction of 1.25% resulted in a
CS loss of 5% [108]. The shape of the fibers, their surface morphology, and the quantity of
rubber affixed to the WRSFs from waste tires all significantly affect the concrete’s CS. With
the addition of 0.46% of rough and randomly distributed WRSF, superior resistance was
observed against crack occurrence, as well as a 25% increase in the CS [92]. The existence
of rubber attached to the surface of WRSF, on the other hand, has a negative impact
on the concrete’s CS. The hydrophobic nature of rubber and the lack of adhesion to the
surrounding matrix has an unfavorable influence on the performance of concrete [91]. The
results indicated that the CS value decreased from 135.5 to 130.2 MPa, but WRSF without
any rubber attached to the surface increased the CS value from 135.5 to 141.3 MPa (4.3%).
The increased mechanical bonding caused by frictional stress created by the corrugated
surface and the geometry of the WRSF results in a rise in CS [109]. The WRSF provides
resistance to cracks through a bridging effect and lateral crack resistance, resulting in the
enhanced CS of CBCs [104,110–112].

In general, the addition of WRPF resulted in the decreased CS of CBCs [32,41,42,71,113].
The loss of CS was documented in several studies carried out to investigate the MPs of CBCs
comprising PET waste fibers of varying content and length [69,114–116]. When 1% PET waste
fiber was incorporated into cement mortars, no CS enhancement was observed, while 1.5%
PET waste fiber content reduced the CS [117]. Numerous researchers have investigated the
incorporation of metalized WRPF into CBCs [32]. A study used waste fibers with varying
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lengths (5, 10 and 20 mm) and volume contents (0.5, 1.0, 1.5 and 2.0%). Their findings
indicated that adding 1% fiber volume resulted in a slight decrease in CS; however, adding
more fiber volume resulted in a greater decrease in CS. Increased the fiber length increased the
CS loss. [19]. Another study examined the effect of high-density polyethylene RFs on the MPs
of concrete. Fibers of 0.4, 0.75 and 1.25% content and two different sizes were used. There
was no effect on the CS of concrete with the addition of the fibers [39]. Similarly, another
study was performed on the MPs of concrete beams using PET waste RFs produced from
bottles. Various concentrations of waste fibers ranging from 0.25 to 2.0% were used, and the
results indicated a slight increase in concrete CS up to a proportion of 1% fiber. A decrease
in CS was observed as the amount of fiber increased. The improvement in CS could be
attributed to the fibers’ proper dispersion within the mix. Furthermore, the fibers reduced the
propagation of microcracks, lengthening the time before they fail, and the samples required
extra load to expand the cracks. Additionally, the reasons for the decrease in CS for more than
1% fiber addition are related to the production of bulk and the segregation of fibers [30,68].
The same results were also observed in another study [118]. It was noted that the addition
of 1% PET waste fiber increased the strength of concrete by approximately 5.2 and 7.3%,
when two different aspect ratios of 35 and 50 were utilized in the concrete as reinforcement,
respectively [119]. Comparable results have been observed in other studies when different
kinds of WRPF were used in CBCs [31,120]. Another study conducted on concrete containing
straight and deformed WRPF of varying lengths and volume content reported a CS decrease
of approximately 0.5–8.5% for both straight and deformed fibers. The CS loss was greater for
straight fibers in a smaller quantity, whereas the deformed fiber’s negative effect was greater
at higher quantities [41].

The influence on MPs of concrete incorporating distinct amounts of WRCF ranging
from 0.25 to 1.25% was investigated. It was discovered that increasing the fiber content
decreased the CS. However, this decrease was not excessive, and the CS remained within
the permissible limit for structural applications. The results indicated that the concrete CS
decreased by 2.14%, 6.14%, 10.23%, 14.8% and 20.76% at fiber fractions of 0.25%, 0.50%,
0.75%, 1.0% and 1.25%, respectively [36]. The decrease in CS was possibly due to the
presence of porosity and voids within the matrix because of the WRCF’s addition and the
existence of a weak bond at the fiber-matrix transitions [121]. Similarly, a further study on
the creation of eco-friendly concrete containing varying proportions of WRCF was carried
out. A slight decrease in the CS was found as the WRCF proportions were increased. At
91-days of curing age, the reduction range was 1.6–20.8% compared to the reference mix.
While comparing the CS with the age of concrete, the 91-day CS of WRCF concrete was
increased by 2.8–21.3% from 28-days, and by 9.7–23% from 7-days of age [36]. Additionally,
the researchers investigated the combined influence of WRCF and palm oil fuel ash on the
CS of eco-friendly concrete. It was discovered that substituting 20% palm oil fuel ash for
cement and 0.5% WRCF reduced the CS by 18.2%, 16.3% and 5.4%, at 7, 28 and 91-days
age, respectively, compared to the reference sample [36]. The use of WRCF showed a
considerable reduction in CS by 15%, 35%, 23% and 51% at 0.5%, 1.0%, 1.5% and 2.0% fiber
contents, respectively, at 1 day of curing age. This reduction was mitigated to some extent
as the curing age of the concrete samples increased [35]. The same results were obtained
when WRCFs of varying shapes and volume contents were used [34,45]. A slight decrease
in the CS was noted when waste-recycled nylon fiber from carpets was incorporated into
the CBC [122]. Furthermore, it was observed that adding 1% waste propylene carpet fibers
had no discernible adverse effect on the CS of CBCs [123].

In the comparison of the CS of mixes, a control mix containing natural coarse aggre-
gate only represented by CNC, and a control mix containing natural fine aggregate only
represented by CNF with and without fibers is shown in Figure 2. The water:cement ratio
is 0.34 for the CNC and CNF mixes. The figure indicates that the mix CNF has a higher CS
than CNC at all ages. Finer aggregates enabled a more dense pore structure and improved
the interface amongst the cement matrix and aggregate. Moreover, fiber addition enhanced
the CS of the mixes compared to the control mixes. This improvement was greater with
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the addition of SF than the waste plastic fiber due to the increased mechanical strength of
SFs. Additionally, the improvement in CS was more noticeable in FRCs with age, where
the CS at 90 days was 25% greater than the CS at 28 days. The increased CS of FRCs may
be attributed to a strengthened fiber–matrix bond caused by continuous hydration at later
ages [74]. Figure 3 represents the CS of FRCs containing two types of fibers, including
textile waste (TW) and control kraft pulp (CTR) fibers at 6, 8 and 10% contents by weight
of cement. TW with 6, 8 and 10% mixes with 0.42, 0.44, 0.44, 0.40, 0.5, 0.5, 0.45, 0.4 and
0.45 water:cement ratios for the ages of 7, 28 and 56 days were observed. CTR with 6, 8
and 10% mixes with 0.43, 0.44, 0.44, 0.42, 0.42, 0.35, 0.45, 0.39 and 0.35 water:cement ratios
for the ages of 7, 28 and 56 days were observed. The CS decreased significantly as the fiber
content increased with each type of fiber. The TW fiber composite with 6% fiber content
had the highest CS, between 85.8 and 119.1 N/mm2 at 7 and 56 days. The composite with
10% TW fibers had the lowest values, between 43.2 and 88.9 N/mm2 at 7 and 56 days.
This decrease may be explained by the fact that increasing the fiber fraction results in an
increase in voids, which weakens the material [53].
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The effect of manufactured steel fiber (MSF) and WRSF on the CS of SCC is displayed
in Figure 4. The mixes M0, M01, M02 and M03 represent self-consolidating concretes
with MSF contents of 0, 0.5, 1.0 and 1.5 %, respectively. The mixes M11, M12 and M13
represent self-consolidating concrete with WRSF contents of 0.5, 1.0 and 1.5 %, respectively.
Figure 4a indicates that the 7-day CS of WRSF has no substantial variation in comparison
with the control mix (M0). However, at the later ages, i.e., 28, 60, and 90 days, there was
a significant improvement in the CS of self-consolidating concrete with the addition of
WRSF (M11, M12, M13) compared to the control mix, which was minutely smaller than the
self-consolidating concrete with micro–SF. Figure 4b depicts the percentage variation in the
CS of fiber WRSF composites with respect to the control mix. A CS increase of 37.68% was
observed at 1.5% content by volume of MSF after 90 days, in comparison with the control
mix. The enhancement in CS with WRSF at 1.5% content by volume was only 26.22% after
90-days. The CS was found to be relatively equivalent at 60 days for 0.5 and 1% MSF
and WRSF in self-consolidating concrete, respectively. However, when specimens were
investigated for their compressive performance, it was discovered that WRSF was more
efficient than MSF at resisting cracks and delaying a smooth failure of specimens devoid of
high damage, i.e., the broken matrix remained attached to the WRSF [124]. Figure 5 depicts
the ultimate CS of the control concrete and WRPF reinforced concrete. Whereas the ultimate
CS of concrete means its maximum compressive strength, the CS of the control concrete
was 30.8 MPa, which is 6% higher than the average of all of the WRPF reinforced concrete
samples. Additionally, the variation in CS of WRPF reinforced concrete compared to the
control concrete was greater at higher fiber contents than the lower fiber content. Moreover,
the reduction in CS was related to the aspect ratio of the WRPF fiber; samples with longer
fibers performed worse than those with shorter lengths. Considering the results in Figure 5
and their variation intervals, it could be concluded that the addition of fibers to concrete
does not significantly affect its compressive strength [75].
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Figure 4. (a) CS at curing ages of 7, 28, 60 and 90 days; (b) percentage variation in CS at curing ages of 7, 28, 60 and
90 days [124]. The mixes M0, M01, M02 and M03 represent self-consolidating concretes with MSF contents of 0, 0.5, 1.0 and
1.5 %, respectively. The mixes M11, M12 and M13 represent self-consolidating concrete with WRSF contents of 0.5, 1.0 and
1.5 %, respectively.
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Figure 5. Ultimate CS of the control concrete and Waste recycled plastic fiber (WRPF) concrete with
various fiber aspect ratios [75]. Waste recycled plastic fiber (WRPF); aspect ratio (AR).

4.2. Flexural Strength

Numerous research studies found an increase in FS when WRPF was added to the
concrete. A study was conducted to determine the effect of waste high-density polyethylene
fibers on the MPs of concrete. Two distinct sizes of fiber and content in the range from 0.4 to
1.25% were utilized. The results revealed a steady rise in the FS of the CBCs. The specimens
with smaller fiber lengths and diameters resulted in a greater FS than the specimens with
longer fibers and higher diameters [39]. Similar results were observed in numerous studies
on cementitious composites containing distinct fiber quantities and sizes [31,38,40,125]. The
effect of WRPF addition on the MPs of cement mortar was examined. The improvement in
FS was observed at a 30% volume content after 28 days, and at a 50% volume content after
63 days. The factors contributing to the increase in the FS of the concrete composites are the
presence of fibers in the concrete tension zone, which resist tensile stresses and microcracks
for a small period of time, thereby increasing the microcrack bridging action [125]. Several
studies reported that the maximum FS improvement achievable with WRPF-reinforced
concrete is at 0.5% fiber content in CBCs [32,33]. Another study reported FS improved
by 19 and 7% when the fiber proportions were 0.5% and 1.0%, respectively. On the
other hand, metalized WRPF was added to the green CBCs to investigate its effect on
the concrete’s various properties. It was found that an increasing amount of fiber in the
concrete composite resulted in an increase in FS, with the maximum value observed at 0.5%
fiber content. Additionally, increasing the fiber content to 0.75% resulted in a decrease in the
concrete FS, but it remained higher than the control mix [32,33,37]. Similarly, another study
reported that WRPF reinforced concrete with a 0.4% fiber dosage exhibited the highest FS
enhancement. At the age of 28 days, concrete samples with a waste fiber content of 0.2
and 0.4% had an improved FS of 23.8 and 35.6%, respectively, compared to the reference
sample. Increased fiber dosages resulted in a decrease in concrete strength. Additionally,
the presence of waste fibers may act as a barrier to crack growth, and may move across the
cracks to transfer interior forces, increasing FS. [113]. Some authors described the effect
of crimped and smooth WRPF on the properties of cement-based materials. The samples
with crimped fibers exhibited better strength than the samples with smooth fibers [115].
The results of an experimental study revealed that, with fiber content increments, a slight
decrease in FS was noticed for different fiber sizes. Furthermore, a 9% reduction in FS
was observed as an average value between all of the WRPF-reinforced concrete samples
compared to the samples of plain concrete (PC). The same results were also observed by
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other researchers [19,42]. At a curing age of 28 days, the FS was reduced by 4.6%, 7.2% and
12.4% when WRPF was used proportions of 0.5%, 1.0% and 1.5% in concrete, respectively.
Additionally, some researchers reported a decrease in FS when various lengths and volume
contents of WRPF were incorporated [43], [126].

The FS might decrease due to the improper pouring and placement of concrete, which
results in the formation of voids and pores within the matrix [127,128]. Different volume
contents of WRCF with identical fiber sizes were incorporated. It was observed that
increasing the fiber amount improved the FS to a certain extent. At 28 days of age, the FS
of the FRCs were between 3.64 and 4.11 MPa, with 0.70% fiber content having the highest
FS. The enhancement was more significant than that of the PC specimen [129]. Likewise,
the addition of WRCF influences the MPs of CBCs. The volume content of WRCF fiber was
varied between 0.5 and 2.0%, with a 0.45 mm fiber diameter and a 30 mm fiber length. The
results indicated an increase in FS due to the addition of fibers. At 1 day of curing age, all
of the specimens containing fibers had a greater FS value than the PC specimens. On the
other hand, at 7 and 28 days of curing age, a slight reduction in FS at 1.0% of fiber content
was noted. At 28 days, the maximum FS was 6.25 MPa with a 0.50% fiber content. The
strength was 17.9% greater than the PC, whereas the FS was reduced by approximately
17% as a result of the addition of 2.0% WRCF [35]. It has been reported that the addition
of WRCF up to 1% content improved the FS of CBCs. Furthermore, another study on the
manufacture of ecofriendly concrete with a WRCF of 0.25–1.25% and a length and diameter
of 20 mm and 0.45 mm was carried out. It was discovered that incorporating RFs into
concrete at 0.25, 0.50, 0.75, 1.0 and 1.25% proportions increased the FS by 11.23, 24.7, 20.22,
11.23 and 10.11%, respectively, at 28 days, in comparison with the plain control mix. A
fiber content of 0.50% was optimal for the maximum FS. The increase in FS was due to the
crack-arresting process of the fibers [36]. A similar improvement in FS in CBCs with the
addition of RF was also stated by other researchers [78,79,123].

Figure 6 displays the FS of mixes of CNC and CNF with and without fibers. The
water:cement ratio is 0.34 for CNC and CNF mixes. The denser and compact microstructure
of CNF mixes resulted in a superior FS compared to the CNC mixes. The CNF mixes
exhibited around 15% improved FS compared to the CNC mixes. Mostly, incorporating
fibers as reinforcement in the mixes resulted in a lower FS than the control mix, but in a
few cases, a slight rise in FS was noticed. The decrease in the FS of plastic fiber-reinforced
mixes was more pronounced than that of SF-reinforced mixes, particularly in CNF mixes,
which is due to the lower modulus of plastic fiber elasticity compared to the SFs [74].
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Figure 7 represents the FS of FRCs containing two kinds of fibers, including TW and
CTR fibers at 6, 8, and 10% contents by weight of cement. TW with 6, 8 and 10% mixes
with 0.42, 0.44, 0.44, 0.40, 0.5, 0.5, 0.45, 0.4 and 0.45 water:cement ratios for the ages of 7,
28 and 56 days were observed. CTR with 6, 8 and 10% mixes with 0.43, 0.44, 0.44, 0.42,
0.42, 0.35, 0.45, 0.39 and 0.35 water:cement ratios for the ages of 7, 28 and 56 days were
also observed. The TW of 6% and 10% content by mass of cement indicated approximately
similar moduli of rupture (MOR) at all curing ages, while 8% content showed about 15, 6,
and 17% improved MOR at the curing ages of 7, 28 and 56 days, respectively. However, the
CTR samples showed a variance in MOR of less than 5% for different proportions of fibers
added. An average MOR of 17.7 N/mm2 of TW fiber-reinforced samples was less than the
MOR of CRT samples of 19.8 N/mm2, which was 9% for an 8% content of both fibers at
56 days. Therefore, a fiber content of 8% was found to be optimal for both fibers in terms of
MOR. Additionally, an increase in the MOR was observed as the composite aged from 7 to
56 days; for TW, the increase was 15%, and for CTR, the increase was 26% [53].
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Figure 8 depicts the FS of the control self-consolidating concrete and self-consolidating
concretes containing MSF and WRSF in different proportions at the age of 60 days. No major
enhancement in the FS was observed for self-consolidating concrete with WRSF compared
to the control self-consolidating concrete, except for the self-consolidating concrete with
1.5% MSF addition, as shown in Figure 8a. Furthermore, in Figure 8b. The mixes M0,
M01, M02 and M03 represent self-consolidating concrete with MSF contents of 0, 0.5, 1.0
and 1.5 %, respectively. The mixes M11, M12, M13 represent self-consolidating concrete
with WRSF contents of 0.5, 1.0 and 1.5 %, respectively. It was noticed that the extreme
improvement was 5.79% in the FS of self-consolidating concrete with the addition of
WRSF, while a 16% improvement was noted in FS with the addition of MSF. Hence, the
incorporation of fibers represented an improvement in FS with a higher volume fraction of
fibers [124]. Figure 9 shows the ultimate FS of normal specimens and specimens containing
WRPF with various fiber aspect ratios. The ultimate FS of concrete means its maximum
flexural strength. It was noted that WRPF-reinforced specimens have comparable FS to the
normal specimen, with a difference of only 7% [75].
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Figure 8. (a) FS of composites at 60 days of age [124]; (b) percentage variation in FS at 60 days of age [124]. The mixes M0,
M01, M02 and M03 represent self-consolidating concretes with MSF contents of 0, 0.5, 1.0 and 1.5 %, respectively. The mixes
M11, M12 and M13 represent self-consolidating concrete with WRSF contents of 0.5, 1.0 and 1.5 %, respectively.
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Figure 9. Ultimate FS of the control samples and Waste recycled plastic fiber (WRPFs) concretes with
various fiber aspect ratios [75]. Waste recycled plastic fiber (WRPF); aspect ratio (AR).

4.3. Splitting Tensile Strength

Over the last few years, extensive research has been performed on the MPs of WRSF
composites [96,130–133]. The research showed that the incorporation of 0.75% volume
content of WRSF and industrial SF in concrete increased the STS by 28% and 26.33%,
respectively, compared to the PC [95,134]. Inconstant fiber diameters and lengths appeared
to be responsible for an extra interlocking mechanism, as a 0.75% volume content of WRSF
increased STS by 50% over the PC [135]. SFs lower than the optimum fraction have a
negative influence on the STS of concrete by introducing congestion into the composite,
even though adding SFs near the optimum fraction reduces the porosity and improves
the performance of the composites [23,98]. This phenomenon was detected when 0.4%
WRSF by volume was added, causing a reduction in the STS of concrete. Likewise, a
considerable reduction in load-bearing capability was noted when the main reinforcement
was substituted with WRSF [136]. Thus, a 14% increase in STS was observed when the fiber
volume content increased to 0.6% [98]. An effort was made to improve the MPs of SCC
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by adding WRSF, ISF and WRPF in a ratio of 1.5% by volume. Compared to the reference
sample, WRSF increased the STS by 25%, whereas the hybrid combination with WRSF 0.5%
and ISF 1% exhibited the greatest improvement in STS. It was realized that the increased
mechanical anchorage and effectiveness of WRSF and ISF in bridging cracks enabled the
strength to increase [85,110]. According to the desirability function analysis, the optimal
amount of WRSF in concrete reinforced with a mono-fiber is 1.5%; however, a hybrid
combination of WRSF 0.5% and ISF 1% resulted in the superior MPs of the composite [84].
The outcome of a desirability function analysis depends entirely on the features considered.
By incorporating a single additional factor, namely global warming potential, the optimum
volume fraction of WRSF and IDF became 1.35% and 0.15%, respectively [90]. STS increased
gradually with the addition of 0–1% WRSF with 0.25% palm oil fuel ash. The STS increased
by 22.85% with 1% WRSF and 15% palm oil fuel ash. It was determined that the WRSF
addition protected from the formation of internal fractures [101,102,137]. The same trend
was observed for the STS of composites for roadway structures with the addition of WRSF
with a 0.5% higher specific gravity [138]. With the addition of 0.5% WRSF, the concrete STS
increased by 43% when compared to the control mix, while composites with ISF of 0.25%
volume content demonstrated a 9% increase in STS [104]. Additionally, it was discovered
that rubber fragments affixed to the surface of WRSF act synergistically to increase the
concrete’s tensile capability. The fibers remained unharmed through the burning process
to eliminate the rubber fragments, and the STS was increased by 13% with the addition of
1% WRSF and 40% SF [105].

On the other hand, several studies on the use of WRSF in concrete STS have reported
inconsistent results [139–143]. Rubber particles attached to WRSF were intended to have a
negative influence on the STS of concrete. Rubber is a soft material by nature, as opposed
to the dense matrix of cement, which resulted in an elastic inequity and acts as voids due
to the minor resistance to the load [139,141]. The rubberized concrete with WRSF was
investigated, and it was noted that the STS of the concrete decreased by 50% as a result of
the addition of rubber, although the WRSF addition was beneficial in achieving strength,
and it reduced the strength loss of the composite [144]. Similarly, the improvement of STS
was noticed in recycled aggregate concrete with a 3% addition of WRSF [145]. The influence
of WRSF extracted from various tire scraps with different aspect ratios on the concrete STS
was examined. No major enhancement in STS was noticed by adding WRSF [26]. Moreover,
WRSF was at risk of corrosion in the high chloride environment, which reduced the fibers’
mechanical strength; as a result, the STS of the concrete decreased [146]. A study was
conducted on high-strength concrete beams with waste PET plastic bottle fibers of varying
lengths and volume contents. The STS of the concrete was reduced with increasing the
fiber amounts, and the lowest drop in strength was nearly 3.67% compared to the control
sample when different hybrid 40 mm long and 20 mm short fibers were used, with a total
fiber content of 0.75%. Thus, it was stated that 0.75% fiber content is the optimal ratio [147].
The researcher observed similar results when varying the volume content of WRPF; these
findings may indicate a weakness in the fiber–cement matrix interface [42]. Similarly,
a reduction in the STS of cement mortars was noted with varying volume contents of
WRPF [69]. Additionally, a concrete mixture containing 0.4, 0.75 and 1.2% WRPF was
investigated. Two types of fibers were used in accordance with the aspect ratio. The
outcome demonstrated the enrichment of STS by incorporating fibers into the concrete. The
0.4% fiber content was determined to be optimal for the maximum STS. Additionally, it was
stated that varying the aspect ratio has little effect on the STS [39]. Similarly, a study was
conducted to determine the effect of WRPF on the MPs of conventional concrete and binary
cement concrete [148]. Furthermore, a study was conducted on cement mortars utilizing
a range of waste PET fiber volume fractions. The results indicated that the addition of
0.5% fibers increased the STS to 16% [68]. Additionally, the ability of the novel concrete
composite to provide resistance against the stresses of tensile forces was observed [5].
Additionally, other studies reported that the STS improved as the fiber length and aspect
ratio increased. Further investigation revealed that adding 0.5% and 1.0% of type C WRPF
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to concrete increased its STS by nearly 21% and 33%, respectively. The STS enhancement
of fiber types A and B was addressed sequentially in comparison to fiber type C [19,114].
Enhancements in the STS of 15.5% and 24.9% were noticed with the addition of 1.0% of
PET fibers with varying aspect ratios of 35 and 50, respectively [119].

According to several scholars, the STS improvement of concrete with WRPF was greater
with the addition of fiber percentage contents ranging from 0.25% to 2.0% by volume [30,31]. A
12.5% increase in STS was observed in comparison to the PC when 1% waste recycled PET fibers
were used. Additionally, another study reported that concrete with WRPF had the highest STS
increment with a fiber content of 0.5% [37,118]. Moreover, the highest STS enhancement was
observed when a 0.75% volume of WRPF was added to the concrete [32,33]. It was observed
that when the WRPF content was increased in the composites, the STS improved significantly.
Increases of 16.5%, 24%, 25.5%, 19% and 14.4% were noticed with WRPF fiber contents of 0.25%,
0.50%, 0.75%, 1.0% and 1.25%, respectively, compared to the normal concrete. The optimal
WRPF content was determined to be 0.75%. This effect could be attributed to the increased
interaction between WRPF and the cement matrix [32,149]. Moreover, the presence of fibers in
the concrete enhanced the barrier to oppose to indirect tension, increased the strain capacity
of concrete, and resulted in a greater STS [150,151]. A study was conducted on the MPs of
concrete using WRCF. It was observed that increasing the fiber content improved the STS of
concrete at various curing ages. Increasing the fiber content by 0.5%, 1.0%, 1.5% and 2.0%
resulted in an increase in STS of 9%, 18.2%, 27.3% and 15.2% after 1 day of curing. Additionally,
it was found that the highest increase in STS appeared when the volume content of fiber was
1.5% of the concrete [35]. It was reported that specimens of green concrete containing WRPF
performed significantly better than the control mix. At 28 days of age, the different fiber volume
fractions of 0.25%, 0.50%, 0.75%, 1.0% and 1.25% improved the STS by 17.2%, 26.2%, 20.3%
and 17.2%, respectively, compared to the control mix. The optimal fiber content for the STS
was 0.50% [45]. Similarly, the addition of WRCF enhanced the STS of CBCs. The effect of fiber
bridging on the splitting portions of the samples acts as a stress transfer from the constituents of
the concrete to the fibers, which is why it sustained the total splitting tensile stresses gradually
and eventually improved the STS of the samples [36]. Moreover, at 180 days of age, an increase
in STS of 15.4%, 17.9%, 19.2%, 11.55% and 7.7% was observed with fiber fractions of 0.25%,
0.50%, 0.75%, 1.0% and 1.25%, although this strength was slightly greater than that from 91
days of age. Furthermore, the greatest STS increase was observed at the fiber proportions of
0.75% and 0.50%, at 180 and 91 days, respectively [36]. Similar outcomes for enhancements in
STS were also stated in numerous studies [127,128,150,152].

The influence of MSF and WRSF on STS of SCC is shown in Figure 10. The mixed M0,
M01, M02 and M03 represent self-consolidating concrete with MSF contents of 0, 0.5, 1.0
and 1.5% respectively. The mixes M11, M12 and M13 represent self-consolidating concrete
with WRSF contents of 0.5, 1.0 and 1.5 %, respectively. Figure 10a indicates that a rise in STS
was recorded at 7 days with WRSF when compared with the normal SCC, which further
improved at later ages. From Figure 10b, a significant rise in STS can be observed with the
addition of MSF fiber. A maximum of 50% improvement can be seen with the addition of
WRSF at 7 days with 1.5% fiber content (M13), which was further improved at later ages.
When compared to plain SCC without fibers, WRSF and MSF exhibited superior tensile
behavior at later ages [124]. Figure 11 shows that the inclusion of WRPF with various fiber
aspect ratios resulted in a drop in the STS ranges from 9 to 16% when compared to the
normal concrete [75].
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Figure 10. (a) STS of concrete at different ages [124]; (b) percentage variation in the STS of concrete at different ages [124]. The
mixes M0, M01, M02 and M03 represent self-consolidating concretes with MSF contents of 0, 0.5, 1.0 and 1.5 %, respectively.
The mixes M11, M12 and M13 represent self-consolidating concrete with WRSF contents of 0.5, 1.0 and 1.5 %, respectively.
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Figure 11. Ultimate STS of control samples and WRPFs concrete with various fiber aspect ratios [75].
Waste recycled plastic fiber (WRPF); aspect ratio (AR).

5. Durability Performance of Waste Fibers in Cement-Based Composites

Increased porosity was observed in reinforced concrete with WRSF, and the ultra-sonic
pulse velocity results showed that the addition of 2% WRSF volume content reduced the
ultra-sonic pulse velocity by 3–7% [130]. Due to its finer particle size, silica nano-powder
acted as a filler and reduced the porosity of the cement matrix, ultimately enhancing the me-
chanical properties of concrete containing WRSF [83]. WRSF-reinforced concrete reduced
the ultra-sonic pulse velocity by 10%, and that of hybrid fiber reinforced concrete contain-
ing ISF and WRSF was reduced by 15%. This reduction was due to the lesser concrete
compaction of the WRSF mix [90]. The incorporation of WRSF in the composite caused an
enhancement in impact resistance, crack resistance and shrinkage behavior [27,153–156].
Diffusion, permeation, and capillary transport are the three primary modes of corrosive
agents’ ingress into concrete. The control of the width of the crack occurrence caused a
reduction in the ingress of damaging chemicals into the matrix of concrete; this effect led
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to an overall drop in the weakening of composites and the corrosion of steel fibers. By
restricting the width of the crack to 0.3 mm, a just-visible negative effect was caused by
the fiber surface being damaged in the corrosive atmosphere [157–159]. Carbon dioxide
is observed to be susceptible to corrosion in a chloride-rich atmosphere, resulting in the
corrosion of SFs and a reduction in the durability of SF-reinforced concrete [146,160]. How-
ever, corrosion was discovered to considerably change the cement matrix and fiber content.
WRSF treated at 350 ◦C converted the austenite retained in the microstructure to bainite,
thereby increasing the strength of the WRSF. The electrochemical findings indicated that
the WRSF was 90% susceptible to corrosion in a 3.5% NaCl solution by weight, and WRSF
was observed to be more susceptible to corrosion than ISF. Similarly, following dry and wet
cycles of chloride exposure, no substantial decrease in the performance of WRSF-reinforced
concrete was noted, nor was any surface damage observed. Additionally, the incorporated
SFs were found to be undamaged [157,161]. It was reported that new SFs and WRSF
increased the durability of concrete [162]. Moreover, the less-compressed rubber particles
resulted in increased water absorption and porosity, and increased the surface scaling and
mortar evaporation due to freeze–thaw cycling [163]. Additionally, the influence of WRPF
at 1% volume content after 30, 60, 90 and 120 days of exposure to calcium chloride, sulfuric
acid, salt, alkali and sodium sulphate atmospheres indicated that sodium sulphate and
alkalis have a negligible effect on the strength loss when compared to sulfuric acid, with a
significant loss in strength of approximately 24% at 120 days. On the other hand, the effect
of calcium chloride and salt on the reduction of CS in cementitious mixes was negligible.
In general, WRPF fibers exhibited tremendous chemical resistance to salt, sodium sulphate,
calcium chloride and the ambient environment [164].

A similar trend was noticed in fiber-reinforced concrete with different types of fibers,
as presented in Figure 12. There was no effect on water permeability with the addition of
fibers. The recycled coarse aggregate composites showed the higher permeability to water;
with an increment of recycled coarse aggregate, water permeability increased. Furthermore,
a combination of SF and nanoclay in the concrete led to a gradual reduction in the water
permeability of the composites [74]. Another study also reported that incorporating fibers
had a negligible effect on concrete permeability [165]. Due to their volume content and
type, the added fibers had no substantial impact on the water permeability of the pervious
mixture of concrete [166].
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6. Environmental Impact with the Use of Waste Fibers in Cement-Based Composites

The environmental impact of waste RF used in cementitious materials is shown in
Table 2.

Table 2. Different recycled-waste fibers used in cement-based composites.

Fiber Type Recycling Source Concrete Type Impact on
Sustainability References

Polyethylene terephthalate
(PET)

Bottles

Concrete Yes [167]

Concrete Yes [168]

Fiber Reinforced
Concrete (FRC)

- [169]

- [170]

- [41]

Plastic Fiber Reinforced
Concrete (PFRC) Yes [171]

Ring-shaped PET (RPET)
fiber in concrete Yes [172]

- Neat asphalt concrete mixture Yes [173]

- Fiber Reinforced
Concrete (FRC) - [174]

Plastic

Bottles Light weight aggregate
concrete Yes [175]

Doors Waste plastic fiber reinforced
concrete - [176]

Plastic bags
Self-compacting concrete (SCC)

- [177]

Waste plastic fibers Beverage bottles - [17]

Plastic

- Concrete Yes [178]

- Fiber Reinforced
Concrete (FRC) Yes [179]

- Self-compacting concrete (SCC) - [180]

-

Concrete

Yes [181]

Waste plastic - Yes [182]

Glass fiber reinforced
plastic (GRRPF) waste - Yes [183]

Polypropylene (PP)
carpets

Textile Fiber Reinforced
Concrete (FRC) Yes [44]

Textile/ agriculture Concrete Yes [184]

Agriculture Textile Concrete Yes [185]

Waste carpet Fiber Reinforced
Concrete (FRC) - [45]

Polythene Domestic
waste plastic

Fiber Reinforced Self
Compacting Concrete

(FRSCC)
Yes [186]

Fiber Reinforced
Concrete (FRC) - [187]
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Table 2. Conts.

Fiber Type Recycling Source Concrete Type Impact on
Sustainability References

Steel

Tires

Reactive powder concrete (RPC) - [188]

Reinforced concrete (RC) Yes [108]

Two-Stage Concrete Yes [189]

Reinforced concrete (RC) - [190]

Fiber Reinforced
Concrete (FRC) Yes [191]

Sustainable hybrid fiber reinforced
concrete (SHFRC) Yes [192]

Self-compacting concrete (SCC) - [153]

Turnery Concrete for massive
structures Yes [137]

Tires, demolition
Fiber Reinforced
Concrete (FRC)

Yes [193]

Machined steel
parts waste - - [71]

Bio-scraps not specified Agriculture Fiber Reinforced
Concrete (FRC) Yes [11]

Carpet Carpet Lightweight cementitious
composites Yes [194]

Cellulose Algae waste Fiber Reinforced
Concrete (FRC) Yes [195]

Coconut coir Food/steel plant Concrete Yes [196]

Coconut coir Food Fiber Reinforced
Concrete (FRC) Yes [197]

Hair Human Fiber Reinforced
Concrete (FRC) Yes [198]

Hair Human Concrete Yes [199]

Textile Textile Foamed concrete Yes [200]

Glass - Epoxy polymer concrete
with fly ash - [201]

Waste glass fiber
reinforced

polymers (GFRPs)

Waste glass fiber
reinforced

polymers (GFRPs)
Concrete - [202]

7. Discussion on the Challenges and Future Work

Based on the existing literature on WRSF-reinforced CBCs, several current issues and
possible future trends can be discussed. Although tires are one of the highest ample waste
materials for SF recovery, the inconsistency in their recycling procedures makes it hard
to attain a regular geometry in recycled SFs and achieve a homogeneous concrete blend
with evenly distributed SFs. There is a need to develop standards to obtain the finest
feasible WRSF and to eradicate concerns associated with the inconsistency of the available
WRSF geometries. The sustainable impact analysis of different recycling techniques must
be conducted in order to determine the best cost-effective and sustainable method for
recycling regular and high-quality SFs. There is a dearth of data on the properties of WRSF.
The work could be expanded to include a more detailed examination of the qualitative and
quantitative analysis of WRSF reprocessed from various sources.

Furthermore, bulk density and porosity are directly related to the compaction of fresh
FRC and rubber affixed to the surface of recycled SFs from tires. As a result, there is a
requirement to specify the specifications for the recycling of SFs from tires, and recycling
factories should follow them. Additionally, WRSFs should be sorted by diameter and length
prior to their application in CBCs. According to the literature, a fiber size of 0.15–0.26 mm
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(diameter) and 25–40 mm long fibers are preferred, as these parameters have been shown
to be promising for enhancing the various MPs of WRSF-reinforced CBCs.

The CS of WRSF-reinforced composites was found to be inconsistent and depends on
the fiber content, optimal dosage and fiber geometry. CS was observed to be proportional to
the quantity of fibers, instead of their geometry. In general, increasing the WRSF content was
observed to be favorable for improving the CS, but inconsistent outcomes have been found in
past studies, necessitating additional research in the future to fully understand the effect of
WRSF on the CS of concrete. The addition of secondary cementitious materials to WRSF is
beneficial for increasing the CS of composites. A lower fiber content does not provide matrix
homogeneity, and only the cement matrix performs its function under compressive load.

The literature contains relatively consistent data on the STS of CBCs when WRSF is
added. It was stated that WRSF can convert the brittle breaking of samples to ductility, and
can enhance the concrete’s STS. In order to enhance the tensile behavior of concrete, the
optimal content of fibers needs to be added. The addition of less WRSF than the optimum
content does not provide a sufficient reinforcing effect, whereas fiber contents greater than
the optimum value have a detrimental effect on the WRSF dispersion into the mix, resulting
in increased porosity and weak points in the matrix, which eventually influence the MPs of
CBCs. Though the optimum content of WRSF is critical, no definite conclusion about the
optimal content of WRSF can be drawn due to the variability of the results.

Flexural and tensile strength is influenced by fiber geometry, with longer fibers pro-
viding a more effective reinforcing mechanism and increasing the concrete’s flexural and
tensile strength. The quantity of rubber affixed to the WRSF from tires and heat treatment
are highly dependent on one another. Minimal heat in recycling is ineffective at removing
the rubber from the fibers, whereas excessive heat can damage the WRSF. As a result,
caution should be exercised during the treatment of SFs with heat recycled from waste tires
in order to ensure that any rubber particles that adhere to the surface are removed. Any
deterioration in the MPs of the fibers affects the properties of the resulting composite.

8. Conclusions

The research assessed in this study demonstrated that when waste recycled steel
fiber (WRSF) is utilized in cement-based composites (CBCs) under optimal conditions, it
can provide equivalent mechanical properties (MPs) to industrial steel fiber (ISF) without
impairing the workability significantly. Thus, the utilization of WRSF in the construction
sector may provide economical and sustainable composites that possess adequate crack
resisting ability and enhanced MPs. Additionally, recycling steel fibers (SFs) from waste
tires creates a new revenue stream for reusing expired and waste tires, which is more
eco-friendly, provides cost-effective energy, and reduces mosquito-propagating places that
circulate deadly infections like dengue fever and malaria.

Recent advances in WRSF-reinforced concrete, as well as its MPs and durability,
were discussed in this study. The concluding remarks include the fact that recycling SFs
from waste tires is not only environmentally friendly but also a cost-effective method of
generating energy during the cement manufacturing process. The incorporation of hybrid
fibers, i.e., a combination of WRSF and ISF in CBCs, provides a more robust mechanism for
structural loadings. In accordance with ISF, WRSF-reinforced CBCs can provide comparable
performance under flexural loading.

The addition of recycled-waste fibers (RFs) has no discernible effect on the water
permeability of CBCs. The corrosion of WRSF was observed in chloride-rich environments,
resulting in the weakening and deprivation of matrix interaction and eventually a reduction
in the composite’s performance. Additionally, WRSF was more corrosive than ISF, which
could result from WRSF’s longer use than ISF. Likewise, rubber fragments affixed to the
surface have no effect on corrosion, which may be due to rubber’s obstructive impact on
water and other chlorides.
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The research interest in WRF-reinforced CBCs has increased significantly over the
last few years, and the subject is primarily approached experimentally to determine the
composite’s mechanical properties. There is a particular emphasis on the utilization
of recycled construction materials, with plastic and metals being the most extensively
studied. Additionally, the significance of the construction industry’s transition of concrete
to sustainability is extensively recognized. There is a disparity in investing in the potential
of waste RF-reinforced composites in addressing its triple bottom line. Accelerated aging
conditions were applied to textile waste fibers and reference composites. The results
for the textile waste FRCs demonstrated a significant improvement in their mechanical
performance (at least 10%) over the reference samples.

The experimental tests, including the workability and compressive, splitting tensile,
and flexural behavior, exhibited that incorporating waste recycled plastic fibers (WRPFs)
in CBCs produces residual strength capacity, with a scarce effect on its volumetric weight
and ultimate flexural and compressive strength. The study supports the use of concrete
with WRPF by understanding its behavior, which could help to understand the mechanical
strength of fiber-reinforced concrete structures with WRPFs.

The effects of waste RFs on the slump, compressive, splitting-tensile, and flexural
strength, energy absorption, ductility and durability of concrete were reviewed. A huge
number of publications were collected and examined for this purpose. The current study
prompts the building sector to adopt a new type of concrete made from various RFs
recovered from waste plastics, carpets and steel. Further research on the influence of fiber
orientation during placement is possible. For the better applicability and suitability of this
material, the fiber orientation ratio, and top and bottom alignment angles of the fibers
could be examined. SFs collected from discarded tires in concrete could be a beneficial
material in the building sector.
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