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Maria Kupczak , Anna Mielańczyk * and Dorota Neugebauer *

����������
�������

Citation: Kupczak, M.; Mielańczyk,
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Abstract: Well-defined, semi-degradable polyester/polymethacrylate block copolymers, based on
ε-caprolactone (CL), D,L-lactide (DLLA), glycolide (GA) and N,N′-dimethylaminoethyl methacry-
late (DMAEMA), were synthesized by ring-opening polymerization (ROP) and atom transfer rad-
ical polymerization. Comprehensive degradation studies of poly(ε-caprolactone)-block-poly(N,N′-
dimethylaminoethyl methacrylate) (PCL-b-PDMAEMA) on hydrolytic degradation and enzymatic
degradation were performed, and those results were compared with the corresponding aliphatic
polyester (PCL). The solution pH did not affect the hydrolytic degradation rate of PCL (a 3% Mn

loss after six weeks). The presence of a PDMAEMA component in the copolymer chain increased
the hydrolysis rates and depended on the solution pH, as PCL-b-PDMAEMA degraded faster in an
acidic environment (36% Mn loss determined) than in a slightly alkaline environment (27% Mn loss).
Enzymatic degradation of PCL-b-PDMAEMA, poly(D,L-lactide)-block-poly(N,N′-dimethylaminoethyl
methacrylate) (PLA-b-PDMAEMA) and poly(lactide-co-glycolide-co-ε-caprolactone)-block-poly(N,N′-
dimethylaminoethyl methacrylate) (PLGC-b-PDMAEMA) and the corresponding aliphatic polyesters
(PCL, PLA and PLGC) was performed by Novozyme 435. In enzymatic degradation, PLGC de-
graded almost completely after eleven days. For polyester-b-PDMAEMA copolymers, enzymatic
degradation primarily involved the ester bonds in PDMAEMA side chains, and the rate of polyester
degradation decreased with the increase in the chain length of PDMAEMA. Amphiphilic copolymers
might be used for biomaterials with long-term or midterm applications such as nanoscale drug
delivery systems with tunable degradation kinetics.

Keywords: (bio)degradable polyesters; block copolymers; hydrolytic degradation; enzymatic degra-
dation; PDMAEMA

1. Introduction

Polymers and polymeric materials are widely used in every area of everyday life,
including home appliances, housing, packaging, electronics and construction materials
in the automotive and construction industries [1,2]. The increased interest in polymeric
materials and their production has accelerated the development of the economy; however,
it has also resulted in a significant waste production increase [3,4]. These wastes, in turn,
pose an environmental threat due to improper waste management, long decomposition
times and potentially harmful decomposition products. Biodegradable polymers provide
an opportunity to produce environmentally friendly materials with properties similar to
those of conventional polymers [5–7]. In addition, biodegradable polymers, due to their
unique properties, which are biocompatibility in relation to living tissues, biodegradability
and non-immunogenicity, are used, among others, in the biomedical field. They are used
as biomaterials for various applications, which include absorbable sutures, bone screws
and plates, stents, drug carriers and tissue engineering scaffolds. The advantages of
biodegradable polymers as biomedical materials include: no need to remove polymers
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from the body after fulfilling their role; the long-term toxicity and inflammation caused
by low-molecular weight degradation are unlikely to occur since these products can be
metabolized or excreted from the body; and sustained release of drugs [8].

Among the different types of biodegradable polymers, aliphatic polyesters comprising
homo- and copolymers of glycolide, dilactide and ε-caprolactone are the most studied [9]
because they are synthesized by ring-opening polymerization (ROP), which controls their
molecular weight, composition and topology. These features are known to be crucial for
the degradation rate of (co)polyesters and create opportunities to obtain materials with
specific lifetimes.

Although myriad literature reports focus on the degradation of poly(ε-caprolactone)
(PCL) [10], poly(DL-lactide) (PDLLA) [11,12] and poly(lactide-co-glycolide) (PLGA) [13–15],
another emerging polymer group features copolymers with different types of degradable
and non-degradable blocks. Recently, water-soluble polyethylene glycol (PEG), polypropy-
lene glycol (PPG) and polyvinylpyrrolidone (PVP) have modulated polyester biodegrad-
ability by adjusting the hydrophilicity. It has been reported that PLA-PEG [16–18], PLA-
PEG-PPG-PEG [19], PCL-PEG-PCL [20,21], PEG-PCL-PLA [22] and PLA-PVP-PLA [23]
copolymers all have better hydrophilicity and faster degradation rates in comparison to
PLA and PCL homopolymers. Another important feature of PEG, PPG and PVP is that they
are electrically neutral at all pH values. Furthermore, to the best of our knowledge, there
are no literature reports concerning the degradation of PCL, PLA and PLGC copolymers
with polycations such as poly(N,N’-dimethylaminoethyl methacrylate) PDMAEMA in a
phosphate buffered saline PBS solution or by using Novozyme 435.

Our previous studies involved comprehensive degradation studies on enzymatic
degradation using lipase from Pseudomonas cepacia [24]. Herein, we performed a degrada-
tion study of PCL-b-PDMAEMA, PLA-b-PDMAEMA and PLGC-b-PDMAEMA copolymers
under simulated physiological conditions, namely, hydrolytic degradation in PBS at differ-
ent pHs, and enzymatic degradation using Novozyme 435. Furthermore, we conducted the
degradation of three representative aliphatic polyesters (i.e., PCL, PLA, PLGC) under iden-
tical conditions to compare those results and establish preliminary structure−degradation
relationships. In the future, the obtained block copolymers are to be used in drug delivery
systems with regulated degradation kinetics.

2. Materials and Methods
2.1. Materials

Anisole (Alfa Aesar, 99%, Warsaw, Poland), methanol (Chempur, p. a., Piekary Śląskie,
Poland), 2-hydroxyethyl 2-bromoisobutyrate (HEBiB, Aldrich 95%, Poznań, Poland), N,N’-
dimethylaminoethyl methacrylate (DMAEMA, Aldrich, 98%, Poznań, Poland) and tri-
ethylene glycol monomethyl ether (MTEG, Aldrich 95%, Poznań, Poland) were stored
over molecular sieves in a freezer under nitrogen. Toluene and ε-caprolactone (CL, Alfa
Aesar, 99%, Warsaw, Poland) were distilled prior to use and stored over molecular sieves.
Glycolide (GL, Aldrich, 99%, Poznań, Poland), 3,6-dimethyl-1,4-dioxane-2,5-dione (D,L-
lactide, Aldrich, 99%, Poznań, Poland), N, N, N’, N”, N”-pentamethyldiethylenetriamine
(PMDETA, Aldrich, 99%, Poznań, Poland) and sodium azide (Acros, 99 %, Geel, Belgium)
were used as received. Copper(I) chloride (CuCl, Fluka, 98%, Steinheim, Germany) was
purified by stirring in glacial acetic acid, followed by filtration and washings with ethanol
and diethyl ether, and dried under vacuum. Tin(II) bis(2-ethylhexanoate) (Sn(Oct)2, Alfa
Aesar, 96%, Warsaw, Poland) was distilled prior to use. Tetrahydrofuran (THF, Aldrich,
HPLC, Poznań, Poland), n-heptane (Chempur, 99%, Piekary Śląskie, Poland) and methy-
lene chloride (CH2Cl2, Chempur, 99%, Piekary Śląskie, Poland) were used as received.
Novozyme 435 was purchased from STREM Chemicals, Inc. (Kehl, Germany).

The syntheses of polymers used in these experiments are described in the Supplemen-
tary Materials.
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2.2. Hydrolytic Degradation

Hydrolytic degradation was conducted on the selected polymers (PCL2 and 1PCL2-b-
PDMAEMA) in PBS solution at pH levels of 5.0 and 7.4 with the addition of sodium azide
(23 µM), which protected the buffer against microbial growth. The polymer samples (dry
powder insoluble in PBS) were weighed (8 mg ± 0.5 mg) into vials and filled with the PBS
solution. Additionally, vials containing PBS only, at pHs of 7.4 and 5.0, were prepared
and marked as zero tests. All vials were capped, secured with Teflon tape and placed in a
shaker incubator (ES-80, Grant Instruments LTD, Royston, UK) at 37 ◦C. At predetermined
time intervals, samples were removed from the incubator, frizzed and lyophilized. The
degree of polymer degradation was calculated based on the average sample weight loss as
determined by nuclear magnetic resonance (1H NMR) and size exclusion chromatography
(SEC) analyses. Samples were analyzed in triplicate.

2.3. Enzymatic Degradation

Enzymatic degradation was conducted on selected polyesters (PCL1, PLA1, PLGC1)
and copolymers (2PCL2-b-PDMAEMA, PLA2-b-PDMAEMA, PLGC2-b-PDMAEMA). First,
approximately 20 ± 0.5 mg of each polymeric sample was weighed into glass vials. After
dissolution of polymeric samples in toluene (10 mL), 10 mg of Novozyme 435 was added
to each vial. The vials and their contents were sealed and placed on a shaker at room
temperature (25 ± 2 ◦C). All vials remained under these conditions for three weeks, during
which time, 500 µL aliquots of each sample solution were taken at specified time intervals.
The degree of polymer degradation was calculated based on the average sample weight
loss as determined by SEC analyses. Samples were analyzed in triplicate.

3. Characterization

3.1. Nuclear Magnetic Resonance (1H NMR)
1H NMR spectra of the synthesized polymer solutions in CDCl3 were collected on

a Varian Inova 600 MHz spectrometer (Palo Alto, CA, USA) at 25 ◦C using TMS as an
internal standard.

3.2. Size Exclusion Chromatography (SEC)

Molecular weights and dispersity (Ð) indices were determined using size exclusion
chromatography (SEC, 1100 Agilent 1260 Infinity) (Agilent Technologies, Santa Clara,
CA, USA) equipped with an isocratic pump, autosampler, degasser, a thermostatic box
for columns and a differential refractometer MDS RI Detector. Addon Rev. B.01.02 data
analysis software (Agilent Technologies) was used for data collection and processing. The
SEC-calculated molecular weight was based on a calibration using linear polystyrene
standards (580–300,000 g/mol). A pre-column guard, 5 µm 50 × 7.5 mm, and two columns,
PLGel 5 µm MIXED-C 300 × 7.5 mm and PLGel 5 µm MIXED-D 300 × 7.5 mm, were used
for separation. The measurements were obtained using THF (HPLC grade) as the solvent
at 40 ◦C and a flow rate of 0.8 mL/min.

4. Results and Discussion
4.1. Polymer Characterization before Degradation

Linear polymers: PCL, PLA and PLGC were obtained by ROP. Amphiphilic block
copolymers composed of aliphatic polyesters and PDMAEMA were obtained by combining
polymerization techniques such as ATRP and ROP (Scheme S1). These polyesters and
amphiphilic polyester-b-PDMAEMA copolymers were examined for their susceptibility to
undergo hydrolytic and enzymatic degradation in environments at certain pH levels.

Tables 1 and 2 show the characterization of the synthesized polymers. The degree of
cyclic (di)ester polymerization (DP) and the theoretical number-average molecular weights
(Mn,theo) of these polyesters were calculated using signals belonging to an initiator and
appropriate repeating unit present in the 1H NMR spectra. Figure S1 presents the spectra
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of the synthesized copolymers with characteristic peaks belonging to PDMAEMA and a
proper polyester segment.

Table 1. Characterization of aliphatic polyesters.

Polymer Initiator DPCL
a DPLA

a DPGA
a Mn,NMR

a (g/mol) Mn,SEC
b (g/mol) Mw/Mn

b

PCL1

MTEG

82 - - 9400 11,300 1.15

PLA1 - 204 - 14,700 13,400 1.17

PLGC1 22 125 30 13,300 13,300 1.49

PCL2

HEBiB

112 - - 12,800 21,100 1.38

PLA2 - 112 - 8100 11,200 1.24

PLGC2 17 94 24 10,100 15,000 1.55

Where [M]0:[I]0:[Sn(Oct)2]0 = 100:1:0.1, except PLA2, where: [M]0:[I]0:[Sn(Oct)2]0 = 50:1:0.1. a Degree of polymerization was determined by
1H NMR measurements. b Determined by SEC measurements on the basis of polystyrene standards.

Table 2. Characterization of polyester-b-PDMAEMA linear block copolymers.

Polymer DPPolyester
a/DPDMAEMA

b Fhydrophilic
c Mn,theo

d (g/mol) Mn,SEC
e (g/mol) Mw/Mn

e

1PCL2-b-PDMAEMA 112/44 0.32 19,700 32,000 1.21

2PCL2-b-PDMAEMA 112/40 0.26 19,100 33,000 1.24

PLA2-b-PDMAEMA 112/76 0.40 20,000 26,600 1.22

PLGC-b-PDMAEMA 135/31 0.19 15,000 19,400 1.32

Where [DMEAME]0:[MI]0:[CuCl]0:[L]0 = 100:1:1:1, anisole 75% v/v mon. a Degree of polymerization was determined by 1H NMR
measurements. b Degree of polymerization was determined by GC measurements. c Mole fraction of hydrophilic repeating units
(Fhydrophilic) was calculated based on the equation: Fhydrophilic = DPDMAEMA/(DPPolyester + DPDMAEMA). d Theoretical number-average
molecular weight (Mn,theo) was calculated based on the equation: Mn,theo = DPPolyester + DPDMAEMA. e Determined by SEC measurements
based on polystyrene standards.

In addition, ATR-FTIR analysis confirmed the polymer structures (Figure S2). Five
major absorption bands were observed in the spectra, indicating the presence of specific
functional groups. The most intense signal, characteristic of the polymers, was the C=O
stretching vibration from 1690 to 1800 cm−1. In this area, at PLA2-b-PDMAEMA, two
overlapping absorption bands corresponding to C=O stretching vibrations are visible—one
from the main polyester chain and the other from the ester bond found in the PDMAEMA
structure. Another characteristic absorption band corresponding to C–O stretching vi-
brations from 1050 to 1300 cm−1 was also observed. All spectra have C–H stretching
vibrations from -CH2- methyl groups from 2900 to 3100 cm−1. Furthermore, there were
also C–H deformation absorption bands for the -CH2- groups at 1450–1500 cm−1. Spectra
of polyester-b-PDMAEMA copolymers possessed additional peaks that corresponded to
C–N and C–H stretching vibrations due to the -N(CH3)2 group from 1180 to 1360 cm−1

and 2755 to 2850 cm−1, respectively.
The SEC traces of polyester macroinitiators and corresponding block polymers are

shown in Figure 1. The low dispersity values (Mw/Mn) (1.2–1.4) indicate sustained control
over the polymerization process. The number-average molecular weights, as determined
by SEC (Mn;SEC), ranged from 19,400 to 33,300 g/mol and were higher than the theoretical
ones (Mn;theoretical. = 15,000–20,000 g/mol). The hydrodynamic volume differences in the
tested samples and the standard resulted from their chemical natures (PS is hydrophobic
and PDMAEMA/polyester are amphiphilic).
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4.2. Hydrolytic Degradation

The results of hydrolytic degradation for the block copolymer 1PCL2-b-PDMAEMA
and the corresponding macroinitiator PCL2 are presented as SEC traces (Figure 2) and
graphs showing the dependence of molecular weight loss: Mn,SEC (based on SEC analyses),
and Mn,theo (based on 1H NMR analyses), over time (Figure 3).
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Similar to previous literature reports regarding PCL degradation [25,26], the SEC
PCL2 macroinitiator analysis results show a slight molecular weight decrease at both pH
5.0 and 7.4. This was due to the high crystallinity of the polymer and low density of
the ester groups on its backbone as compared to PLA. For 1PCL2-b-PDMAEMA, SEC
analysis showed a gradual decrease in Mn,SEC at pH 7.4, and an abrupt decrease in Mn
at pH 5.0 (Figure 2a). Four weeks after beginning the experiment, the Mn,SEC value for
1PCL2-b-PDMAEMA at pH 5.0 dropped from 32,000 to 22,000 g/mol (Figure 3a). The
rate of the molecular weight loss stalled, and Mn,SEC values hovered around 21,000 g/mol
from weeks two to four and ~20,000 g/mol after ten weeks. In a slightly alkaline medium
(pH 7.4), based on data obtained from SEC, a linear decrease in the Mn,SEC value of the
1PCL2-b-PDMAEMA samples was observed. After ten weeks, the Mn decreased from
32,000 to 10,600 g/mol.

Figure 3b presents the molecular weight loss percentage of the PCL fraction calculated
from 1H NMR spectra of samples taken at predetermined times of hydrolytic degradation.
Regardless of the solution pH, samples containing the PCL2 homopolymer did not show
weight losses above 10%, regardless of the hydrolytic degradation time, whereas 1H
NMR results for the 1PCL2-b-PDMAEMA samples showed a slightly higher average DPCL
decrease in an acidic pH than an alkaline solution (DPCL = 53 at pH 5.0, DPCL = 63 at
pH 7.4).

The discrepancy between results obtained from SEC and 1H NMR was related to the
limitation of the SEC method and partial self-catalyzed cleavage of N,N-dimethyethylamine
from PDMAEMA side chains [27]. Under acidic conditions, the amino groups protonate,
resulting in the formation of quaternary ammonium cations, which increases the solubility
of the polymer. This may result in an increase in the rate of hydrolysis of the copolymer at
acidic pH due to the increased water uptake [28]. Nevertheless, the weight loss of copoly-
mers in PBS indicates that samples with PDMAEMA increased the water uptake by the
polymer films, which resulted in a faster degradation rate. These results are in good agree-
ment with those obtained by Little et al., where the addition of hydrophilic poly(aspartic
acid-co-lactide) (PAL) improved the PCL degradation rate. Samples containing an 8 wt.%
mol fraction of hydrophilic PAL had a 20% weight loss after seven months [26]. Based on
the erosion model developed by Burkersroda et al., PCL2 as well as 1PCL2-b-PDMAEMA
most likely underwent bulk erosion [29]. Although samples were in the form of powder



Materials 2021, 14, 3636 7 of 10

dispersed in PBS solution, the addition of the hydrophilic PDMAEMA block enhanced the
diffusion of water into the bulk and enabled polyester chain scission.

4.3. Enzymatic Degradation

Enzymatic degradation with Novozyme 435 was performed for three block polymers
(2PCL2-b-PDMAEMA, PLA2-b-PDMAEMA, PLGC2-b-PDMAEMA) and the correspond-
ing aliphatic polyesters. Based on SEC traces, the PLGC terpolymer almost completely
degraded after eleven days (Figure 4c).
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in brackets.

For PCL1, PLA1 and PLGC1, degradation clearly progressed. According to SEC
eluograms, signals from PCL1 and PLGC1 gradually weakened and, after 18 days, al-
most completely disappeared (Figure 4a,c). Additionally, in the case of PCL1, no shift
towards higher retention time values was observed. Thus, a decrease in the molecular
weight of PCL1 was not observed, but instead, a slight increase (Figure 5a). Moreover, a
steep decline in Mn,SEC of PLA1, PLGC1 and PLGC2-b-PDMAEMA, in the first 24 h, was
observed. The obtained results suggest that degradation of PCL1, PLGC1 and PLGC2-b-
PDMAEMA using Novozyme 435 in toluene proceeded by random chain scission on the
polymer backbone [30], whereas PLA1 degradation occurred via chain-end and random
chain scission simultaneously. The profile of weight loss of 2PCL2-b-PDMAEMA within
18 days suggests chain-end scission rather than the random chain scission process. For
PLA2-b-PDMAEMA degradation, the slight molecular weight decrease observed on SEC
chromatograms resulted from cleavage of a few ester bonds on the PDMAEMA side chains.
Further, no molecular weight decrease was observed, as shown in Figure 5b. According to
the hydrophilic fraction content in block copolymers, the degradation seems to be inhibited
with the increase in the length of the PDMAEMA block. This can be explained by the
interactions between the hydrophilic PDMAEMA and the immobilized lipase enzyme.
PDMAEMA either blocks the active sites or deactivates the protein [31,32].
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Figure 5. Graphs of Mn loss dependence of the polyester block over time for 2PCL2-b-PDMAEMA (a), PLA2-b-
PDMAEMA (b) and PLGC2-b-PDMAEMA (c) based on SEC.

5. Conclusions

Using the bifunctional initiator 2-hydroxyethyl 2-bromoisobutyrate afforded several
well-defined amphiphilic polymers that contained biodegradable polyester blocks and
thermo/pH-sensitive polymethacrylate blocks in their structures. Hydrolytic degradation
studies showed the sample containing the PCL homopolymer degraded very slowly. PCL,
regardless of the pH, degraded at the same rate—a 3% Mn loss after six weeks. On the
other hand, the presence of PDMAEMA in the copolymer chain resulted in different de-
composition rates, depending on the pH. 1PCL2-b-PDMAEMA degraded faster in an acid
environment (36% Mn loss determined after 10 weeks) than in a slightly alkaline environ-
ment (27% Mn loss after 10 weeks). This suggests the polycationic PDMAEMA block in the
acidic environment protonated, formed quaternary ammonium groups that repelled each
other and made the copolymer more susceptible to hydrolytic degradation due to its higher
hydrophilicity. In enzymatic degradation, PLGC1 degraded the fastest and confirmed
previous reports that showed the addition of LA and GA repeating units increased the
degradation rate of the aliphatic polyester. However, for polyester-b-PDMAEMA copoly-
mers, the enzymatic degradation rate decreased with the increase in the length of the
PDMAEMA block. Although the addition of the PDMAEMA block to the PCL increased
the rate of polyester hydrolysis in PBS, the rate of bulk erosion in the enzymatic degrada-
tion of the polyester was hampered by the presence of the hydrophilic polymethacrylate.
The obtained results show that the time of polyester degradation can be controlled by the
addition of a polyamine fraction with a proper length.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ma14133636/s1, Scheme S1: Schematic representation for the synthesis of linear (A) and am-
phiphilic block (B) polymers, Figure S1: 1H NMR (600 MHz, CDCl3) spectra of obtained copolymers
before degradation, Figure S2: ATR-FTIR spectra of obtained polymers before degradation.
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