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Abstract: Coda wave interferometry usually is applied with pairs of stations analyzing the signal
transmitted from one station to another. A feasibility study was performed to evaluate if one single
station could be used. In this case, the reflected coda wave signal from a zone to be identified was
analyzed. Finite-difference simulations of wave propagation were used to study whether ultrasonic
measurements could be used to detect velocity changes in such a zone up to a depth of 1.6 m in a
highly scattering medium. For this aim, 1D convolutional neural networks were used for prediction.
The crack density, the crack length, and the intrinsic attenuation were varied in the considered
background material. The influence of noise and the sensor width was elaborated as well. It was
shown that, in general, the suggested single-station approach is a possible way to identify damage
zones, and the method was robust against the studied variations. The suggested workflow also
took advantage of machine-learning techniques, and can be transferred to the detection of defects in
concrete structures.

Keywords: coda waves; reflection; machine learning; wave propagation; feasibility study

1. Introduction

In Earth sciences, it is known that coda waves are sensitive to changes in the subsurface
because the strong scattering that generates these waves causes them to repeatedly sample
a limited region of space [1,2]. In contrast to the first arrival of an event, the influence on
the waveforms due to changing subsurface features can be relatively high. However, the
direct interpretation is challenging. Coda wave interferometry (CWI) is a technique that
exploits tiny waveform changes in the coda to detect those variations of seismic properties
in evolving media ([3] and references therein).

Moreover, the aging of concrete structures within the infrastructure (bridges, buildings,
etc.) is a serious problem for many applications. Efficient monitoring should be performed
to guarantee safety [4]. Ultrasonic transmission measurements have been used for decades
to monitor concrete elements, mostly on a laboratory scale. Recently, CWI was introduced
to civil engineering experiments [5]. A standard application setup for load tests of a concrete
beam was described in a recent paper [6]: The material perturbations were detected around
and in between a pair of a source and a receiver. They pointed out that the most common
way to analyze coda waves is the correlation coefficient.

In this paper, the use of CWI for a source and the receiver at one single position is
investigated. With the single-station approach, one mainly analyzes the reflected signal of
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a disturbed area in contrast to the approach described above ([6] and references therein), in
which the authors concentrated on the transmitted signal. For this purpose, a numerical
2D wave-propagation setup is used, which allows us to create a relatively big number
of recorded signal-traces that are suitable for machine learning (ML) techniques. The
correlation coefficient is not calculated during this procedure.

Thin rectilinear cracks (in which the crack length is on the order of the dominant
wavelength) are distributed with a specific crack density in a homogeneous background
media. This setup can mimic the wave-propagation regime in concrete, where the ratio of
scatterers (e.g., grains) to the wavelength is similar. The main question to be answered in
this study is: can a reduction of the background velocity (e.g., due to microcracks that are
much smaller than the dominant wavelength) at a certain depth of the model be detected
with CWI? For a real-world scenario, such microcracks are indicative of an evolving failure
of the considered material.

To answer this question, a ML approach is used. Namely, convolutional neural
networks (CNN) are applied to estimate the depth and reduced velocity background pa-
rameters. ML algorithms recently attracted much attention in different fields of sciences.
In geosciences and geomaterials, they were used for either parameter estimation or classifi-
cation (i.e., segmentation) [7–10]. In most of these studies, images of rocks or geomaterials
were used as the input data for a network. However, in this study, the coda wave signals
are used as 1D input data. This is more similar to speech or earthquake-detection problems,
in which a signal is used for detection. In fact, CNNs can extract high-level features from
the waveform of the coda waves by small-kernel convolutions, and then relate them in
the output parameters. In this study, the aim is to use such an ability of the CNNs to
extract concert characteristics from the waveform of a single-station reflected coda signal.
The paper is structured as follows: First, the applied wave propagation technique and
the chosen numerical setup are explained in detail. Second, the used ML approach and
the networks are described. In a parameter study, the reliability of the method is checked
to detect (a) the depth of the velocity change and (b) the amount of velocity reduction
concerning crack density, crack length, noise level, and more. Finally, the findings and
conclusions of the paper are discussed.

2. Numerical Setup and Machine-Learning Approach
2.1. Numerical Setup

A rotated staggered-grid (RSG) finite-difference (FD) scheme [11] was used to prop-
agate the seismic wavefield in the forward simulations. The RSG used rotated finite-
difference operators, leading to a distribution of modeling parameters in an elementary
cell in which all components of one physical property were located only at one single
position. This can be advantageous for modeling wave propagation in anisotropic me-
dia or complex media, including high-contrast discontinuities, as no averaging of elastic
moduli is needed [12]. Due to the high density of scattering constituents, ultrasonic wave
propagation in fractured media consists of a complex mixture of multiple scattering, mode
conversion, and diffusive energy transport. With previous studies in 2D and 3D [13,14],
it was demonstrated that the RSG-technique was well suited for such applications. The
numerical accuracy for modeling wave propagation in a media with a single thin fracture
was evaluated as well [15].

In Figure 1, a typical elastic model for the coda wave experiments of this study is
shown on the left. The models, with a physical size of 0.16 m (x-direction) × 2.00 m (y-
direction), consisted of 400 × 5000 grid points (GPs) with a spacing of d = 0.0004 m. In the
first step, a homogeneous material was created with a P-wave velocity of VP = 5100 m/s,
an S-wave velocity of VS = 2944 m/s, and a density of 2540 kg/m3. In a second step, thin
(1 GP) rectilinear cracks (elastic moduli were set to zero) with a length of L = 2l (in Figure 1:
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L = 10 GP = 0.004 m) and a crack density ρ (in Figure 1 ρ is 0.1) were inserted into this
media. The crack density was defined as in [16]:

ρ =
1
A

n

∑
k=1

l2
k (1)

where n is the number of cracks and A is the representative area. As the third step, the
velocities VP and VS were reduced from a randomly chosen depth d in the x-direction
(used interval: 0 m < d < 1.6 m) by an arbitrary chosen factor r (used interval: 1 > r > 0.5).
In the example displayed in Figure 1, d = 1.2 m and r = 0.6 was used. It is important to note
that the modeling experiments were performed with periodic boundary conditions in the
horizontal direction. For this reason, the elastic models were generated with this periodicity
as well. In addition, a free surface was implemented at the bottom, and absorbing boundary
conditions were applied at the top of the modeling domain.
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Figure 1. (Left) Elastic model of the fractured media as described in Section 2.1. The P-wave modulus c44 in Pascal is
displayed. (Right) Three consecutive snapshots at t = 0.13 ms, t = 0.32 ms, and t = 0.77 ms of a propagating plane P-wave in
the medium displayed on the left. The amplitude was normalized to the interval (−1, 1), but equal and comparable in all
three subplots. Due to the relatively large amount of scattering, the coherent part of the reflected wave at the interface at
d = 1.2 m became hardly detectable.
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For all simulations, a wavelet (second derivative of a Gaussian) with a central fre-
quency of fc = 100 kHz was used. A body-force line source was placed at the bottom of
the model (y = 0 m). The plane P-wave generated in this way propagated through the
fractured medium (see Figure 1, right). The time increment was set to 6.4 × 10−8 s to
ensure stability, and 100 equidistant receivers, with a spacing of 4 × 0.0004 m, recorded
the displacement during the simulation with 12,500 timesteps (see Figure 2) at the bottom
of the model (y = 0 m). Therefore, the source and receivers were in the same position to
record reflected coda waves. On a midsize Linux cluster, the simulations took roughly
12 min each. An overview of all simulations is given in Table 1.
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Figure 2. Recorded traces at the bottom of the model at y = 0 m. Three cases are displayed: Signal
for a single receiver (blue); averaged signal for 12 neighboring central sensors with a total width
of 1.92 cm and averaged signal of 100 sensors equally distributed over the full width of the model
(16 cm).

Table 1. Overview of all simulations.

Fixed Properties Random Properties Number of Performed
Simulations

ρ = 0.1, L = 10 GPs Depth d = 5–4000 GPs;
velocity reduction r = 0.5–1 >1024

ρ = 0.2; L = 10 GPs Depth d = 5–4000 GPs;
velocity reduction r = 0.5–1 >1024

ρ = 0.3; L = 10 GPs Depth d = 5–4000 GPs;
velocity reduction r = 0.5–1 >1024

ρ = 0.1; L = 40 GPs Depth d = 5–4000 GPs;
velocity reduction r = 0.5–1 >1024

ρ = 0.1, L = 10 GPs, Qmin = 33 Depth d = 5–4000 GPs;
velocity reduction r = 0.5–1 >1024

For one series of simulations, intrinsic attenuation was implemented in the applied FD
scheme [17]. With the parameters Y11

1 = 3.8979 GPa, Y44
1 = 1.2989 GPa, and ω1 = 628 kHz,

a frequency-dependent attenuation with a single Maxwell body with a minimal Q = 33 at
ffund = 100 kHz was simulated (equal to the central frequency of the wavelet).

When the wavelength of the propagating wave was in the order of the heterogeneities
(i.e., the thin cracks), both Rayleigh and Mie scattering occurred [18], and was very strong
in the considered cases of this study. A standard imaging technique thus could not be
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applied here because the reflected wave was not easily detectable in a single, or in the
averaged traces as shown in Figure 2. This only becomes feasible when the traces of the
medium with no velocity reduction are known. Furthermore, this event was visible when
the recordings at the position y = 0 m for the starting model (r = 1.0) were subtracted from
the signals recorded with 0 m < d < 1.6 m and 1 < r < 0.5. This is shown for d = 1.2 m and
r = 0.6 in Figure 3.
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Figure 3. Processed traces at the bottom of the model at y = 0 m. The traces of the simulation with
d = 1.2 m and r = 0.6 were subtracted by the recorded traces for the simulation with r = 1.0 (see text
for details).

In practical applications, there is always a certain amount of noise. As such, several
noise levels (5%, 10%, and 20%) were considered. For this purpose, random values were
added to the trace in the range of ±5%, 10%, or 20% of the maximum coda signal amplitude.
An example is given in Figure 4.
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Figure 4. Processed traces at the bottom of the model at y = 0 m. The traces of the simulation with
d = 1.2 m and r = 0.6 were subtracted by the recorded traces for the simulation with r = 1.0. To come
closer to a realistic scenario, different noise levels were added (for details, see Section 2.1).
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2.2. Machine Learning

In this study, two individual CNNs were used each for depth and reduced velocity
predictions (Figure 5). The input of the network was a signal recorded at the bottom
(y = 0 m) of the model with a length of 2500 cells (with a time step of 3.2 × 10−7 s).
Four feature vectors with #n channels were extracted from the input signal, as shown
in Figure 5. To extract each feature vector, the vector in the last layer was convolved by
a 1D convolutional layer. Consequently, convolved vectors were downsampled by 1D
max-pooling, which was followed by dropout and batch-normalization layers (Figure 5) [7].
This architecture extracted high-level features of the input coda signal and produced a
small-size feature vector, which was highly informative compared to the input signal. This
vector was connected to the output using a fully connected layer followed by dropout and
batch-normalization layers. More details are shown in Table 2.
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Figure 5. The general architecture used in this study. For more information about the network, please
refer to Table 2.

Table 2. The architecture of the CNNs used in this study (see Figure 5) (ch: number of channels;
k: kernel size; ReLU, Tanh, and Sigmoid: activation functions).

Layer Output Depth Reduced Velocity Inner Networks
Conv-1D 16 ch, 3 k, ReLU 128 ch, 3 k, ReLU

Feature vector #1
Maxpooling-1D Pool size: 2

Dropout 10%

Batch-normalization

Conv-1D 32 ch, 3 k, ReLU 128 ch, 3 k, ReLU

Feature vector #2
Maxpooling-1D Pool size: 2

Dropout 10%

Batch-normalization
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Table 2. Cont.

Layer Output Depth Reduced Velocity Inner Networks
Conv-1D 64 ch, 3 k, ReLU 256 ch, 3 k, ReLU

Feature vector #3
Maxpooling-1D Pool size: 2

Dropout 10%

Batch-normalization

Conv-1D 128 ch, 3 k, ReLU 256 ch, 3 k, ReLU

Feature vector #4
Maxpooling-1D Pool size: 2

Dropout 10%

Batch-normalization

Dense 1024 ch, Tanh 1024 ch, Tanh
Fully connected

network
Dropout 30%

Batch-normalization

Dense 1 ch, Sigmoid 1 ch, Sigmoid Output

In each model setup (Table 1), more than 1024 signals with varied d and r were
simulated. A soft-clipping normalization was applied to normalize the amplitude of the
signals into (0, 1) (see [19]):

Sn =
1

1 + e−kSo
(2)

where So and Sn are original and normalized signals and k is chosen empirically, based
on the maximum amplitude in the signal (here it is 16). The depth and reduced velocity
values were also normalized in the range of (0, 1). All data were divided into 75% and 25%
as training and validation data, respectively. Validation data also were used as test data,
since they were not learned by the network during the training phase [7]. Mean square
error (MSE) and coefficient of determination (R2) were used as two widely accepted criteria
for the evaluation of estimations as follows:

MSE =
1
n

n

∑
i=1

(
Yi − Ŷi

)2 (3)

R2 = 1 − SSres

SStot
(4)

where Y and Ŷ are original and estimated parameters for n data. In addition, SStot and
SSres are the total and residual sum of squares errors regarding mean and predicted
parameters, respectively.

3. Results

In this section, the results of the numerical study are described in detail. For each
case, the predicted depth and reduced velocity were compared with the actual values. For
a better interpretation, the second quantity (i.e., reduced velocity or depth) included is
always color-coded in the corresponding plots (see, e.g., Figure 6).
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Figure 6. (Left) Depth prediction of the ML algorithm for the example described in Section 3.1. The reduced velocity
r is color-coded and has no unit (see Section 2.1). (Right) Corresponding velocity prediction: R2 is the coefficient of
determination, and MSE is the mean square error (for details, see Section 2.2). The depth d is color-coded and is given in
meters (m).

3.1. Case1: Basic Example (Average 100 Traces, No Noise, ρ = 0.1, L = 10)

For this basic example, 100 traces recorded at the bottom of the model (see
Figures 1 and 3) were averaged. The background model had a crack density ρ of 0.1 with a
crack length of 0.004 m (i.e., 10 grid points). No noise was added. With the setup described
in detail in Section 2, the ratio of fundamental wavelength to crack length was roughly 12.

It can be observed that the predicted depth d of the velocity change was for the full
range of possible depths very high (Figure 6, left; R2 = 99.32% and MSE = 0.004). The
predicted velocity reduction r was still very good, but not as good as for the predicted
depth d (Figure 6, right, R2 = 95.29% and MSE = 0.004). Interestingly, a detailed inspection
of the predicted velocity change indicated that this prediction became more inaccurate
for situations in which the velocity change was closer to the source position (see Figure 6,
right; the darker-colored dots are farther away from the optimal dashed line than the
lighter-colored dots). This case was due to a shallow reflector creating a longer nonzero
signal with much more information than a signal for a deep reflector. Learning such a
complex signal (shallow d) is more difficult than learning a simple signal (deep d) for ML.

3.2. Case 2: Variation of the Crack Density

In this example, the influence of the crack density on our depth and velocity pre-
dictions was considered. In Figure 7, there is a focus on the prediction of the velocity
reduction, as the depth prediction was not so disturbed by the variation of the crack density
ρ (R2 = 99.32%, 99.31%, and 99.13% for ρ = 0.1, 0.2, and 0.3, respectively). However, as
shown in Figure 7, the inaccurate prediction of the reduced velocity for the case of rela-
tively shallow depths (darker dots in Figure 7) became stronger when the crack density
was increasing.
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3.3. Case 3: Variation of Crack Length

In Figure 8, an example in which the crack length was increased from L = 10 to
L = 40 grid points is shown. Here, the ratio of wavelength to crack length was decreasing,
and a decreasing accuracy for relatively shallow depths d for the velocity reduction r
was observed.
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3.4. Case 4: Influence of Noise

The influence of different noise levels was studied for several scenarios (Table 3). Due
to similar trends of the results, two examples are shown here: (a) for a crack density of
ρ = 0.3 and a crack length L = 10 grid points; and (b) for a crack density of ρ = 0.1 and a
crack length L = 40 grid points. As described above, both examples gave relatively good
predictions for the case without noise. Considering the depth prediction for the first case
(ρ = 0.3 and L = 10 GPs), adding noise decreased the accuracy for relatively deep depth,
but the results were in general still acceptable (Figure 9).
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Table 3. Overview of all ML results.

Model Setup Predicted
Depth

Predicted
Reduced Velocity

Crack
Density ρ

Crack
Length L Traces Specifics

R2% MSE R2% MSE

Training Training

Validation/Test Validation/Test

0.1 10 GPs 100 - 99.56 0.0028 97.36 0.0032
99.32 0.0040 95.29 0.0040

0.1 10 GPs 100 5% noise
99.48 0.0018 97.06 0.0026
99.07 0.0033 96.04 0.0033

0.1 10 GPs 100 10% noise
99.25 0.0043 92.04 0.0056
98.54 0.0079 90.12 0.0079

0.1 10 GPs 100 20% noise
99.15 0.0096 86.38 0.0085
98.00 0.0132 84.57 0.0132

0.2 10 GPs 100 - 99.63 0.0035 96.34 0.0021
99.31 0.0045 94.17 0.0045

0.2 10 GPs 100 5% noise
97.89 0.0111 85.73 0.0115
97.23 0.0127 84.68 0.0127

0.2 10 GPs 100 10% noise
96.88 0.0114 76.12 0.0135
96.40 0.0205 74.42 0.0205

0.2 10 GPs 100 20% noise
91.56 0.0223 59.35 0.0256
90.81 0.0372 56.19 0.0372

0.3 10 GPs 100 - 99.48 0.0062 92.03 0.0053
99.13 0.0079 90.57 0.0079

0.3 10 GPs 100 5% noise
99.36 0.0125 80.95 0.0112
98.94 0.0158 80.65 0.0158

0.3 10 GPs 100 10% noise
97.78 0.0165 76.98 0.0189
97.36 0.0200 74.37 0.0200

0.3 10 GPs 100 20% noise
93.65 0.0428 35.37 0.0550
93.06 0.0567 32.30 0.0567

0.1 40 GPs 100 - 99.68 0.0048 94.50 0.0051
99.60 0.0054 93.86 0.0054

0.1 40 GPs 100 5% noise
98.84 0.0068 90.28 0.0061
98.06 0.0087 89.15 0.0087

0.1 40 GPs 100 10% noise
98.01 0.0095 84.45 0.0132
96.58 0.0143 82.10 0.0143

0.1 40 GPs 100 20% noise
92.95 0.0268 65.08 0.0243
92.39 0.0309 61.92 0.0309

0.1 10 GPs 12 - 99.53 0.0019 94.57 0.0037
99.32 0.0053 93.83 0.0053

0.1 10 GPs 1 - 99.85 0.0032 93.86 0.0046
99.56 0.0051 93.59 0.0051

0.1 10 GPs 100 Qmin = 33 99.68 0.0016 96.42 0.0030
99.59 0.0033 95.85 0.0033

Materials 2021, 14, x FOR PEER REVIEW 11 of 14 
 

 

 

Figure 9. Depth predictions for the case of a crack density of ρ = 0.3 and L = 10 GPs with an increasing noise level of 5%, 

10%, and 20% (left to right). The reduced velocity r is color-coded and will had no unit (see Section 2.1). 

The predictions of the ML algorithm for the reduced velocity in the case of relatively 

high noise and a relatively high crack length (L = 40 GPs) brought the method close to its 

limits (see Figure 10). For the case of a noise level of 20%, the predicted reduced velocity 

was not as good as for the other examples given in this study (R2 = 61.92%). 

 

Figure 10. Velocity-reduction predictions for the case of a crack density of ρ = 0.1 and L = 40 GPs with an increasing noise 

level of 5%, 10%, and 20% (left to right). The depth d is color-coded and is shown in meters (m). 

3.5. Case 5: Application of Different Averaging Techniques at the Bottom of the Model 

Finite difference simulations have a given grid spacing, and at every grid point, a 

sensor (or receiver) can be placed. In the case of averaging signals of neighboring sensors, 

the influence of the sensor width (i.e., sensor size) was considered. For a realistic compar-

ison of ultrasonic experiments with wave-propagation simulations, this should be kept in 

mind because very often the sensor size cannot be neglected. In the used setup, trace re-

cording from a single receiver was equivalent to a sensor width of 0.0004 m (i.e., the grid 

spacing). Averaging of 12 neighboring sensors and 100 neighboring sensors corresponded 

to sensor widths of 0.192 m and 0.16 m, respectively. As expected, there was only a minor 

influence on the prediction of the reduced velocity (see Figure 11). 

  

Figure 9. Depth predictions for the case of a crack density of ρ = 0.3 and L = 10 GPs with an increasing noise level of 5%,
10%, and 20% (left to right). The reduced velocity r is color-coded and will had no unit (see Section 2.1).



Materials 2021, 14, 3451 11 of 14

The predictions of the ML algorithm for the reduced velocity in the case of relatively
high noise and a relatively high crack length (L = 40 GPs) brought the method close to its
limits (see Figure 10). For the case of a noise level of 20%, the predicted reduced velocity
was not as good as for the other examples given in this study (R2 = 61.92%).
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Figure 10. Velocity-reduction predictions for the case of a crack density of ρ = 0.1 and L = 40 GPs with an increasing noise
level of 5%, 10%, and 20% (left to right). The depth d is color-coded and is shown in meters (m).

3.5. Case 5: Application of Different Averaging Techniques at the Bottom of the Model

Finite difference simulations have a given grid spacing, and at every grid point,
a sensor (or receiver) can be placed. In the case of averaging signals of neighboring
sensors, the influence of the sensor width (i.e., sensor size) was considered. For a realistic
comparison of ultrasonic experiments with wave-propagation simulations, this should be
kept in mind because very often the sensor size cannot be neglected. In the used setup, trace
recording from a single receiver was equivalent to a sensor width of 0.0004 m (i.e., the grid
spacing). Averaging of 12 neighboring sensors and 100 neighboring sensors corresponded
to sensor widths of 0.192 m and 0.16 m, respectively. As expected, there was only a minor
influence on the prediction of the reduced velocity (see Figure 11).
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3.6. Case 6: The Effect of Intrinsic Attenuation

As reported in [20], ultrasound is attenuated in cement-based materials, and can be
compared with the attenuation observed in geomaterials; e.g., granite. Therefore, the
influence of intrinsic attenuation was also studied for the application of the presented
method. It revealed that a relatively strong attenuation (minimum quality factor of Q = 33
for the used frequencies) did not have a significant influence on the predictions. The
coefficient of determination R2 was changed from 99.32% to 99.59% and from 95.29 to
95.85% (see Figures 6 and 12) for the predicted depth and the reduced velocity, respectively.
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4. Discussion

In Section 3, the influence of crack density ρ, crack length L, noise level, sensor width,
and attenuation on the predicted depth d and reduced velocity r were considered. Table 3
presents a complete list of all results (a few are not displayed in a separate figure). In gen-
eral, the proposed numerical parameter study using one single station to apply coda wave
interferometry can be regarded as a successful confirmation of the applied method to char-
acterize a velocity reduction in an unknown depth. This velocity reduction may indicate
damage on the microscale (i.e., microcracking in which the cracks are much smaller than
the wavelength). In contrast to the classical coda wave interferometry technique (i.e., [6]),
the reflected signal of a material change is analyzed instead of the transmitted signal.

The accuracy of the predicted depth and the reduced velocity could be reduced by
several factors, which included: increasing crack density, increasing crack length, and most
prominently, increasing noise. The influence of intrinsic attenuation and averaged traces
(i.e., sensor width) could be regarded as minor. Moreover, the accuracy for the predicted
depth was always very high, whereas the reduced velocity itself was predicted with a
lower accuracy (but still acceptable). Of course, strong noise had a significant influence on
the quality of the predictions (see, e.g., Figure 10).

The chosen setup could be used to evaluate if a single-station CWI approach could be
applied to find a damage zone in concrete. The background velocity of the cracked media
and the fundamental frequency of the source wavelet were close to the values used in [6].
The crack length could be compared to several grain-size distributions and the size of air
inclusions in real concrete. Therefore, in this study, it was shown that with a single station,
it was possible to predict small-scale damages in a depth down to 2 m in concrete with a
trained CNN.

This may be true for a more conventional investigation of the analyzed signal shown
in Figure 4. An obvious thought would be to analyze the arrival time and the amplitude
of the first change of the coda wave (i.e., the first nonzero amplitude of the subtracted
signals from the disturbing case to the undisturbed case). For real experiments, this would
be a relatively easy opportunity to estimate the depth (i.e., by picking the arrival time)
and the reduced velocity (i.e., by analyzing the amplitude with the law for the reflection
coefficient [21]). However, for this feasibility study, it was decided to use a CNN, as it was
independent of a picking algorithm, which usually needs a significant amount of human
interaction [22]. Moreover, the CNN used the full recorded trace, which contained more
information that might be hidden by the complex scattering regime (the wavelength was
in the same order as the scatterers; compare with Section 2).

Of course, more simulations (both in 2D and 3D) must be performed to train the
machine-learning system on a specific concrete in a real experiment to be considered. This
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would be time-consuming, as especially 3D simulations are very demanding concerning
computational resources. On the other hand, once the CNN is trained, the single-station
coda wave analysis for damage detection can be performed in real-time, as the ML method
works fast and without any human interaction.

5. Conclusions

In this paper, a parameter study was presented using ML to check whether a reflected
coda wave technique could be used to detect and characterize a damaged zone with a single
transducer (i.e., station). For this purpose, a numerical setup was built to systematically
study the influence of multiple scatterers, noise, intrinsic attenuation, and sensor width.

In general, all these factors influenced the accuracy of the approach, but the accuracy
of the predicted depth of the damaged zone (i.e., the depth of the zone with a reduced
velocity) was especially high. In addition, the amount of the velocity reduction could be
predicted with sufficient accuracy. It can be summarized that the most influencing factors
were, as expected, higher levels of noise. For practical applications, one should make sure
to record high-quality data with a relatively low noise level.

The investigation can be regarded as a successful feasibility study using one single
station for coda wave interferometry. The method is ready to be applied to real experiments,
and should be used complementary to traditional coda wave interferometry based on
transmission. The fact that a reflector can be identified and characterized with the suggested
coda wave technique suggests the application of more advanced imaging techniques in
this context.
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