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Abstract: In this study, the effect of graphene oxide nanosheets (GONs) embedded in a thin-film
composite (TFC) polyamide (PA) membrane on the acid resistance of the membrane was investigated
by comparison with the effect of oxidized single-walled carbon nanotubes (o-SWNTs). Both GONs
and o-SWNTs increased the hydrophilicity of the membranes and caused the formation of ridges
and clustered bumps on the surfaces, resulting in slightly improved water permeability. However,
the o-SWNTs-embedded membrane did not show a difference in acid resistance depending on the
concentration of embedded material, but the acid resistance of the GONs-embedded membrane
increased with increasing concentration. The acid resistance of the GONs-embedded membranes
appears to be mainly due to the barrier effect caused by the nanosheet shape of the GONs along with
a sacrificial role of the PA layer protruded by the addition of GONs and the decrease of acid reaction
sites by the hydrogen bonding between GONs and PA. When the TFC PA membrane was prepared
with a high amount (300 ppm) of the GONs without considering aggregation of GONs, membrane
selectivity exceeding 95% was maintained 4.7 times longer than the control TFC membrane. This
study shows that the acid resistance can be enhanced by the use of GONs, which give a barrier effect
to the membrane.

Keywords: graphene oxide nanosheets; polyamide membrane; acid resistance; barrier effect

1. Introduction

A nanofiltration (NF) membrane is a physical barrier that allows solvent and monova-
lent ions to permeate through but rejects divalent and multivalent ions. Due to the capabil-
ity of the selective transport, NF has been widely utilized for various water/wastewater
treatment and water softening. Recently, the demand for NF membranes in the field of acid
processing of the metal [1], pulp [2], dairy [3], and mining [3] industries has been increasing,
since NF can extract valuable and/or rare metals from mine and electroplating wastewater
by retaining them in the feed stream and can purify the acid for reuse by only passing
acid through the membrane, recovering useful resources, and satisfying environmental
regulations [4,5].

However, membrane manufacturers suggest that the polyamide (PA) membrane
should be used at pH 2 or higher [6], which means the durability of the membrane is
deteriorated below this pH value. In particular, piperazine (PIP)-based PA membranes
have been reported to be much less stable in acid than m-phenylenediamine (MPD)-based
membranes. Jun et al. [7] conducted density functional theory (DFT) calculations and also
investigated the physico-chemical property changes by the exposure of the PIP-based and
MPD-based PA membranes to strong acid. They showed that protonation of oxygen in
the PIP-associated moiety of the PA membrane is easiest among the protonation sites of
the PIP-based and MPD-based membranes, and N-protonation of the PIP moiety has the
lowest energy barrier in the rate determining step (RDS) of hydrolysis. In another study
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they showed that partial hydrolysis of the PA membrane by acid can be utilized to use the
PA membranes in water softening and concentration of valuable antibiotics [8].

Many studies have been conducted to increase the acid resistance of PA thin-film
composite (TFC) membranes. In the early research of related fields, studies were conducted
mainly to evaluate the stability of commercial membranes in the presence of acids [5,9–11].
In recent years, research has been carried out to improve the acid resistance of TFC mem-
branes, and related methods have been reported. Lee et al. [12] fabricated an acid-stable
TFC membrane with a polyamine active layer. The polyamine contains no carbonyl groups,
which are common reaction sites for initiation of hydrolysis, and hydrolysis of the ac-
tive layer in an acidic condition was thereby suppressed. Liu et al. [13] increased the
acid resistance of a commercial TFC membrane by coating the membrane surface with
poly(N-isopropylacrylamide-co-acrylamide). The coating was achieved via circulation
of an aqueous solution of the polymer in a crossflow system where the TFC membrane
was installed.

Recently, studies using carbon-based materials to improve the permeability of PA TFC
membranes have been reported. Jin et al. prepared a high performance polyamide mem-
brane using GO aggregates, crosslinked and functionalized with m-xylenediamine, and
trimethyl chloride (TMC) [14]. Sianipar et al. reported that, through an intensive review of
researches related to carbon nanotubes (CNTs), functionalized CNTs used for membrane
formation can avoid the trade-off issue between water flux and salt rejection [15]. Perreault
et al. fabricated TFC PA membrane functionalized with graphene oxide nanosheets, im-
parting biocidal activity without negative effect on membrane transport properties [16].
A review of graphene material fabrication methods has been well presented recently [17]
and studies on the structural factors of carbon composites on performance have been
performed [18], making it easier to use carbon-based materials for membrane fabrication.
In this study, graphene oxide nanosheets (GONs) were embedded in the PA layer of a
TFC membrane to enhance the acid resistance of the PIP-based NF TFC membrane. The
hypothesis of enhanced acid stability by addition of GONs was based on the results of
previous research showing that chlorine resistance increased in a GONs-embedded PA
membrane due to the barrier effect of the GONs and hydrogen bonding between GONs and
PA [19]. In addition, another study reported that the acid resistance of the TFC membrane
can be enhanced via those effects by coating copolymer on the PA layer [13]. Oxidized
single-walled carbon nanotubes (o-SWNTs), which have a similar chemical composition
to that of GONs, were also embedded in the PA layer of a TFC membrane to confirm
the barrier effect of GONs indirectly. Salt rejection of those membranes immersed in 50%
sulfuric acid was monitored and evaluated over exposure time.

2. Materials and Methods
2.1. Materials

Graphite (Sigma-Aldrich, St. Louis, MO, USA) and SWNTs (US Research Nanomate-
rials, Houston, TX, USA) were used as precursors for GONs and o-SWNTs, respectively.
Sulfuric acid (H2SO4, Samchun Chemical, Seoul, Korea), nitric acid (HNO3, Samchun
Chemical, Seoul, Korea), and potassium permanganate (KMnO4, Sigma-Aldrich, St. Louis,
MO, USA) were employed to oxidize the precursors. Hydrogen peroxide (H2O2, Junsei
Chemical, Tokyo, Japan) was used to reduce excess potassium permanganate. Sulfuric acid
was also used for acid resistance tests. Piperazine (PIP, Samchun Chemical, Seoul, Korea),
trimesoyl chloride (TMC, Sigma-Aldrich, St. Louis, MO, USA), and isoparaffin (ISOL-C,
SK Chemical, Seoul, Korea) were used to fabricate a PA active layer of TFC membranes. In
addition, a polysulfone (PSf) ultrafiltration membrane (MWCO 100,000, LG Chem., Seoul,
Korea) was used as a support layer of the TFC membranes. Magnesium sulfate (MgSO4,
Samchun Chemical, Seoul, Korea) was employed to evaluate membrane performance.
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2.2. Preparation of GONs and o-SWNTs

GONs and o-SWNTs were prepared by oxidation of graphite and SWNTs based on
the Hummers method [20]. The precursors were oxidized by oxidants such as sulfuric acid,
nitric acid, and potassium permanganate. Residual excess potassium permanganate was
then removed by hydrogen peroxide. The solutions containing the oxidized precursors
were neutralized by replacing the acidic supernatant, obtained via centrifugation, with
DI water several times. The graphitic oxides were then exfoliated by strong sonication
using a sonication probe (VCX 750, Sonic Materials, Newtown, CT, USA) at 563 W for 2 h,
and the o-SWNTs were dispersed by mild sonication using a sonication bath (JAC- 2010,
Jinwoo-Alex, Seoul, Korea) at 200 W for 1 h.

2.3. Preparation of GONs- and o-SWNT-TFC Membranes

A PSf support layer was immersed in a 4 wt% PIP aqueous solution including GONs
or o-SWNTs at a concentration of 0, 20, or 40 ppm for 1 min. The reason for using low
concentration was to evaluate the effect of the embedding additives on acid resistance
due to the shape of additives, excluding their aggregation effect, because the degree of
aggregation is different at high concentration. Excess PIP solution remaining on the support
layer was removed by squeezing it using a rubber roller for approximately 30 s under an
air blowing condition. After drying in air for 30 s, the PSf support layer was then immersed
in a solution of 0.2 wt% TMC in ISOL-C for 1 min to form a PA active layer via interfacial
polymerization. Finally, the TFC membrane was annealed in an oven at 60 ◦C for 10 min
and then stabilized in DI water for 90 min. The TFC membranes embedded with GONs or
o-SWNTs are denoted as GONs- or o-SWNT-TFC membranes, respectively.

2.4. Characterization of GONs and o-SWNTs

To confirm the chemical compositions of GONs and o-SWNTs, C1s X-ray photoelectron
spectroscopy (XPS) spectra were collected using an X-ray photoelectron spectrometer (AXIS
NOVA, Kratos Analytical, Manchester, UK). The samples were prepared by dropping a
dispersion of GONs or o-SWNTs onto a silicon wafer (4 WAFER P-100, Sehyoung Wafertech,
Seoul, Korea) and then drying repeatedly.

2.5. Characterization of GONs- and o-SWNT-TFC Membranes

The presence of GONs or o-SWNTs in the PA layers of the prepared membranes was
examined using a nano-Raman spectrometer (InVia, Renishaw, Wotton-under-Edge, UK).
The Raman spectra of the TFC, GONs-TFC, and o-SWNT-TFC membranes were acquired
in the range of 1000–2000 cm−1 using a 514 nm continuous wave laser. The contact angle
of the TFC, GONs-TFC, and o-SWNT-TFC membranes was evaluated using a drop-shape
analysis system (DSA 100, Krüss, Hamburg, Germany) through the sessile drop method
with a 5.0 µL DI water drop after drying the membranes for 24 h. The surface morphology
of the TFC, GONs-TFC, and o-SWNTs-TFC membranes before and after acid treatment
was observed by field-emission scanning electron microscopy (FE-SEM, SIGMA HD, Carl
Zeiss, Germany; JSM-6700F, JEOL, Tokyo, Japan) after coating platinum on the surface of
the membranes with a sputter coater (Sputter Coater 108, Cressington, Watford, UK).

2.6. Evaluation on the Performance of GONs- and o-SWNT-TFC Membranes

The acid resistance of the TFC, GONs-TFC, and o-SWNTs-TFC membranes was evalu-
ated by observing the changes in performance of the membranes after acid treatment. The
salt rejection and the water flux of the membranes soaked in 50% sulfuric acid for a certain
duration were measured using a 2000-ppm MgSO4 solution at 225 psi for 10 min after
30 min conditioning in a cross-flow filtration system. The effective membrane area and
crossflow velocity were 27.9 cm2 and 19.6 m/min, respectively. The temperature of the feed
solution was maintained at 25 ◦C using a refrigerated circulating water bath (RW-0525G,
Lab Companion, Daejeon, Korea).
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3. Results
3.1. Characterization of GONs and o-SWNTs

The C1s XPS spectra of GONs and o-SWNTs (Figure 1) were deconvoluted into four
gaussian sub-peaks: C–C and C=C (~281.9 eV), C–O (~284.0 eV), C=O (~285.6 eV), and
C(O)OH (~288.9 eV) [21,22]. The spectra of GONs and o-SWNTs appear similar, but the
ratio of peak height 281.9 eV to 284.0 eV was different between the two cases. The C1s
XPS spectrum of o-SWNTs (Figure 1b) has a larger peak at ~281.9 eV and a smaller peak at
~284.0 eV, indicating that the o-SWNTs contained more C–C and C=C functional groups
and fewer C–O functional group than the GONs. That is, the o-SWNTs (50% oxidized)
were less oxidized than the GONs (58% oxidized).
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Figure 1. C1s XPS spectra of (a) GONs and (b) o-SWNTs.

3.2. Characterization of GONs- and o-SWNTs-TFC Membranes

The presence of GONs and o-SWNTs in the PA layer of the membranes was inves-
tigated using Raman spectroscopy (Figure 2). The Raman spectrum of the TFC mem-
brane (black line) exhibits typical peaks of PSf and PA [23–27]. The very weak peak at
1007 cm−1 originates from symmetric stretching of diphenyl ether. The two peaks at 1073
and 1108 cm−1 correspond to symmetric and antisymmetric SO2 stretching, respectively,
and also C–C stretching. The one strong peak at 1148 cm−1 originates from symmetric
C–O–C and C–C stretching, and the overlapping weak peak at 1171 cm−1 corresponds
to CO–NH skeletal motion. The weak peak at 1206 cm−1 and the weak broad peak at
1226 cm−1 arose from asymmetric and antisymmetric C–O–C stretching and N–H wagging,
respectively, and the very weak broad peak at 1295 cm−1 came from asymmetric SO2
stretching and symmetric aromatic C=C stretching. The two strong peaks at 1585 and
1606 cm−1 correspond to phenyl ring vibrations.

The Raman spectra of the GONs- (blue line) and o-SWNT-TFC (red line) membranes
are similar to the spectrum of the TFC membrane, with the exception of the broad peak
at 1350 cm−1 and the double peaks at ~1600 cm−1, which could indicate the addition of a
broad peak. Two such broad peaks are typical of GONs and o-SWNTs, and are called D and
G peaks, respectively [28,29]. The D and G peaks are from the in-plane stretch vibrations
of aromatic rings, and in particular, the D peak only appears in the presence of (graphite
lattice) disorder [28]. The observation of D and G peaks in Figure 2 confirms the presence
of GONs and o-SWNTs in the GONs- and o-SWNT-TFC membranes, respectively.
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Figure 2. Raman spectra of TFC (black line), GONs-TFC (blue line), and o-SWNTs-TFC (red
line) membranes.

The contact angle of the TFC membrane decreased slightly after embedment of GONs
or o-SWNTs (Figure 3) into the PA layer. The contact angle of the GONs-TFC membrane
was only marginally smaller than that of the o-SWNT-TFC membrane within the margin of
error. In other words, the hydrophilicities of the GONs- and o-SWNT-TFC membranes do
not noticeably differ but are higher than that of the TFC membrane.
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Figure 3. Contact angle of TFC, GONs-TFC, and o-SWNTs-TFC membranes (n = 8).

The surface morphology of the TFC, GONs-TFC, and o-SWNTs-TFC membranes was
observed by SEM. The surface of the TFC membrane (Figure 4a) was very smooth and
had a few tiny ridges, whereas the surfaces of the GONs- and o-SWNTs-TFC membranes
(Figure 4b–e) had clusters of bumps (white protruding region in Figure 4b–f and many
tiny ridges (thick white protruded lines in Figure 4b–e,g). The clusters of bumps were
formed on almost half of the surface. The bumps (Figure 4f) had convex or concave shapes.
The head of a tiny concave bump was similar to the convex bump. Therefore, the convex
bump might be an early form of the concave bump. These morphologies could be caused
by differences in the solubility of PIP, GONs, and o-SWNTs in the organic solvent. As
is well known, diffusion of amine monomers (e.g., PIP) into an organic solvent, which
causes the formation of bumps and ridges [30], is related to solubility in the solvent [31]. A
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monomer that is more soluble in the organic solvent can form larger and more bumps and
ridges on a membrane surface. Meanwhile, as the solubility of GONs in the organic solvent
is much greater than that of PIP [32,33], PIP might be dragged by the GONs toward the
organic solvent owing to faster diffusion of the GONs. Therefore, the formation of ridges
and bumps on the PA layer could be promoted. o-SWNTs, which have a similar chemical
composition to that of GONs, should also have analogous solubility in an organic solvent.
Thus, the addition of o-SWNTs to a solution of PIP could also cause protuberance on the
PA layer. The bumps in the figures were not attributed to the aggregation of GOs, since
wall-like wrinkles are formed on the membrane surface when GOs are aggregated.
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Figure 4. SEM images of (a) TFC, (b) GONs-TFC (20 ppm), (c) GONs-TFC (40 ppm), (d) o-SWNTs-
TFC (20 ppm), and (e) o-SWNTs-TFC (40 ppm) membranes at 3000× magnification, (f) bumps and
(g) ridges of a GONs-TFC membrane (40 ppm) at 10,000× magnification. These figures show the
surface of the membranes before exposure to acid solution.

The surface morphologies of the membranes after exposure to acid were also investi-
gated (Figure 5). The control TFC membrane (Figure 5a) had a very smooth surface, similar
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to that before the exposure to acid, indicating that there is no morphological difference
before and after acid treatment. The surface of the o-SWNTs-TFC membrane was also
smoother after acid treatment, but tiny white spots existed on the surface (Figure 5d,e).
They might be vestiges of ridges or bumps. This observation suggested that the top of the
o-SWNTs-TFC embedded PA layer including bumps and ridges was degraded considerably.
However, on the GONs-TFC membrane, a few small clusters of bumps (white protruded
regions in Figure 5b,c,f) withstood the acid treatment. In detail, the shape of the clusters of
bumps (Figure 5f) was different from that before acid treatment (Figure 4f). Each bump
seems to melt down, and the bumps were connected to each other. That would be the
result of degradation by sulfuric acid. The PA active layer of the GONs-TFC membrane
was likely maintained.
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Figure 5. SEM images of (a) TFC, (b) GONs-TFC (20 ppm), (c) GONs-TFC (40 ppm), (d) o-SWNTs-
TFC (20 ppm), and (e) o-SWNTs-TFC (40 ppm) membranes at 3000× magnification, and (f) a GONs-
TFC membrane (40 ppm) at 10,000× magnification. These images were acquired after the acid
resistance test.

After acid treatment, several things that look like GONs and o-SWNTs, or microbes
were found on the membrane surface (Figure 6). In detail, the wrinkled pattern was
observed on the GONs-TFC membrane because the upper part of the PA layer was de-
graded (Figure 6a). Such patterns are typical of GONs, whether they are embedded in a
PA layer [19] or not [34]. The yellow dashed regions in Figure 6b seem to be rod-shaped
o-SWNTs on the surface of the o-SWNT-TFC membrane. The width of the wrinkle and rod
are several dozen times thicker than GONs and o-SWNTs, respectively. That could be due
to the wrapping of the o-SWNTs by PA. The structure looked like o-SWNTs are thinner,
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brighter, and less rounded [35], but the microbes are relatively thicker, darker, and more
rounded [36].
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3.3. Evaluation of the Performance of GONs- and o-SWNTs-TFC Membranes

Figure 7 shows the changes in water flux and salt rejection of the TFC, GONs-TFC, and
o-SWNTs-TFC membranes exposed to acid under the condition of a 2000-ppm MgSO4 feed
solution. Before acid exposure, water flux of the membrane was 8% (for 40 ppm GONs) or
6% (for 40 ppm o-SWNTs) higher than that of the control membrane owing to enhanced
hydrophilicity and roughness caused by local protrusions [37,38]. The effect of GONs and
o-SWNTs on the water flux of the PIP-based NF membrane was smaller than that observed
in previous studies using MPD, which is likely because the hydrophilicity of PIP-based PA
is much higher [39,40] than that of MPD-based PA [41,42].
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Over time, salt rejection of the TFC membrane decreased with acid treatment, but the
decline rate was reduced by the embedment of GONs. At the end of the test, the GONs-TFC
membrane (40 ppm) exhibited 21% higher salt rejection than the TFC membrane. This
acid resistance might originate from the (physical) barrier effect of GONs and hydrogen
bonding between GONs and PA. The barrier effects have been previously reported for
chlorine resistance of TFC membranes [19,43,44] and for enhanced acid resistance of TFC
membranes coated with another material [13]. In detail, GONs would lie horizontally on
the PA layer such as in the case of Langmuir–Blodgett film deposition [45,46], indicating
horizontal deposition of films on a substrate when a substrate is pulled out vertically from
a solution containing film. In this study, the support layer was pulled out vertically from
a PIP solution including GONs. The horizontally arrayed GO nanosheets could act as
a physical barrier, protecting the underlying PA against acid solution [19,43]. Moreover,
the functional groups of GONs could form hydrogen bonds with the carbonyl groups
of PA [47]. Such hydrogen bonding could impede the addition of hydrogen to carbonyl
groups, the initiating site of hydrolysis [13]. In addition, the bumps on GONs- and o-
SWNT-TFC membranes (Figure 4b–e) might act as a sacrificial layer to further increase
their acid resistance [48].

However, the embedment of o-SWNTs did not effectively suppress the decrease in salt
rejection of the membrane by acid solution exposure, unlike the case of GONs, although
the performance and properties of the GONs- and o-SWNT-TFC membranes were almost
the same as before the acid treatment. This difference in the behavior of the GONs- and o-
SWNT-TFC membranes could be attributed to the different shapes of GONs and o-SWNTs.
Though very similar in composition [49], GONs and o-SWNTs, respectively, have planar
and rod-like shapes. The projection area of o-SWNT is ~32% (calculated) smaller than that
of GONs, and the curved surface and narrow width (OD: ~1.5 nm) of the o-SWNT could
allow to make a detour to the underlying PA. Therefore, the acid resistance of the o-SWNTs-
TFC membrane only marginally increased because o-SWNTs could only make a sacrificial
layer and hydrogen bonds with PA without a sufficient barrier effect. Consequently, the
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barrier effect is likely the primary cause of the acid resistance of the GONs-TFC membrane
compared with the o-SWNTs-TFC membrane.

Furthermore, the concentration of GONs in the PIP aqueous solution was increased to
300 ppm to evaluate the acid resistance of the GONs-TFC membrane without excluding
severe particle aggregation during the preparation of the NF membrane. The GONs-TFC
membrane did not contain any other additives to enhance acid resistance without GONs for
clear analysis. The preparation and test conditions were the same as the above conditions
(50% sulfuric acid). The decline in salt rejection was retarded more using the 300 ppm
GONs solution (Figure 8b) than using the 40 ppm GONs solution (Figure 7c). The GONs-
TFC membrane (300 ppm) maintained good salt rejection (>95%) 4.7 times longer than the
control TFC membrane.
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4. Conclusions

A small amount of GONs embedded in the PA layer of a TFC membrane improved
the acid resistance of the TFC membrane, and the improvement is believed to be caused by
the barrier effect of GONs, hydrogen bonding between GONs and PA, and the formation
of a sacrificial role of PA layer protruded by GONs. However, o-SWNTs, which have a
similar chemical composition to GONs, exhibited only a small effect on the acid resistance
of the TFC membrane because o-SWNTs could not provide a barrier effect owing to their
rod-like shape. Therefore, the barrier effect is likely the primary cause of the acid resistance
of the GONs-TFC membrane. This study shows that the acid resistance can be improved
by the use of additives that provide a barrier effect such as GONs. The improvement in
the acid resistance is expected to broaden the use of polyamide membranes in separation,
purification, and concentration processes for various solutions including strong acids.
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