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Abstract: The study and control for chip have a significant impact on machining quality and produc-
tivity. In this paper, GH4169 was cut with an indexable disc milling cutter. The chips corresponding
to each group of cutting parameters were collected, and the chip parameters (chip curl radius, chip
thickness deformation coefficient, and chip width deformation coefficient) were measured. The
qualitative relationship between the chip parameters and cutting parameters was studied. The
quadratic polynomial models between chip parameters and cutting parameters were established and
verified. The results showed that the chip parameters (chip curl radius, chip thickness deformation
coefficient and chip width deformation coefficient) were negatively correlated with spindle speed;
chip parameters were positively correlated with feed speed; chip parameters were positively cor-
related with cutting depth. The maximum deviation rate between measured values and predicted
values for chip curl radius was 9.37%; the maximum deviation rate for cutting thickness deformation
coefficient was 13.8%, and the maximum deviation rate of cutting width deformation coefficient was
7.86%. It can be seen that the established models are accurate. The models have guiding significance
for chip control.

Keywords: cutting parameters; chip parameters; models

1. Introduction

In the cutting process, long and continuous chips will wind around the workpiece,
tool, or fixture, which will hinder the positioning and clamping of the workpiece, reduce
the quality of the machined surface, aggravate the tool wear or damage, and even affect
the safety of the operator. Sometimes the machine has to stop cutting to clean the chips,
which greatly reduces productivity. In addition, long and messy chips are not easy to
clean and transport. However, if the chip is too small, the chip will splash and accumulate
everywhere, causing cutting vibration and premature tool damage, which will also affect
the processing quality and endanger the safety of the operator. Therefore, the study and
control of chip is a key problem to ensure the processing quality and improve productivity
in machining, especially in automatic production.

According to the formation parameters of chip, Japanese scholar Nakayama et al. [1,2]
calculated the shape parameters of the spiral chip and established the chip geometry. By
measuring the geometry size of the chip, the chip flow direction, up curl radius, and
transverse curl radius can be calculated. Kharkevich et al. [3–6] defined six kinds of up
curl radius and transverse curl radius on basis of the research of Nakayama Ichio and
determined the above six kinds of up curl radius and transverse curl radius according
to the geometric parameters of spiral chip, which enriched the chip shape geometry.
Chen et al. [7,8] held that: in the actual cutting process, due to the constraints of tool shape
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and cutting space, the chips not only produce upward curl and transverse curl but also
twist. They studied the situation when the chips flow out along the rake face of straight
edge and flat rake face tools and described the possible shape of chips in the cutting process
from a mathematical point of view. Li et al. [9,10] systematically studied the constraint
relationship between the chip and the obstacle based on the spatial motion trajectory of
the chip, established the constraint equation between the chip and the obstacle surface in
the process of chip formation, and established the mathematical models of upward curling
and transverse curling according to the chip breaking conditions.

Fang and Jawahir [11] verified the prediction formulas of chip curl radius, chip outflow
angle, and cutting thickness by cutting medium carbon steel with P20 cemented carbide
tool. Zhang and Peklenik [12] studied the chip flow direction and curl radius with a large
number of experiments and pointed out that the ratio of the limit curvature radius of the
chip to the original radius (also known as the chip radius ratio) falls in the range of 1.2 to
2.0, and the obtained chip has no effect on the cutting process and the machined surface
of the workpiece. Li et al. [13] observed the chip formation process of easy cutting steel
under the scanning electron microscope and achieved comprehensive research on metal
chip formation mechanism, micro, quantitative, dynamic, and multiple factors.

Worthington and Redford [14,15] studied the influence of geometric parameters of chip
breaking groove, edge width, on chip breaking, and gave the range of edge width, which is
conducive to chip breaking, and established the model of chip curl radius. Nedes et al. [16]
established a mathematical model based on chip flow angle, effective rake angle, and chip
curl radius. Zhang et al. [17] held that the cutting force imposed on the shear plane of the
chip and the cutting force imposed on the contact plane are not in a straight line, so there is
a cutting bending moment, which is the cause of chip bending. According to the theory
of slip line field, the curl radius of the chip is calculated. Ramalingam et al. [18] gave a
calculation model of chip curl radius in orthogonal cutting.

Maruda et al. [19] studied the tool wear and chip shape in turning AISI 1045 steel with
a sintered carbide P25 tool under three cooling conditions: dry machining, MQCL method,
and MQCL + EP/AW. The results showed that MQCL + EP/AW cooling mode had the least
tool wear and better chip shape. Singh et al. [20] established quadratic polynomial models
of chip reduction coefficient (CRC), surface roughness, and chip tooth height with respect
to cutting speed, feed speed, and cutting depth by using the response surface method and
carried out multi-objective parameters optimization in turning AISI 4340 steel with the
yttria-stabilized zirconia toughened alumina (Y-ZTA) ceramic cutting tool. Das et al. [21]
studied the influence of cutting depth, feed speed, and spindle speed on machining
forces and chip thickness when turning 4340 alloy steel with three lubrication conditions:
compressed air, water-soluble coolant, and nanofluid. The quadratic polynomial models of
cutting force and cutting thickness with respect to cutting depth, feed rate, and spindle
speed were established. It showed that nanofluid produced the best performance in
comparison to compressed air and water-soluble coolant. Iwata et al. [22] calculated the
chip thickness, curl radius, and strain distribution by finite element simulation. Combining
the finite element model with the ductile fracture criterion, the chip fracture was predicted.
In the above literatures, the mathematical model for chip curl radius is derived from
related hypotheses and theories, but many parameters in the model are difficult to obtain
accurately. This paper studies the qualitative relationship between chip parameters (curl
radius and deformation coefficient) and cutting parameters and establishes quadratic
polynomial models between chip parameters (curl radius and deformation coefficient) and
cutting parameters, which can be used for the prediction of chip parameters.

2. Workpiece and Milling Cutter
2.1. Workpiece

GH4169 is a common material for blisk manufacturing, which has good fatigue
performance, high strength, and good thermal stability. The material used in this test was
GH4169 (Shaanxi Changyu Aviation Equipment Co., Ltd., Xi’an, China), which is a solid
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solution treated after forging. The size of workpiece was 265 mm × 165 mm × 23.5 mm.
Nickel base superalloy GH4169 is a superalloy with Ni as the base element, in which the
content of Ni is more than 50%. Its main chemical composition is shown in Table 1 [23].
Ni has very good stability and can be stably dissolved with other metal elements, which
is beneficial to increase the service life of the alloy. The chemical composition of GH4169
determines its good physical and mechanical properties, which are shown in Table 2 [23].

Table 1. Main chemical constituents of GH4169 (%).

Ni Cr Mo Nb Ti Al C Si Mn Fe

51.75 17 2.93 5.15 1.07 0.45 0.042 0.21 0.03 21.368

Table 2. Physical and mechanical properties of GH4169.

Physical
Properties

Density
(g/cm3)

Poisson’s
Ratio

Thermal
Conductivity

(W/mK)

Specific Heat
Capacity
(J/kg ◦C)

Elastic
Modulus

(GPa)

8.24 0.3 14.7 435 199.9

Mechanical
Properties

Elongation
(%)

Reduction of
Area
(%)

Tensile
Strength

(MPa)

Impact
Toughness

(MJ/m2)

Yield Stress
(MPa)

24 40 1430 348 1100

2.2. Milling Cutter

The milling cutter used for the experiment was a disc milling cutter of indexable
three-sided inserts, which consisted of a cutter disc and inserts connected by screws. There
were 39 inserts, 13 left inserts, 13 right inserts, and 13 middle inserts, as shown in Figure 1.
The left insert, right insert, and middle insert are staggered, which means their axes of
symmetry do not coincide. The tool manufacturer is Zhuzhou Diamond Cutting Tools Co.,
Ltd., China. The spindle speed should not be greater than 200 r/min. When the unit of the
spindle speed is r/min, and the unit of the feed speed is mm/min, the value of the feed
speed must be smaller than the spindle speed.

Figure 1. Disc milling cutter of indexable three-sided inserts.

The angle between the cutting edge of inserts and the horizontal plane was 2.2 degrees,
as shown in Figure 2. So, when the milling cutter was machining the workpiece, it was an
oblique cutting process. So, it was an orthogonal cutting process when the middle insert
was cutting the workpiece; it was an oblique cutting process when the left insert and right
insert were cutting the workpiece.
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Figure 2. Position relationship of the three inserts.

The insert material was carbide with a physical coating on the surface. Figure 3
displays the geometry of the insert, and the thickness was 4.3 mm. The positioning and
clamping mode of inserts and cutter disc is shown in Figure 4. The milling cutter parameters
are shown in Table 3.

Figure 3. Insert.

Figure 4. The positioning and clamping mode of inserts and cutter disc.

Table 3. Cutters and insert geometric parameters.

Number of
Teeth

Diameter
(mm)

Thickness
(mm)

Rake Angle
(◦)

Flute Length
(mm)

Angle of
Inclination (◦)

39 420 15 8 6 ±2

3. Cutting Experiment

The disc milling cutter cut the workpiece (Shaanxi Changyu Aviation Equipment
Co., Ltd., Xi’an, China) without cutting fluid in Figure 5 in a symmetrical way, which
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means the workpiece was clamped in the symmetrical direction of the axial trajectory of
the milling cutter. The chip is shown in Figure 6. It can be seen that the cutting type was a
C-shaped chip.

Figure 5. Symmetrical milling.

Figure 6. Chips.

4. Qualitative Relationship between Chip Parameters and Cutting Parameters
4.1. Chip Radius

The geometric dimension of the chip breaking groove of the inserts is shown in
Figure 7, and the geometric dimension of the chip pocket for the disc cutter is shown in
Figure 8. The radius of the chip breaking groove was 3.5 mm, and the radius of the chip
pocket was 4.75 mm. So, the cutting radius was about 4.75 mm. Measurement of chip curl
radius is shown in Figure 9. The measured chip radii are listed in Table 4.

Figure 7. Geometric dimension of the chip breaking groove.
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Figure 8. Geometric dimension of the chip pocket for the disc cutter.

Figure 9. Measurement of chip curl radius.

Table 4. Results of chip parameters.

No. n vw ap r kt kw

1 60 18 1.5 4.58 2.38 1.12
2 60 18 2.5 4.74 2.86 1.28
3 60 18 3.5 4.82 3.27 1.44
4 60 27 1.5 4.64 2.53 1.18
5 60 27 2.5 4.88 3.17 1.38
6 60 27 3.5 5.06 3.88 1.52
7 60 36 1.5 4.83 3.16 1.29
8 60 36 2.5 5.07 3.78 1.43
9 60 36 3.5 5.26 4.26 1.64

10 45 18 1.5 4.73 3.57 1.25
11 45 18 2.5 4.96 4.77 1.47
12 45 18 3.5 5.09 5.14 1.52
13 45 27 1.5 4.82 4.32 1.33
14 45 27 2.5 5.08 5.04 1.54
15 45 27 3.5 5.22 5.85 1.68
16 30 18 1.5 4.94 4.29 1.29
17 30 18 2.5 5.15 5.24 1.51
18 30 18 3.5 5.34 6.88 1.67
19 30 27 1.5 5.09 4.96 1.41
20 30 27 2.5 5.24 7.55 1.62
21 30 27 3.5 5.41 8.67 1.86

4.2. Chip Thickness Deformation Coefficient

The chip thickness deformation coefficient kt is defined as the ratio of chip thickness
hc to theoretical instantaneous cutting thickness ht, which can be expressed as

kt =
hc

ht
(1)
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The chip thickness deformation coefficients obtained in experiments are listed in
Table 4.

4.3. Chip Width Deformation Coefficient

The chip width deformation coefficient kw is defined as the ratio of chip width wc to
cutting depth ap, which can be expressed as

kw =
wc

ap
(2)

The chip width deformation coefficients obtained in experiments are listed in Table 4.

4.4. Study on the Relationship between Chip Parameters and Cutting Parameters

The variation of chip curl radius, chip thickness deformation coefficient, and chip
width deformation coefficient with cutting parameters can be drawn from Table 4, as shown
in Figures 10–12.

Figure 10. Variation of chip curl radius with cutting parameters.

Figure 11. Variation of chip thickness deformation coefficient with cutting parameters.
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Figure 12. Variation of chip width deformation coefficient with cutting parameters.

It can be seen from Figure 10 that the chip curl radius decrease was related to the
increase in spindle speed; chip curl radius increase was related to the increase in feed speed;
chip curl radius increase was related to the increase in cutting depth.

It can be seen from Figure 11 that the chip thickness deformation coefficient decreased
with the increase in spindle speed; chip thickness deformation coefficient increased with the
increase in feed speed; chip thickness deformation coefficient increased with the increase
in cutting depth.

It can be seen from Figure 12 that the chip width deformation coefficient decreased
with the increase in spindle speed; chip width deformation coefficient increased with the
increase in feed speed; chip thickness width coefficient increased with the increase in
cutting depth.

5. Mathematical Model for Chip Parameters

The quadratic polynomial has high fitting accuracy and good prediction accuracy.
According to the experimental results in Table 4, the quadratic polynomial model of chip
curl radius, chip thickness deformation coefficient, and chip width deformation coefficient
can be expressed as

r = 5.185 − 0.0191n − 0.0157vw + 0.2792ap+
0.000033n2 + 0.000324v2

w − 0.0293a2
p+

0.00016nvw − 0.000448nap + 0.00294vwap

(3)

kt = −3.28 + 0.1399n + 0.15vw + 2.758ap−
0.00063n2 + 0.00236v2

w − 0.119a2
p−

0.00457nvw − 0.03553nap + 0.0172vwap

(4)

kw = 0.572 + 0.01086n + 0.0116vw+
0.285ap − 0.000111n2 + 0.000103v2

w − 0.0186a2
p−

0.000222nvw − 0.001543nap + 0.00231vwap

(5)

The residual errors of chip curl radius, chip thickness deformation coefficient, and
chip width deformation coefficient are displayed in Figures 13–15. The maximum residual
error value of chip curl radius was less than 0.054 mm; the maximum residual error value
of chip thickness deformation coefficient was less than 0.5; the maximum residual error
value of chip width deformation coefficient was less than 0.05.
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Figure 13. Residual errors of chip curl radius.

Figure 14. Residual errors of chip thickness deformation coefficient.

Figure 15. Residual errors of chip width deformation coefficient.
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6. Experimental Verification

The validation parameters and results of chip parameters are shown in Table 5. The
comparison between the measured and predicted values is shown in Figures 16–18. The
maximum deviation rate between measured values and predicted values for chip curl
radius was 9.37% and the average deviation rate was 5.64%; the maximum deviation rate
for cutting thickness deformation coefficient was 13.8% and the average deviation rate was
9.72%; the maximum deviation rate of cutting width deformation coefficient was 7.86%
and the average deviation rate was 4.03%. The results show that the average deviation
rates between measured values and predicted values for chip parameters were less than
10%, which indicates measured values are in good agreement with the predicted values.
The average deviation rate for cutting thickness deformation coefficient was the largest
of the three chip parameters, which means that there are more factors affecting cutting
thickness deformation besides cutting parameters.

Figure 16. Comparison between the measured and predicted values for chip thickness deformation
coefficient.

Figure 17. Comparison between the measured and predicted values for chip curl radius.
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Figure 18. Comparison between the measured and predicted values for chip width deformation
coefficient.

Table 5. Validation parameters and results of chip parameters.

No. n vw ap r kt kw

1 65 35 4 5.06 3.56 1.52
2 55 25 2 5.18 3.14 1.34
3 50 15 4 4.68 4.72 1.61
4 40 35 3 5.56 6.72 1.78
5 35 15 2 4.51 4.64 1.46
6 65 15 3 4.85 2.21 1.22

7. Discussion and Conclusions

Compared with the previous literatures, this paper studied the chip parameters in
milling GH4169 with a special tool in a special machine tool. In this paper, the qualitative
relationships between chip parameters for cutting GH4169 with an indexable disc milling
cutter and cutting parameters were studied, and the quadratic polynomial models between
chip parameters and cutting parameters were established. The results showed that the
chip parameters (chip curl radius, chip thickness deformation coefficient, and chip width
deformation coefficient) were negatively correlated with spindle speed; chip parameters
were positively correlated with feed speed; chip parameters were positively correlated with
cutting depth. The experimental verification indicated maximum deviation rate between
measured values and predicted values for chip curl radius was 9.37%; the maximum
deviation rate for cutting thickness deformation coefficient was 13.8%, and the maximum
deviation rate of cutting width deformation coefficient was 7.86%. On the one hand, the
model did not consider the insert eccentricity, deformation, and wear, as well as various
assembly and manufacturing errors. On the other hand, the model established is only
suitable for the processing combination of a specific machine tool, specific tool, and specific
material, and the applicability of the model is poor. In the future, the model needs to be
modified on the basis of considering insert wear and eccentricity high.

Author Contributions: Conceptualization, G.L., C.X., and H.X.; methodology, G.L. and C.X.; soft-
ware, C.X.; validation, H.X.; formal analysis, G.L. and C.X.; investigation, G.L. and H.X.; resources,
C.X. and H.X.; data curation, C.X. and H.X.; writing—original draft preparation, G.L. and C.X.;
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Nomenclature

n Spindle speed, r/min
vw Feed speed, mm/min
ap Cutting depth, mm
r Chip curl radius, mm
kt Chip thickness deformation coefficient
kw Chip width deformation coefficient
hc Chip thickness, mm
ht Theoretical instantaneous cutting thickness, mm
wc Chip width, mm
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