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Abstract: Sliding wear performance of thermal spray WC-based coatings has been widely studied.
However, there is no systematic investigation on the influence of test conditions on wear behaviour
of these coatings. In order to have a good understanding of the effect of test parameters on sliding
wear test performance of HVAF-sprayed WC–CoCr coatings, ball-on-disc tests were conducted
under varying test conditions, including different angular velocities, loads and sliding distances.
Under normal load of 20 N and sliding distance of 5 km (used as ‘reference’ conditions), it was
shown that, despite changes in angular velocity (from 1333 rpm up to 2400 rpm), specific wear rate
values experienced no major variation. No major change was observed in specific wear rate values
even upon increasing the load from 20 N to 40 N and sliding distance from 5 km to 10 km, and
no significant change was noted in the prevailing wear mechanism, either. Results suggest that no
dramatic changes in applicable wear regime occur over the window of test parameters investigated.
Consequently, the findings of this study inspire confidence in utilizing test conditions within the
above range to rank different WC-based coatings.

Keywords: tests conditions; sliding wear; HVAF; WC–CoCr; ball-on-disk; wear mechanism

1. Introduction

WC-based cermet coatings sprayed using high velocity thermal spray techniques are
one of the most common protective layers employed in industry for wear applications [1,2].
They are expected to resist various wear environments, namely erosive wear, abrasive wear,
fretting wear, fatigue and sliding wear [1,3]. There are several standardized test procedures
to simulate different wear environments, including ASTM G76 [4] for erosive, ASTM G65 [5]
for abrasive and ASTM G99 [6] for sliding wear conditions. Ball-on-disk is one of the most
commonly employed tests to assess sliding wear performance of WC-based coatings [7,8].
In this test, however, there are several parameters that can potentially affect the results. It is
known that a minor change in the contact conditions can influence the process of material
removal in a tribosystem [9]. Bayer [10] remarks that “Wear is not a material property.
It is a system response”, and this clearly highlights the importance of test conditions in
a wear experiment. A sliding ball-on-disk test can result in different contact conditions
depending on applied load, the material of the mating surfaces, hardness and size of the
produced debris, which can potentially lead to changes in material removal mechanisms
and, consequently, test results [11,12]. Occasionally, laboratory testing also compels conduct
of multiple tests on a single specimen by varying the wear track radii [13,14]. For a given
sliding distance, such tests inevitably lead to varying linear sliding velocities as well as
different number of contact incidents at a specific location. The influence of the above on
the test outcome also needs to be well understood. Further, it is pertinent to mention that
the influence of test conditions on results could be material-specific. This is expected, since
the threshold for a dramatic change in wear regime is expected to be intimately related to
the materials being tested.
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Performing ball-on-disc tests on thermally sprayed WC-based coatings typically re-
sults in a very shallow volume loss and, as a result, extremely low specific wear rate
(in order of 10−8–10−9 mm3·N−1·m−1) [15,16]. This extremely low material removal in-
troduces potential sensitivities to selection of test conditions as well as measurement
procedure. As stated in the standard [6], chosen test parameters can influence precision
of measurement as well as repeatability of test results. Particularly, great precision is
required when volume loss is extremely low, as typically in the case of WC-based coatings.
According to the standard ASTM G99, linear measures of wear scar should at least have
a sensitivity of 2.5 µm. However, the depth of a typical wear track in a ball-on-disc test
can be below 1 µm [17,18], which demands a higher measurement sensitivity than that
stated in the standard. Generally, in a ball-on-disk test, applied load, test duration and
sliding speed are the three main parameters that can potentially influence test results,
particularly in terms of material loss and coefficient of friction. Some studies can be found
in literature studying influence of these test parameters [19–22]. Based on the selected
test parameters, two main regimes can be achieved during sliding wear test, namely mild
wear and severe wear [1,23]. A transition is known to happen in wear regime from mild
to severe by increasing load and/or sliding speed or running the test for longer distances.
For instance, it has been shown in some studies [24,25] that a full transition in wear regime
can occur in the case of HVOF-sprayed WC–Co samples when increasing the normal
load from 19 to 35 N, resulting in a substantial increase in specific wear rate. Moreover,
Wang et al. [26] performed ball-on-disk tests on high velocity oxy-fuel (HVOF)-sprayed
WC–CoCr coatings at many different loads in the range 15 N–90 N for same test duration,
sliding speed and ball material. They concluded that, despite a huge change in the applied
load, the friction coefficient during the steady state period fluctuated in a small range
of 0.3–0.4. However, their results showed that the mechanism of material removal can
greatly change from carbide pull-outs to massive material exfoliation, depending on the
applied load. Moreover, specific wear rate experienced a substantial increase by a factor
of 102 (from 3.6 × 10−8 to 3.5 × 10−5 mm3·N−1·m−1). Karaoglanli et al. [27] studied wear
behaviour of HVOF WC–Co coatings, employing the ball-on-disk test under loads of 5 N
and 15 N and sliding speeds of 10 and 20 cm/s for the same test duration and ball material.
It was shown that an increase in sliding speed resulted in higher specific wear rate, while
the wear rate decreased on increasing the normal load from 5 N to 15 N. Although these
studies provide an understanding of the influence of test conditions on wear behaviour
of WC–CoCr coatings, there is no published report systematically investigating the effect
of all the aforementioned parameters on wear performance of WC-based coatings. In this
study, we tried to fill this research gap by conducting a systematic study on wear behaviour
of WC-based coatings under various wear conditions.

In order to have a good understanding of the role-playing factors and their effects on
the sliding wear behaviour of WC-based coatings, conducting a comprehensive investiga-
tion is vital. This helps to establish a reliable testing routine for HVAF-sprayed WC–CoCr
coatings. In this study, the effects of potential influencing parameters including angular
velocity, load and sliding distance on wear behaviour of WC-based coatings, fabricated
using high velocity air fuel (HVAF) spraying, are systematically evaluated and discussed.

2. Experimental Procedure
2.1. Deposition of Coating

Commercially available 86WC–10Co–4Cr powder manufactured employing agglom-
eration and sintering technique (trade name: Amperit® 558.059, Höganäs GmbH, Goslar,
Germany) was used as feedstock. Characteristics of the used powder are provided in
Table 1. Domex 355 coupons of 25.4 mm diameter and 6 mm thickness were used as sub-
strate. All the samples were degreased and mounted on a fixture rotating with a 1.66 m/s
linear speed. The samples were grit blasted with alumina particles of average size 220 µm
sprayed with the HVAF gun, resulting in a surface roughness (Ra) of approximately 4 µm.
The grit-blasted substrates were then coated using a 5L2 convergent–divergent nozzle with
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an M3 HVAF torch (Uniquecoat Technologies LLC, Oilville, VA, USA). Spray parameters
for grit-blasting and coating, both carried out using the above torch, are listed in Table 2.

Table 1. Characteristics of WC–CoCr feedstock powder.

Composition (% Mass) Particle Size Range (µm) Carbide Size Service Temp. (◦C)

Co: 8.5–11.5
Cr: 3.0–5.0

C: 5.0–6.0
W: Bal. 5/30 fine <500

Table 2. Grit-blasting and spraying parameters employed.

Gun/Nozzle Air
(psi)

Fuel 1
(psi)

Fuel 2
(psi)

Carrier
(L/min)

Feed
(g/min)

SoD
(mm)

Number
of Strokes

Grit-blasting M3/5L2 110 100 80 60 ≈100 350 2

WC–CoCr M3/5L2 118 105 115 50 200 300 16

2.2. Coating Characterization

Coated samples were ground and polished for microstructural characterization of
coating cross-sections and hardness measurements. Surfaces of coated samples were also
polished prior to wear testing. Following grinding using a 45 µm diamond disk, three steps
of polishing were performed successively with 9 µm and then 3 µm Kemet liquid diamond
media, followed by MasterMet 2 dispense to reach a mirror-polished state corresponding
to Ra value less than 0.01 µm. General microstructure analysis of the coatings as well
as post-wear analysis on wear scars were performed by scanning electron microscopy
(SEM) (HITACHI TM3000 microscope, Krefeld, Germany, and ZEISS GeminiSEM 450,
Oberkochen, Germany).

Vickers hardness measurement of the coating was conducted employing Struers
Duramin-40 microhardness tester. Following the standard ASTM E384 [28], a total of
fifteen indentations were performed on coating specimens.

2.3. Ball-on-Disk Sliding Tests

Samples were exposed to sliding wear employing a ball-on-disk testing rig (Tribometer
TRB3, Anton-Paar, Buchs, Switzerland) following the procedure of the standard ASTM G99.
The tests were conducted on mirror-polished samples. Three parameters, namely angular
velocity, load and sliding distance, were varied (see Table 3). A test run conducted at 20 N
of normal load for 5000 m of sliding distance with a linear speed of 0.2 m/s was selected as
the reference. All the test runs were performed at a constant linear speed of 0.2 m/s, which
resulted in various angular velocities corresponding to 2400, 2000, 1700, 1500 and 1333 rpm
when the radii of the wear tracks, made by the sliding ball on the coating surface, were
set to 5, 6, 7, 8 and 9 mm, respectively. That Alumina ball of radius 6 mm was used as the
mating material in all cases.

For each set of tests to assess parametric impact on ensuing results, the parameter of
interest was systematically varied compared to the reference run mentioned above. The
angular velocity was changed by varying the wear track radius and keeping the linear
speed constant during the tests. All the tests conducted to assess influence of angular
velocity (Figure 1a) were repeated three times at each wear track radius on three different
samples (S1, S2 and S3). Figure 1b shows a typical sample after testing on radii of 5, 7 and
9 mm. For the set of tests using the load as variable parameter, the normal applied load was
varied between 20 N and 40 N. Due to limitation in the testing rig, it was not plausible to
increase the load beyond 40 N. In yet another, the sliding distance was increased to 10 km
from 5 km. Finally, in one particular run, both load and distance were simultaneously
increased to 30 N and 10 km, respectively. The tests with load and distance as variables
were conducted on radii of 7 and 8 mm. This was done since the outcome of the tests of
different radii (see Section 3.2) has already established that the wear track radius does not
influence the specific wear rate.
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Table 3. Test parameters employed during sliding wear tests.

Variable Parameter Code Radius (mm) Load (N) Distance (km)

Angular velocity

R5 (S1/S2/S3) 5 20 5
R6 (S1/S2/S3) 6 20 5
R7 (S1/S2/S3) 7 20 5
R8 (S1/S2/S3) 8 20 5
R9 (S1/S2/S3) 9 20 5

Load

L20D5 7 and 8 20 5
L30D5 7 and 8 30 5
L35D5 7 and 8 35 5
L40D5 7 and 8 40 5

Distance L20D10 7 and 8 20 10

Load and distance L30D10 7 and 8 30 10
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Figure 1. (a) Schematic diagram of different radii and distinct locations for volume loss measurements
on the testing samples, and (b) a typical sample after ball-on-disk test.

Sliding data such as friction force and friction coefficient were continuously monitored
during the tests. After each test, the samples were ultrasonically cleaned and the volume
loss measured employing white light interferometry (WLI) method (Profilm 3D, Filmetrics,
Unterhaching, Germany). The measurement was performed at four different locations on
the wear track, as shown in Figure 1a. The cross-sectional area of the wear track at each
location was determined by dividing measured volume loss by length of wear track at each
segment measurement. Approximate arc length of each segment is 1.75 mm. From the four
measured values, an average value for the cross-section area of the whole wear track was
calculated along with standard deviation of the four measurements. Having total length of
the wear track and the average value of cross-section area, the total volume loss from the
wear track (Equation (1)), and therefore, the specific wear rate, can be obtained according
to Equation (2).

Vloss =
1
2
(π.R).

(
V1

l1
+

V2

l2
+

V3

l3
+

V4

l4

)
(1)

W =
Vloss
L.d

(2)

where in Equation (1) V1, V2, V3 and V4 are volume losses at the four locations shown in
Figure 1a; l1, l2, l3 and l4 are the corresponding arc length of the segments; and R is radius
of the wear track. L and d in Equation (2) are the applied normal load and total sliding
distance, respectively.
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3. Results and Discussion
3.1. Coatings Characterization

Figure 2 shows low and high magnification images of the WC–CoCr coating used
throughout this study. It can be seen that a uniform and dense WC–CoCr coating is
achieved by the HVAF method. Although there are some submicron pores (as indicated
in Figure 2) noted in the coating, the overall porosity content is less than 1 percent and
comparable with literature [7,8]. Vickers hardness value for the coating measured to be
1410 ± 27 HV0.3. All the coating specimens utilized for subsequent ball-on-disk wear tests
were simultaneously HVAF sprayed to ensure minimal variation, and the influence of each
test parameter on ensuing results is individually discussed below.
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3.2. Influence of Angular Velocity on Wear Behaviour
3.2.1. Local Variations within a Wear Track

According to Table 3, identical coating specimens were subjected to ball-on-disk tests,
with the track radius being the only variable. As mentioned in Section 2.3, specific wear
rates are calculated based on four local measurements using WLI method. Therefore, de-
pending on variation in volume loss from the four different locations, a standard deviation
can be defined for specific wear rate measurement corresponding to each wear track. This
deviation is a measure of uncertainty associated with specific wear rate determination due
to local variations within the wear track. The standard deviation values (Sm) for all the radii
are reported as error bars in Figure 3. It can be seen that a standard deviation as high as
4.18 mm3·N−1·m−1 can occur in specific wear rates corresponding to the same wear track,
calculated based on four local measurements. It is also noticeable that no trend is evident in
magnitude of Sm by changing angular velocity, which means the number of revolutions on
the same wear track as well as angular velocity does not significantly influence uniformity
of the wear track for the radii between 5 and 9 mm and angular velocity corresponding
to 1333 rpm to 2400 rpm. This indicates that the effect on uniformity of wear track due to
change in angular velocity can be considered negligible within this window.

3.2.2. Variation in Specific Wear Rate

Figure 3 shows specific wear rate value for all the 15 test runs (3 each for the five track
radii tested), and the error bars indicate standard deviation (Sm) of the four measurements
on each wear track.

Barring S2R5, S1R7 and S3R8, at least two out of the three tests performed at each
radius on the three samples were found to result in similar specific wear rate values.
Regardless of the different wear track radii, a clear overlap in error bars can also be



Materials 2021, 14, 3074 6 of 14

recognized. Therefore, the three conditions above (S2R5, S1R7 and S3R8) may be considered
to be outliers. Thus, the ball-on-disk tests are observed to yield consistent specific wear rate
results regardless of the angular velocity being varied over a wide range, as demonstrated
by the present experiments. This is due to the fact that no change in wear mechanisms
and wear regime happened in this window of tests conditions. More detailed discussion is
provided in Section 3.5.
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Figure 3. Specific wear rates from all fifteen ball-on-disc tests conducted at various wear track radii.

To further highlight the consistency of the specific wear rate results regardless of
angular velocity, omitting the three above mentioned outlier values, the calculated average
value of the specific wear rate and the maximum standard deviation that can occur from
measurement are depicted in Figure 4.

It can be seen that all the average values of each radius fall in a range of around
11—18.6 mm3·N−1·m−1. This deviation in average specific wear rate is smaller than
the maximum standard deviation from measurement (Max. Sm = ±4.18 mm3·N−1·m−1).
Therefore, it can be concluded that maximum deviation from changing the wear track
radius (and, hence, angular velocity) is smaller than the maximum standard deviation
from the measurement method itself. Moreover, standard deviation of the specific wear
rates of all the twelve measurements is 2.9 units, which is still much less than maximum
Sm. Therefore, results from the tests performed on the same sample with various track
radii (between 5 and 9 mm in the present study and corresponding to substantially varying
angular velocity) can be consistent and deemed to be representative of wear behaviour of
the coating.

3.2.3. Variation in Coefficient of Friction and Wear Mechanism

The coefficient of friction (CoF) for all the samples reached steady state after around
initial 5000 s of sliding. Figure 5 shows average steady state CoF values for all the 15
test repetitions performed on the 3 samples at different radii, along with the standard
deviation (as error bars) showing fluctuation of CoF values. It can be seen that a majority
of CoF values fall into a narrow range of 0.3 to 0.4. However, looking at S1R6 and S1R8, the
average CoF value can deviate from 0.16 to 0.58 units without any considerable change
in the specific wear rate (see Figure 3). Comparing specific wear rate figures with CoF
values (Figures 3 and 5), no direct correlation can be clearly made between specific wear
rate and its corresponding friction coefficient value. Unlike two studies conducted by
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Wesmann et al. [29,30] attributing higher coefficient of friction to formation of surface
oxides and tribofilm, no obvious correlation was identified between CoF values and surface
morphology during post-wear analysis. In other words, some wear tracks were found to
be similar, while the corresponding CoF values were different by a factor of 2 or 3. Hence,
the CoF value in the WC–CoCr coating studied in this paper appears to vary without a
clear trend within the aforementioned range. Similar large variation in CoF without any
clear trend was found in a study by Wilkowski et al. [31].
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Figure 6. SEM images of wear tracks at different radii of 5, 7 and 9 mm. (a) S2R5; (b) S3R5; (c) S2R7; (d) S3R7; (e) S2R9 and
(f) S3R9.

Although the specific wear rate values appear consistent regardless of angular velocity
as discussed above, it is also important to ensure that this observation is not coincidental
and there is no change in wear regime over the test parameter window under consideration.
Therefore, in order to investigate the wear mechanisms responsible for material removal,
wear tracks were studied under SEM. Figure 6 shows SEM images of wear scars of various
radii of R5, R7 and R9 on the two samples, S2 and S3. Ploughing is the dominant wear
mechanism regardless of the angular velocity of the test. In addition, some signs of shallow
grooving can be detected (shown by double sided arrows). These two mechanisms are
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also reported in other studies to be the common wear mechanisms in case of WC-based
coatings under sliding wear conditions [26,32]. SEM image on wear scar of the sample
S2R5 shows that the number and depth of the ploughs are extremely higher than the rest
of the test runs, which is the reason for its specific wear rate being too high (see Figure 3).
Moreover, as shown by arrows, there are regions with significant material removals within
this wear track, while no such large-scale removal (in form of pitting wear) was detected
in other wear tracks. The reason for this unique behaviour was not clear. By comparing
SEM images of the wear tracks with various radii (various angular velocities), it is clear
that the quantity and depth of ploughs and grooves are differing randomly from a case to
the other, without any direct correlation with the radius (angular velocity). For instance,
number of ploughs on the sample S2R7 are clearly higher than the sample S2R9, but this
trend is completely reversed in the case of sample 3 (compared S3R7 with S3R9). All things
considered, it is clear that for none of the samples major wear mechanisms changed, and it
is dominated by ploughing and minor grooving.

3.3. Influence of Load on Wear Behaviour
3.3.1. Variation in Specific Wear Rate

Wear behaviour of the HVAF-sprayed WC–CoCr coating was also evaluated at dif-
ferent loads applied during ball-on-disk testing. Specific wear rate values corresponding
to various loads are reported in Figure 7. No major change in specific wear rate was
detected, and it is also clear that no major variation in the range of error bars is noted. This
means that increase in load over the range investigated (20 N to 40 N) has no influence on
consistency of the sliding wear test results.
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Figure 7. Specific wear rates from ball-on-disc tests conducted under different loads.

3.3.2. Variation in Coefficient of Friction and Wear Mechanism

Figure 8 shows evolution of friction coefficient of the samples during the tests per-
formed at radius of 7 mm. The height of the CoF plateau is observed to clearly decrease
with increasing normal load. A gradual decrease in the average values can be seen when
increasing the load from 20 N to 30 N, 35 N and 40 N. This indicates that, in spite of increase
in normal load, friction load does not experience any considerable change. Although some
studies can be found reporting a similar trend [33], this trend can also exhibit random
behaviour depending on contact conditions [26] or may even be completely reversed [34]
based on the number of third-body particles involved in the contact region. In general,
when fewer third-body particles are involved in the test, i.e., when the test condition is
close to two-body wear, with increase in load, the CoF value decreases.
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Figure 8. CoF evolution for the coating tested under different normal loads.

To investigate any possible change in mechanism of wear as a result of increase in
load, SEM analysis was performed on wear tracks. Figure 9 shows SEM images of wear
scars of the L30D5 and L40D5 samples. The number of ploughs has clearly experienced a
noticeable increase by increasing the load from 30 N to 40 N. Comparing Figures 6 and 9,
it is clear that, in spite of the increase in load from 20 N to 40 N, ploughing is still the
dominant wear mechanism. This suggests that no significant changes occurred in the
mechanism of material removal [1,26,35].Materials 2021, 14, x FOR PEER REVIEW 11 of 15 
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Figure 9. SEM images of wear tracks at different normal loads of 30 N and 40 N. (a) L30D5 and (b) L40D5.

3.4. Influence of Sliding Distance on Wear Rate

Running the test for longer time (longer sliding distance) is another way to investigate
any changes in wear rate. Three tests were conducted for this matter: two with the same
load of 20 N and different sliding distance of 5 km and 10 km (L20D5 and L20D10) and
one with normal load of 30 N and distance of 10 km (L30D10). Figure 10 shows specific
wear rate of the three samples. Increasing sliding distance of the test from 5 km to 10 km
(under normal load of 20 N) resulted in neither a substantial difference in specific wear
rate nor any improvement in repeatability of result (bigger error bar for L20D10 compared
to L20D5). As presented later in Figure 12, all the three values are still within the window
of maximum Sm and thus do not differ significantly.
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Figure 10. Specific wear rate values from ball-on-disc tests conducted for different sliding distance
and load.

Figure 11a,b show SEM images on wear tracks of the two L20D10 and L30D10 samples.
First, by comparing Figure 11a and SEM images in Figure 6, it is clear that no major changes
are detectable by increasing the sliding distance from 5 km to 10 km under the same normal
load of 20 N. However, a noticeable change is evident when comparing SEM images of
Figure 11a,b, which is rooting from an increase in applied normal load from 20 N to 30 N
when running for the same distance of 10 km. One clear change is that quantity and depth
of the ploughs experienced an obvious increase, and the number and size of pits (dark
regions) also considerably increased. The pits, which are filled up with wear products,
indicate material removal [18]. Therefore, by a simultaneous increase in the normal load
(from 20 N to 30 N) and sliding distance (from 5 km to 10 km), some signs of material
removal in form of pits is added to ploughing as dominant wear mechanisms. However, as
far as the pits are isolated and therefore possible to be filled up with wear products such
as oxides of alumina, tungsten, cobalt and chromium, they are not taken into account in
volume loss measured by WLI technique and, consequently, not in specific wear rate. This
explains no major change in specific wear rate value reported in Figure 10 in spite of minor
change in removal mechanisms and, therefore, no changes in wear regime. As shown in the
study by Wang et al. [26], connection of these pits can cause a dramatic change in removal
mechanism and result in the magnitude of specific wear rate.
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3.5. Wear Regime

When the specific wear rate is low and does not substantially change (i.e., remains
of same order of magnitude) by changing test conditions, the wear regime can be termed
as mild [1,26,35]. Moreover, in case of WC-based coatings, it is known that, after a certain
increase in normal load, the specific wear rate experiences a substantial increase by orders
of magnitude [26]. The specific wear rate values for various angular velocities, loads and
sliding distances (from a large matrix of ball-on-disk tests conducted, as listed in Table 3)
previously presented in Figures 4, 7 and 10 reveal that the average specific wear rate values
vary from 11 to 18.6 mm3·N−1·m−1, which are small enough to be categorized as mild
wear regime. All the specific wear rate values from ball-on-disc testing under different
angular velocities, different loads and/or sliding distances along with the corresponding
average value are depicted in Figure 12. It can be seen that deviation of all the specific
wear rate values (with the only exception of S3R9) from average value is still within the
window of maximum Sm. It should be mentioned that the conclusions in this paper are
specific to sliding wear rate behaviour of HVAF-sprayed WC–CoCr coatings, and the results
may differ for other coatings. Additionally, no significant difference in wear mechanisms
was evident from post-wear analysis, confirming that no transition from mild to severe
wear regime occurs over the investigated test parameter window. Therefore, as shown
in Figure 13, by individually increasing either normal load up to 40 N, angular velocity
up to 2400 rpm, or sliding distance up to 10 km from the ‘reference’ test parameters of
20 N, 2400 rpm and 5 km, no changes in wear regime occur during ball-on-disk testing of
HVAF-sprayed WC–Co-Cr coatings.Materials 2021, 14, x FOR PEER REVIEW 13 of 15 
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A comprehensive investigation was conducted in order to understand sliding wear
behaviour of HVAF-sprayed WC–CoCr coatings under a variety of different test conditions,
and the following conclusions were drawn: No significant difference was observed in
specific wear rate when changing angular velocity from 1333 rpm up to 2400 rpm in a way
that the difference in smaller than precision of measurement method. Increase in load up
to 40 N did not make any major change in either specific wear rate or deviation of values
from different repetitions. Increase in sliding distance up to 10 km while the normal load
was fixed at 20 N changed neither specific wear rate nor repeatability deviation. All these
roots from no major change in dominant wear mechanisms or wear regime. Therefore,
conducting ball-on-disc test on WC–CoCr coatings under test conditions within the range
conducted by this study could be considered as a reliable testing routine.
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