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Grepl, M. Laser Beam Drilling of

Inconel 718 and its Effect on

Mechanical Properties Determined by

Static Uniaxial Tensile Testing at

Room and Elevated Temperatures.

Materials 2021, 14, 3052. https://

doi.org/10.3390/ma14113052

Academic Editors: Luis Norberto

López De Lacalle, Naiara Ortega and

Joseba Albizuri

Received: 11 March 2021

Accepted: 27 May 2021

Published: 3 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Machining, Assembly and Engineering Metrology, Faculty of Mechanical Engineering,
VSB—Technical University of Ostrava, 708 00 Ostrava, Czech Republic; jana.petru@vsb.cz

2 Honeywell International s.r.o., 148 00 Prague, Czech Republic; grepl.martin@gmail.com
* Correspondence: marek.pagac@vsb.cz; Tel.: +420-597-321-285

Abstract: Particularly in the aerospace industry and its applications, recast layers and microcracks
in base materials are considered to be undesirable side effects of the laser beam machining process,
and can have a significant influence on the resulting material behavior and its properties. The paper
deals with the evaluation of the affected areas of the Inconel 718 nickel-base superalloy after its
drilling by a laser beam. In addition, measurements and analyses of the mechanical properties
were performed to investigate how these material properties were affected. It is supposed that
the mechanical properties of the base material will be negatively affected by this accompanying
machining process phenomenon. As a verification method of the final mechanical properties of the
material, static uniaxial tension tests were performed on experimental flat shape samples made of the
same material (Inconel 718) and three different thicknesses (0.5/1.0/1.6 mm) which best represented
the practical needs of aerospace sheet metal applications. There was one hole that was drilled with
an angle of under 70◦ in the middle of the sample length. Additionally, there were several sets of
samples for each material thickness that were drilled by both conventional and nonconventional
methods to emphasize the effect of the recast layer on the base material. In total, 192 samples were
evaluated within the experiment. Moreover, different tensile testing temperatures (room as 23 ◦C
and elevated as 550 ◦C) were determined for all the circumstances of the individual experiments to
simulate real operation load material behavior. As a result, the dependencies between the amount of
the recast layer and the length of the microcracks observed after the material was machined by laser
beam, and the decrease in the mechanical properties of the base material, were determined.

Keywords: laser drilling; recast layer; microcracks; Inconel 718; mechanical properties

1. Introduction

Nickel-based alloys are the most used alloys in the aerospace industry and its com-
ponents as they can offer a higher chemical resistance, mechanical strength, and thermal
conductivity compared to steels, for example [1,2]. Moreover, a great opportunity has
arisen to produce parts for the aerospace sector with advanced performances made of
nickel-based superalloys [3]. However, the manufacturing of parts from nickel-based
superalloys currently represents a challenging task for industrial sites [4].

Due to their excellent properties, these superalloys are very difficult to machine conven-
tionally and the final surface integrity of a machined component can be affected [2,5,6].

In particular, the conventional drilling process of effusion cooling holes in a combus-
tion chamber made of Ni-based alloys has reached its technological and economical limits.
Nonconventional machining technology, such as laser beam drilling, could therefore be a
cost-effective alternative for these materials and will be more important in the future [7].

When speaking of conventional machining processes, the research performed by
Pusavec et al. [8,9] using the Inconel 718 alloys revealed that the application of MQL (Mini-
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mum Quantity Lubrication) can reduce the cutting forces, tool wear, and chip breakability
and can increase productivity. In fact, this observation is not a sufficient argument for the
possibility of comparing the drilling efficiency with a laser.

When taking into consideration the fact that thousands of effusion cooling holes
are drilled on to the combustion chamber with a very thin wall, conventional drilling
by a drilling tool would be inefficient, uneconomical, very time-consuming, and maybe
even impossible.

The Electrical Discharge Machining (EDM) process has also been used for the ma-
chining of features onto aerospace components [10–14]. The new strategy in EDM milling
allows the machining of complex geometries by using a standard cylindrical shape ro-
tary electrode, which is used for the machining of complex shaped diffusors in Inconel
718 turbine blades. This manufacturing strategy was researched by Kliuev et al. [15]. The
proposed strategy offers a 15% higher productivity in comparison to the layer-by-layer ma-
chining strategy. Another manuscript deals with the use of modern EDM drilling machines
for drilling cooling holes and diffusers in turbine blades. Kliuev et al. have published
studies that have shown where the material removal rate reached 77 mm3/min, the relative
tool wear was reduced to 20%, the average recast layer thickness was reduced to 8 µm, and
the roughness Sa of the internal surface was less than 1 µm. The EDM process is available
for combination high-speed cutting with relatively low recast layer thickness and with
very good surface quality [16]. In the future, aero engines will typically have an excess
of 150,000 cooling holes [17]. This is very important for the research and development
of the optimalization technology process. This manuscript is interesting as it contains
a study of high-speed hole drilling with a diameter of 0.8 mm [17]. It is important that
EDM technology has very good precision. Zou has presented research about the precision
of EDM of a micron-scale diameter hole array using in-process wire electro-discharge
grinding high-aspect-ratio microelectrodes. To improve machining accuracy, an in-process
touch-measurement compensation strategy was applied to reduce the cumulative com-
pensation error of the micro-EDM process [18]. However, due to reasons that also apply
to the conventional drilling method, the EDM method is not comparable with laser beam
machining due to the cycle time of the drilling process itself.

Laser beam drilling is currently widely used for various aerospace applications where
high dimensional accuracy and hole quality are required [19–23]. This process is especially
suitable for processing difficult-to-machine alloys by conventional machining processes [24].
In addition, a large number of holes can be produced by laser drilling in a non-contact
manner (as opposed to conventional drilling methods). However, the process also has
certain defects associated with the resulting drilled hole geometry [25,26] and material
microstructure [17,27–32]. These are mainly heat affected areas, recast layers and micro-
cracks in the base material, which are considered to be undesirable effects. In the real
production process, it is recommended to minimize them. The residual stress and finite
element method and an experimental analysis of residual stress and elevated temperature
are also important [33].

Previous studies have already shown that for the laser drilling process, parameters
such as pulse energy, pulse width, and pulse frequency are the most influential—all of these
increase the recast layer thickness and lead to the formation of microcracks, as investigated
by Morar et al [34].

In terms of the future, there are many opportunities that could focus on the field of
Additive Manufacturing (AM) adoption as an advanced manufacturing technology for this
kind of aerospace product. However, first there are many challenges in the field of AM
which need to be investigated, such as the distortion, fatigue, defects, and residual stress of
the manufactured parts [35].

For the Inconel 718 material, the influences of input laser energy density on densifica-
tion behavior, phases composition, microstructures, microhardness, and wear performance
of the AM as-built samples were explored by Liu et al [36].
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This investigation has been performed with the purpose to describe the harmful
effects, if there are any, of the laser beam drilling method when used in the processing of
aerospace applications. It is known that during the process, the recast layer of the material
is created and it adheres to the machined surface. In addition, the recast layer is known as
a crack-into-the-base-metal initiator and so it was expected that the mechanical properties
would be adversely affected as a result of this phenomenon. This was confirmed. This
result is compared to conventional drilling by a drilling tool, where the recast layer is not
expected to be observed and the mechanical properties of the base material should not be
affected so significantly.

In the first section of this article, the specifics of laser drilled holes and the effects on
the base materials are mentioned. The second section describes all the properties of the
experimental samples, their processing, and the laser machine used in the experiment. The
evaluation methodology, the achieved results, the equipment and the software used are
given in section three of this article. The final discussion and all the conclusions obtained
can be found at the end of the article.

1.1. Hole Shape Deformations

A typical shape deformation of a drilled hole by a laser is a taper [37]. The taper of the
hole can be eliminated by optimal values of laser drilling parameters, but this will always
depend on the material and the thickness to be drilled [38,39].

The taper of the drilled holes is caused by the removal of molten and vaporized
material away from the hole. The percussion drilling strategy, used in this experiment,
(several consecutive pulses, in a short time, that gradually create a drilled hole) is a complex
process with a large number of variables. However, in general, a shorter pulse width means
a more significant taper. On the other hand, the degree of the taper decreases with the
increasing thickness of the drilled material.

Manufacturing processes, including laser drilling, used to drill effusion cooling holes
on gas turbine engines currently, can result in some geometric deviations (e.g., conical
angles, filleted edges, diameter deviations, etc.). This can reduce the cooling effectiveness,
heat transfer performance, and aerodynamic characteristics of the final products [40].

The potential geometric deviations by laser drilling techniques were gathered by
Bunker [41] and the report [42] was from PRIMA North America, Inc. It was pointed out
that the statistical data of effusion cooling holes are subjected to a Gaussian distribution,
even if the most advanced laser drilling techniques are used.

Outside the area in which the hole shape deformations are located, the efficiency of
the engine is also dependent on other factors.

1.2. Recast Layer Formation

The formation of the recast layer (thickness in the order of µm) is one of the accom-
panying undesirable effects, which is influenced by the resulting state of the machined
material. Due to the high surface energy density of the laser beam absorbed by the ma-
terial and the fact that its energy is converted into heat, the surface melts and solidifies
very quickly when the laser radiation ceases to act on the area of the material being ma-
chined [43]. A recast layer then forms on the surface when heat dissipates [44]. The newly
formed microstructure of the recast layer has an amorphous (glassy) character. It is char-
acterized by high hardness and brittleness and is therefore prone to cracking. The cracks
spread along the least resistant path—along the grain boundaries. Cracks can then have
a significant negative impact on the fatigue strength of aircraft engine components while
reducing their durability and safety [45].

After the interaction with the laser beam, the material is affected in three layers. There
is an oxide layer on the surface, which can be partially eliminated by the process gas (inert
gases) used. This is followed by a recast layer of the base material which has solidified
again on the surface to be treated and contains oxidic inclusions. Between the recast layer
and the unaffected base material, there is a heat affected zone (HAZ) of the base material.
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Previously, Sezer et al. [46,47] experimentally observed a larger HAZ on the leading edge
side and a larger recast layer on the trailing edge side of the hole.

The thickness of the recast layer can be reduced by the appropriate selection of process
parameters. However, it is considered that a tiny layer will almost always occur on the
machined material and its formation cannot be completely prevented due to the inevitable
influence of the material with a huge amount of surface energy density. Nevertheless,
these small volumes are unimportant to the technical practice because they do not initiate
microcracks into the base material.

In practice, it is highly recommended, if possible, to remove the recast layer from the
surface of the machined material by one of the machining methods that does not generate
a recast layer, or any other process such as heat treatment (applicable in some specific
cases only).

1.3. Microcracks in the Base Material

The formation of these cracks is initiated by the recast layer; therefore, it is important
to analyze their length. These cracks can have a significant negative effect on the fatigue
strength of the aircraft engine components, while reducing their life and safety [22].

In Figure 1, the formation of a crack in the recast layer of the material and its subse-
quent spread in the base material can be observed.
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2. Experimental Samples
2.1. Material and Thickness

High burning temperatures inside jet engines have made material selection compli-
cated. That is why such materials require high strength and temperature resistance [16].
The test samples were made of high strength Inconel 718 alloy, which belongs to the group
of nickel-base superalloys (Table 1). As high temperature resistant materials, these are
suitable for operation under extremely demanding conditions. Nickel-based superalloys
are generally used in industries such as aerospace, nuclear, etc. [48,49], and in applications
such as land gas turbines and aircraft engine turbines. The Inconel 718 alloy is characterized
by an excellent temperature resistance in the range of −253 ◦C to +705 ◦C, as well as an
excellent oxidation resistance up to 980 ◦C.

Three different material thicknesses were chosen to cover the common range of thick-
nesses from which the real aerospace applications are manufactured: 0.5 mm; 1.0 mm; 1.6 mm.

Table 1. Nominal chemical composition of Inconel 718 [50].

Element Fe Cr C Ti Mn Si Ni S P Mo Nb Al

Weight % 17.62 18.84 0.024 0.95 0.02 0.06 53.64 0.002 0.03 3.08 5.23 0.53
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2.2. Design, Amount, and Preparation

Flat shape samples were determined as the more suitable design to be used for the
experiment. Except for their thickness, all the samples were manufactured with the same
dimensions and under the same manufacturing conditions (Figure 2).
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In total, 192 experimental samples were manufactured and evaluated (Table 2). There
were four Sample Groups (1 through 4) including all three material thicknesses (A through C).

Table 2. All the sample groups and the total number of experimental samples.

Drilling Method Sample Group Material Thickness
(mm)

Number of Evaluated Samples

Room Temperature Elevated Temperature

Laser Beam
(long cycle = more recast layer)

1A 0.5 (23 ◦C) (550 ◦C)

1B 1.0 8 8

1C 1.6 8 8

Laser Beam
(short cycle = less recast layer)

2A 0.5 8 8

2B 1.0 8 8

2C 1.6 8 8

Drilling Tool
(none recast layer)

3A 0.5 8 8

3B 1.0 8 8

3C 1.6 8 8

None

4A 0.5 8 8

4B 1.0 8 8

4C 1.6 8 8

Sample in total: 192

From a statistical evaluation point of view, and with regard to costs and time needed
for manufacturing and the subsequent evaluation of all the experimental samples, 8 samples
were established as the number of samples for each subgroup. They were expected to have
the same condition.

At the end, there were two main groups of samples subjected to tensile testing. Each
one of them contained all the material thicknesses and all the drilling methods previously
applied, as well as undrilled samples (group 4) to reveal the basic mechanical properties
of the material. The first half of the samples were subjected to tensile testing at room
temperature (23 ◦C). The second half were subjected to tensile testing at an elevated
temperature (550 ◦C).
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Prior to the drilling of the samples, all were cleaned by immersion degreasing, and
heat treated by solution annealing and precipitation hardening. Heat treating cycles are
not specified as they are considered as intellectual property information. The reason was to
have the material of the samples in the same condition as the material of real jet engine
applications.

2.3. Drilling of Experimental Samples

The sample groups 1, 2, and 3 were drilled. The same rule was applied—one hole
under a 70◦ incidence angle (a common angle of effusion holes) with a diameter of 0.8 mm
was drilled into the middle of the sample length, either by a laser beam (groups 1 and 2),
or by a drilling tool (group 3).

Effusion cooling holes (<1 mm) drilled by laser beam are highly valued for improving
the performance of aviation engines [48]. It is envisaged that future generations of aero
engines will typically have an excess of 150,000 cooling holes, which will result in enormous
pressure on the technology used to meet targets in relation to productivity and hole
quality [51]. Previously, Marimuthu et al. [52] investigated the effects of pulse duration,
energy, frequency, and laser assisted gas composition on the characteristics of laser drilled
holes. Kononenko et al. [53] also investigated the influence of laser pulses on the percussion
drilling process, during which a dramatic rise of the recast layer thickness inside the drilled
hole was observed.

The laser cycle is mainly determined by pulse width. The longer the pulse width, the
longer the cycle.

To support the exothermic reaction, which helped to intentionally create more of the
recast layer on the base material, oxygen was used as an assist gas to drill all the sample
groups by a laser long cycle (1A, 1B, 1C).

As today’s fiber optic lasers offer the possibility to drill fast even at high qualities [54,55],
the laser machine used for drilling was equipped with a fiber optic laser source with a
maximum peak pulse power of 20 kW.

Figure 3 shows the clamped experimental sample, as well as the nozzle position
adjusted prior to the sample being drilled.
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Figure 3. Clamped experimental sample to be drilled by laser beam—top left picture; laser nozzle
adjustment.

The samples were clamped by hand—however, repeatability of the drilling procedure
was ensured by laser machine adjustment. Strictly speaking, the zero position of the laser
nozzle was adjusted after each sample was clamped and so the position of the drilled hole
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and the drilling angle was always adjusted the same on each sample prior to its drilling.
This is also the methodology used in the machining of the real application.

The laser machine used for the drilling of the experimental samples can be seen in
Figure 4. This machine is one of the most frequently used for the machining of aerospace
applications by the contracting authority of this work, Honeywell Aerospace company.
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The laser source, by which the laser machine was fitted, is shown in Figure 5. It is a
solid-source type widely used for such processing. Currently, the solid-source lasers are
being replaced by fiber optic laser sources, as these are more stable at the peak power and
are easier to maintain.
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Figure 5. Right picture: Nd:YAG solid pulse source, type GSI JK (JK Lasers, Rugby, UK) used in
the experiment [57].

In Table 3, all the process parameters (Assist Gas; Frequency; Pulse Width; Energy;
Power; Number of Pulses) of a laser beam drilling process used on all applicable material
thicknesses (0.5 mm; 1.0 mm; 1.6 mm) are described. Samples 1A, 1B, and 1C stand for
the laser beam drilling with a long cycle, where more of the recast layer was expected
to be formed. Oxygen assist gas was chosen to promote an exothermic reaction and the
recast layer formation during the laser drilling. Samples 2A, 2B, and 2C stand for the laser
beam drilling with a short cycle, where less of the recast layer was expected to be formed.
Nitrogen assist gas was chosen to protect the melting area of the material during the laser
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drilling and to reduce the recast layer formation. The pulse width was also always higher
for drilling with oxygen for the same reason. The number of pulses required to drill the
hole increased with the increasing thickness of the sample material.

Table 3. Process parameters of laser beam drilling used on all applicable material thicknesses for both long and short cycles.

Variable Unit
Sample Group

1A 2A 1B 2B 1C 2C

Assist Gas - Oxygen Nitrogen Oxygen Nitrogen Oxygen Nitrogen

Frequency Hz 17 18.5 16 16 13 14

Pulse Width ms 1.5 0.5 1.2 0.5 1.5 0.5

Energy J 10 10 11.5 10 14 13.5

Power W 187 187 183 163 180 198

Number of Pulses - 10 10 20 10 25 20

3. Results and Discussion

All the drilled samples were subjected to metallographic evaluation (Table 2).

3.1. Metallographic Evaluation of Drilled Samples

The two aspects of the metallographic evaluation were as follows:

1. Average thickness of the recast layer;
2. Length of cracks in the base material.

3.1.1. Average Thickness of Recast Layer

The metallographic evaluation of the average thickness of the recast layer was always
performed on each type of the drilled samples. Thus, it was performed for each drilling
method used and material thickness. The recast layer thickness was measured in both
longitudinal and transverse sections of the holes, shows in the Table 4. An evaluation of
one section of the hole was performed in six equally spaced locations. It was expected that
on the samples drilled by the laser beam, a recast layer would occur—whether for short or
long cycle drilling. Surprisingly, a small amount of recast layer was also observed on the
samples drilled conventionally, that is, by a drill. This, however, is negligible compared to
the average thickness of the recast layer caused by the laser beam and it was not considered.
In the aerospace industry, the upper limit of the average thickness of the recast layer is
considered in the order of hundredths to tenths of a millimeter.

Table 4. Values of the average recast layer thickness.

Sample Group 1A 2A 3A 1B 2B 3B 1C 2C 3C

Avg. Thickness (mm) 1 0.0587 0.0382 0.0011 0.0520 0.0465 0.0014 0.0493 0.0393 0.0010
1 Each value is an average counted from the transverse and longitudinal sections, and six sections equally distributed along the hole in
each section.

The evaluated longitudinal hole sections are illustrated in Figures 6 and 7 on which
the formation of the recast layer along the hole drilled unconventionally by laser beam can
be seen. The evaluated longitudinal hole section is illustrated in Figure 8 with a very slight
and barely visible recast layer observed along the hole drilled conventionally by a drilling
tool. The evaluated transverse holes sections are illustrated in Figure 9 to emphasize the
difference between the hole drilled by the drilling tool and by the laser beam.
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3.1.2. Cracks into the Base Material

The cracks were also measured in both the longitudinal and transverse sections of
the examined holes. The highest value, or the longest crack, was always recorded. In
the aerospace industry, the upper limits of the length of the crack in the base material are
considered in the order of hundredths of a millimeter.

As can be seen in Table 5, the highest values of the length of the cracks in the base
material were always measured on the holes drilled by the laser beam using a long cycle
(1A, 1B, 1C), when compared to the other drilling methods. The formation of the crack in
the recast layer and the base material is shown in Figure 1.

Table 5. Average values of the length of cracks in the base material.

Sample Group 1A 2A 3A 1B 2B 3B 1C 2C 3C

Avg. Thickness (mm) 1 0.0048 0.0015 0 0.0074 0.0036 0 0.0105 0.0064 0
1 Each crack observed along the hole in both, transverse and longitudinal sections, measured and average value counted for each
sample group.

3.2. Static Uniaxial Tension Tests

The first half of the samples (192 in total) were evaluated by a static uniaxial tension test
at room temperature (23 ◦C), while the second half of the samples in total were evaluated
by a static uniaxial tension test at an elevated temperature (550 ◦C). The reason for choosing
550 ◦C as the value of the elevated temperature was the fact that this is the temperature the
base material is exposed to in real applications, such as jet engines, turbines, etc.

When evaluating identical samples by uniaxial tension testing at elevated temperature,
the mechanical properties of the material are expected to decrease compared to the samples
evaluated at room temperature. Thus, it was possible to compare the mechanical properties
of the material, not only for the different drilling methods—thereby demonstrating the
effect of the recast layer after laser beam drilling—but also the effect of room and elevated
temperature on the tested material, with respect to its resulting mechanical properties.

3.2.1. Tests at Room Temperature

The progress of room temperature tests as performed are shown in Figure 10a–c. The
apparatus used to perform the tests is described below, as well as the main test parameters:

• Loading machine: M500-50CT (Testometric, Rochdale, UK)
• Software: WinTest Analysis (Testometric, Rochdale, UK)
• Test Temperature: 23 ◦C
• Loading Speed: 5.0 mm min−1.
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Figure 10 shows the setup of the static uniaxial tension test at room temperature. The
overall view of the test cell can be seen in Figure 10a. Figure 10b shows the loaded flat
shape experimental sample with the extensometer set on the sample before starting the
test, and Figure 10c shows the loaded flat shape experimental sample after the test was
performed and the sample was broken, respectively.

In total, 96 experimental samples were evaluated by tests at room temperature. All
these experimental samples were divided into four groups (see Table 2). Each sample
group contained eight, theoretically identical, experimental samples evaluated under the
same test conditions to ensure repeatability of the achieved results.

3.2.2. Achieved Values of Mechanical Properties

In this section, the achieved values of the mechanical properties resulting from the
tests at room temperature (E Modulus; Max. Load; Rp0,2; Rm; A50) are listed in Tables 6–8.
The final values listed in the following tables were obtained from tests performed on eight
experimental samples evaluated for each drilling method used (Laser Long Cycle; Laser
Short Cycle; Drilling Tool; None). All the sample groups and total number of experimental
samples are listed in Table 2.

Table 6. Average values of mechanical properties—Inconel 718; material thickness 0.5 mm; tests at room temperature.

Drilling Method Sample
Group

Samples
Evaluated

E Modulus
(GPa) Max. Load (Kn) Rp0.2 (MPa) Rm

(MPa)
A50
(%)

Laser Long Cycle 1A 8 - 4.10 1127.69 1279.79 3.51
Laser Short Cycle 2A 8 - 4.10 1146.80 1279.92 3.48

Drilling Tool 3A 8 - 3.93 1166.97 1248.44 2.41
None 4A 8 - 4.58 1146.10 1453.30 14.08

Note: E Modulus was not evaluated by the test cell software.

Table 7. Average values of mechanical properties—Inconel 718; material thickness 1.0 mm; tests at room temperature.

Drilling Method Sample
Group

Samples
Evaluated

E Modulus
(GPa)

Max. Load
(kN) Rp0.2 (MPa) Rm (MPa) A50 (%)

Laser Long Cycle 1B 8 - 8.07 1151.57 1323.34 4.42
Laser Short Cycle 2B 8 - 8.35 1192.80 1347.42 5.18

Drilling Tool 3B 8 - 8.22 1173.82 1346.97 4.96
None 4B 8 - 8.95 1197.12 1467.40 15.03

Note: E Modulus was not evaluated by the test cell software.

Table 8. Average values of mechanical properties—Inconel 718; material thickness 1.6 mm; tests at room temperature.

Drilling Method Sample
Group

Samples
Evaluated

E Modulus
(GPa)

Max. Load
(kN) Rp0.2 (MPa) Rm (MPa) A50 (%)

Laser Long Cycle 1C 8 - 13.07 1140.12 1339.09 5.14
Laser Short Cycle 2C 8 - 13.07 1182.23 1317.55 5.91

Drilling Tool 3C 8 - 13.51 1165.50 1384.40 7.71
None 4C 8 - 13.97 1173.86 1407.76 10.53

Note: E Modulus was not evaluated by the test cell software.

In addition, the fracture areas and the fracture surfaces of the individual sample
groups (1A–4A; 1B–4B; 1C–4C) are shown in Figures 11–13.

The yield strength (Rp) is a numerical value of the non-proportional elongation in %
(Rp0.2) and is usually indicated because (compared to the elastic limit), the yield strength
can be determined by the stress–elongation curve.

The tensile strength (Rm) is a material characteristic value for the evaluation of strength
behavior. It is the maximum mechanical tensile stress onto which a test specimen can be
loaded. If the tensile strength is exceeded, the material fails (the test sample is broken).
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Table 6 gathers all the values of the mechanical properties achieved by the static
uniaxial tension tests at room temperature. All the sample groups with a material thickness
of 0.5 mm are included (1A, 2A, 3A, 4A).

Figure 11 shows the fracture areas and the fracture surfaces of the individual sample
groups. The top row of Figure 11 shows the top view of the fractured samples where the
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samples of 1A, 2A, 3A were drilled in the middle of their length. As can be seen, and
as expected, the samples were broken in the area of the drilled hole. The samples from
group 4A were not drilled and were broken approximately in the same area as the drilled
experimental samples. The bottom row of Figure 11 shows the cross section of the fractured
areas. In addition, the cross section through the drilled holes can be seen on the samples
from the groups 1A, 2A, and 3A. The cross section of the sample 4A is for the samples that
were not drilled at all.

Table 7 gathers all the values of mechanical properties achieved by the static uniaxial
tension tests at room temperature. All the sample groups for the material thickness of
1.0 mm are included (1B, 2B, 3B, 4B).

Figure 12 shows the fracture areas and the fracture surfaces of individual sample
groups. The top row of Figure 12 shows the top view of the fractured samples where
the samples of 1B, 2B, 3B were drilled in the middle of their length. As can be seen, and
as expected, the samples were broken in the area of the drilled hole. The samples from
group 4B were not drilled and were broken approximately in the same area as the drilled
experimental samples. The bottom row of Figure 12 shows the cross section of the fractured
areas. In addition, the cross section through the drilled holes can be seen on the samples
from the groups 1B, 2B, and 3B. The cross section of the sample 4B is for the samples that
were not drilled at all.

Table 8 gathers all the values of the mechanical properties achieved by the static
uniaxial tension tests at room temperature. All the sample groups for the material thickness
of 1.6 mm are included (1C, 2C, 3C, 4C).

Figure 13 shows the fracture areas and the fracture surfaces of the individual sample
groups. The top row of Figure 13 shows the top view of the fractured samples where
the samples of 1C, 2C, 3C were drilled in the middle of their length. As can be seen, and
as expected, the samples were broken in the area of the drilled hole. The samples from
group 4C were not drilled and were broken approximately in the same area as the drilled
experimental samples. The bottom row of Figure 13 shows the cross section of the fractured
areas. In addition, the cross section through the drilled holes can be seen on samples from
the groups 1C, 2C, and 3C. The cross section of the sample 4C is for the samples that were
not drilled at all.

3.2.3. Test at Elevated Temperature

The progress of the elevated temperature tests, as performed, is shown in Figure 14a–c.
The apparatus used to perform the tests is described below, as well as the main test parameters:

• Loading machine: INSTRON 55R1185-100 kN (Instron, Norwood, MA, USA)
• Control system: SYSTEM ID 5500 K5178 (Instron, Norwood, MA, USA)
• Extensometer: Epsilon High Temperature extensometer, model 3548-025M-100-ST of a

25 mm gauge length (Epsilon, Irving, TX, USA; Jackson, Denver, CO, USA)
• Furnace: 3-Zone Split Tube Furnace, ATS Model 3210. Operating range up to 1100 ◦C

(Andy Group, Zhengzhou, China)
• Software: Bluehill®2 Software (Instron, Norwood, MA, USA)
• Strain control: actuator LVDT
• Test Temperature: 550 ◦C
• Loading Speed: 5.0 mm.min−1

The split tube furnace temperature was controlled by its controller system and the
sample temperature was measured by a separate measuring system. The variation in the
indicated temperature was ±3 ◦C. The time of holding on the specified temperature prior
to the test was empirically established as 15–20 min. The samples were fixed in grips by
the pins.

Figure 14 shows the setup of the static uniaxial tension test at the elevated temperature.
An overall view of the test cell can be seen in Figure 14a. Figure 14b shows the loaded flat
shape experimental sample with the extensometer set on the sample before starting the test
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inside the furnace, and Figure 14c shows the loaded flat shape experimental sample after
the test was performed and after the sample was broken, respectively, in the heated furnace.
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Figure 14. Static uniaxial tension test at the elevated temperature: test cell (a); test sample prior (b);
and after (c) the test.

In total, 96 experimental samples were evaluated by tests at the elevated temperature.
All these experimental samples were divided into four groups (see Table 2). Each sample
group contained eight, theoretically identical, experimental samples evaluated under the
same test conditions to ensure repeatability of the achieved results.

Figure 14 shows the set-up of the static uniaxial tension test at room temperature.
An overall view of the test cell can be seen in Figure 14a. Figure 14b shows the loaded
flat shape experimental sample in a tube furnace with the extensometer set on the sample
before starting the test, and Figure 14c shows the loaded flat shape experimental sample
after the test was performed and the sample was broken after its heating to the desired
temperature (550 ◦C), respectively.

3.2.4. Achieved Values of Mechanical Properties

In this section, the achieved values of the mechanical properties that resulted from
the tests at the elevated temperature (E Modulus; Max. Load; Rp0,2; Rm; A50) are listed
in Tables 9–11. The final values listed in the following tables were obtained from tests
performed on eight experimental samples evaluated for each drilling method used (Laser
Long Cycle; Laser Short Cycle; Drilling Tool; None). All the sample groups and total
number of experimental samples are listed in Table 2.

Table 9. Average values of mechanical properties—Inconel 718; material thickness 0.5 mm; tests at elevated temperature.

Drilling Method Sample
Group

Samples
Evaluated

E Modulus
(GPa)

Max. Load
(Kn) Rp0.2 (MPa) Rm (MPa) A50 (%)

Laser Long Cycle 1A 8 147.24 3.30 893.39 1013.99 2.03
Laser Short Cycle 2A 8 140.57 3.39 917.29 1037.96 2.57

Drilling Tool 3A 8 144.84 3.31 931.96 1023.41 1.90
None 4A 8 147.24 3.30 893.39 1013.99 2.03

Table 10. Average values of mechanical properties—Inconel 718; material thickness 1.0 mm; tests at elevated temperature.

Drilling Method Sample
Group

Samples
Evaluated

E Modulus
(GPa)

Max. Load
(kN) Rp0.2 (MPa) Rm (MPa) A50 (%)

Laser Long Cycle 1B 8 146.22 6.80 954.50 1095.89 2.54
Laser Short Cycle 2B 8 148.55 6.99 988.60 1122.57 2.64

Drilling Tool 3B 8 145.40 6.91 987.98 1123.01 3.45
None 4B 8 170.53 7.68 1030.69 1237.19 8.42
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Table 11. Average values of mechanical properties—Inconel 718; material thickness 1.6 mm; tests at elevated temperature.

Drilling Method Sample
Group

Samples
Evaluated

E Modulus
(GPa)

Max. Load
(kN) Rp0.2 (MPa) Rm (MPa) A50 (%)

Laser Long Cycle 1C 8 142.05 11.05 942.76 1092.65 2.57
Laser Short Cycle 2C 8 143.34 11.01 953.68 1117.86 3.29

Drilling Tool 3C 8 150.29 11.46 971.40 1163.57 6.64
None 4C 8 165.71 11.85 988.67 1193.20 7.34

Moreover, the fracture areas and the fracture surfaces of the individual sample groups
(1A–4A; 1B–4B; 1C–4C) are shown in Figures 15–17.
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1.0 mm; tests at elevated temperature.

Table 9 gathers all the values of the mechanical properties achieved by the static
uniaxial tension tests at the elevated temperature. All the sample groups with a material
thickness of 0.5 mm are included (1A, 2A, 3A, 4A).

Figure 15 shows the fracture areas and the fracture surfaces of the individual sample
groups. The top row of Figure 15 shows the top view of the fractured samples where the
samples of 1A, 2A, 3A were drilled in the middle of their length. As can be seen, and
as expected, the samples were broken in the area of the drilled hole. The samples from
group 4A were not drilled and were broken approximately in the same area as the drilled
experimental samples. The bottom row of Figure 15 shows the cross section of the fractured
areas. Moreover, the cross section through the drilled holes can be seen on the samples
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from the groups 1A, 2A, and 3A. The cross section of the sample 4A is for the samples that
were not drilled at all. In addition, the typical staining of the samples due to their testing
at elevated temperatures can be seen here when compared to the samples evaluated at
room temperature.
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1.6 mm; tests at elevated temperature.

Table 10 gathers all the values of the mechanical properties achieved by the static
uniaxial tension tests at the elevated temperature. All the sample groups with a material
thickness of 1.0 mm were included (1B, 2B, 3B, 4B).

Figure 16 shows the fracture areas and the fracture surfaces of the individual sample
groups. The top row of Figure 16 shows the top view of the fractured samples where
the samples of 1B, 2B, 3B were drilled in the middle of their length. As can be seen, and
as expected, the samples were broken in the area of the drilled hole. The samples from
group 4B were not drilled and were broken approximately in the same area as the drilled
experimental samples. The bottom row of Figure 16 shows the cross section of the fractured
areas. In addition, the cross section through the drilled holes can be seen on samples
from the groups 1B, 2B, and 3B. The cross section of the sample 4B is for the samples that
were not drilled at all. Moreover, the typical staining of the samples due to their testing
at elevated temperatures can be seen here when compared to the samples evaluated at
room temperature.

Table 11 gathers all the values of the mechanical properties achieved by the static
uniaxial tension tests at the elevated temperature. All the sample groups with a material
thickness of 1.6 mm are included (1C, 2C, 3C, 4C).

Figure 17 shows the fracture areas and the fracture surfaces of the individual sample
groups. The top row of Figure 17 shows the top view of the fractured samples where
the samples of 1C, 2C, 3C were drilled in the middle of their length. As can be seen, and
as expected, the samples were broken in the area of the drilled hole. The samples from
group 4C were not drilled and were broken approximately in the same area as the drilled
experimental samples. The bottom row of Figure 17 shows the cross section of the fractured
areas. In addition, the cross section through the drilled holes can be seen on the samples
from the groups 1C, 2C, and 3C. The cross section of the sample 4C is for the samples that
were not drilled at all. Moreover, the typical staining of the samples due to their testing
at elevated temperatures can be seen here when compared to the samples evaluated at
room temperature.

All the graphs (Figures 18–21) were created based on the achieved results using
Microsoft Excel for better clarity and easier comparison. For an explanation of graphs
legend see Table 2. None = no hole drilled in the experimental sample. Drilling Tool = one
hole drilled in the middle of the experimental sample by drilling tool and no recast layer
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created. Laser Short Cycle = laser drilled hole with short laser pulse width and small recast
layer created. Laser Long Cycle = laser drilled hole with long laser pulse width and larger
recast layer created.
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3.3. Discussion of Achieved Results
3.3.1. Formation and Average Thickness of Recast Layer (Table 4)

It was expected that on the samples drilled by the laser beam, the recast layer would
be observed—whether for short or long cycle drilling. Surprisingly, a small amount of the
recast layer was also observed on the samples drilled conventionally, that is, by a drilling
tool. This, however, was negligible compared to the average thickness of the recast layer
caused by the laser beam.

For the samples drilled by a laser long cycle it was observed that as the material
thickness increased, the average thickness of the recast layer decreased. The most important
thing was the fact that the highest values were always observed for laser long cycle results
compared to the laser short cycle values.

For all three material thicknesses used in the experiment, it was observed that with
the increasing thermal load of the base material during its drilling (highest when a laser
long cycle was used), the average thickness of the recast layer increased.

3.3.2. Length of Microcracks in Base Material (Table 5)

It was expected that from all three of the drilling methods used in the experiment, the
highest occurrence of microcracks in the base material would be observed on the samples
drilled by a laser long cycle—that is, the samples with highest values of average recast
layer thickness. This was confirmed.

Microcracks were observed only on the samples that were drilled by the laser beam.
There were no microcracks observed on the samples that were drilled conventionally.

It was observed that as the material thickness increased, the length of microcracks
increased as well.

As the thermal load of the base material increased during its drilling (highest when a
laser long cycle was used), the length of microcracks increased.

It is remarkable that there was no direct proportion between the average thickness of
the recast layer and the length of the microcracks (most probably caused by the ratio of
the material thickness and the drilled hole diameter). More important was the fact that the
highest values were always observed in the laser long cycle results compared to the laser
short cycle ones.

3.3.3. Mechanical Properties of the Material Given by Uniaxial Tensile Testing (Tables 6–11)

It was expected that from all three of the drilling methods used in the experiment, the
most significant effect on the decrease in the mechanical properties would be observed on
the samples drilled by laser long cycle.

The results demonstrated that for all the material thicknesses tested, the most signifi-
cant decrease in the mechanical properties was observed when the material was drilled
by the laser with the long cycle than with the short cycle and/or by the drilling tool. This
confirmed the initial assumptions.

As the material thickness increased, the difference in the mechanical property values
was more significant.
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In some cases, the values of the mechanical properties were at least comparable to
the samples drilled by the drilling tools and by the laser short cycle. Based on that, some
applications could benefit more from drilling by a laser (short cycle) than by a drilling tool.

When the results were compared for tensile testing at room temperature and at
elevated temperatures, a 15–20% decrease in the values was observed due to the elevated
temperature of the testing (Figures 20 and 21).

4. Conclusions

• This study demonstrated that the affected areas of the base material caused by laser
beam drilling, the recast layer, and microcracks in the base material have a noteworthy
effect on its mechanical properties.

• A metallographic analysis of all the experimental samples provided the specific values
of the average thickness of the recast layer and the length of the microcracks into the
base material.

• Static uniaxial tension tests performed at room and elevated temperatures provided
an overview of how much the base material was affected after its drilling mainly by
laser beam.

• In real applications, where the part can be affected by thousands of drilled holes (e.g.,
effusion cooling holes on a combustion chamber), this could have a significant effect
on the reduction in fatigue strength.
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