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Abstract: In the present study, the microstructures and properties of DSS 2205 solid wire MIG welded
samples prepared in different shielding gases (pure Ar gas, 98%Ar + 2%O2 and 98%Ar + 2%N2)
were investigated for improving the weldability of DSS 2205 welded joint. The work was conducted
by mechanical property tests (hardness and tensile test) and corrosion resistance property tests
(immersion and electrochemical tests). The results show that adding 2%O2 into pure Ar gas as
the shielding gas decreases crystal defects (faults) and improves the mechanical properties and
corrosion resistance of the welded joints. Phase equilibrium and microstructural homogeneity in
welded seam (WS) and heat-affected zone (HAZ) can be adjusted and the strength and corrosion
resistance of welded joints increased obviously by adding 2%N2 to pure Ar gas as the shielding
gas. Compared with DSS 2205 solid wire MIG welding in 98%Ar + 2%O2 mixed atmosphere, the
strength and corrosion resistance of welded joints are improved more obviously in 98%Ar + 2%N2

mixed atmosphere.

Keywords: 2205 duplex stainless steel (DSS 2205); welded joint; shielding gas; pitting corrosion;
intergranular corrosion

1. Introduction

Duplex stainless steel (DSS) composed of both austenite (γ) and ferrite (α) has a
combination of excellent corrosion resistance and mechanical strength, which is used for
petroleum, nuclear and chemical industries [1]. Duplex Stainless Steels 2205 (DSS 2205),
as the third generation of duplex stainless steel [2], compared with the latest DSS (LDX
2404 lean duplex stainless steel), has superior local corrosion resistance [3], and is widely
used in the structural parts of coastal building, bridge and offshore platform because the
excellent pitting corrosion and intergranular corrosion resistance [4–6]. For the complex
structural parts of duplex stainless steel, welding is probably the most common joining
method. It’s known that the quality of the welded joint plays the most critical role in
the service reliability of welded structural parts. However, there are great differences
of the microstructure and mechanical properties between welded joint and base metal
(BM). Therefore, it has great significance to investigate the microstructure and corrosion
properties of the welded joint in DSS 2205.

At present, the welding process suitable for DSS 2205 mainly includes manual metal
arc welding, shielded metal arc welding, metal inert gas (MIG) shielded welding and so
on. Among the above, MIG welding has the advantage of simple operation, low cost and
broad application [7]. There are two categories of MIG welding, named solid wire MIG
welding and fluxcored wire MIG welding, respectively. Compared with flux-cored wire
MIG welding, solid wire MIG welding has many benefits, such as lower cost, fewer welding
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defects, but the weldability is inferior [8]. Therefore, how to improve the technology of
solid wire MIG welding has received significant attention. Suban [9] et al. improved the
processability of solid wire MIG welding joints by using different shielding gases. The
results showed that the mixture of argon and carbon dioxide had a good effect on improving
the production efficiency and welded joint performance of solid wire MIG welding. García
et al. [10] investigated the distinction of electrochemical parameters of DSS 2205 welded
plates between two different shielding gases (98%Ar + 2%O2 and 97%Ar + 3%N2). The
results showed 50/50 in the α/γ phase ratio in welded joint could be obtained with the
simultaneous application of a 3 mT EMF during the welding process, and the growth of
detrimental phases would be hindered. In addition, they proved the application of 3 mT
during GMAW of DSS enhanced the resistance to localized corrosion of the welded joint in
the welded zone when compared with welds made using 97%Ar + 3%N2 shielding gas
mixture. To research how hydrogen affects the properties of DSS, Świerczyńska et al. [11]
studied the corrosion behavior of hydrogen charged super duplex stainless steel welded
joints. The results showed that base metal had the best corrosion resistance, and with the
increase in hydrogen content, the pitting and general corrosion resistance of HAZ and
welded zone decreased. On this basis, they also researched the hydrogen embrittlement
of super duplex stainless steel welded joint under cathodic protection [12]. The results
showed that the hydrogen embrittlement sensitivity of the welded joint of super duplex
stainless steel significantly increased, and brittle fracture appeared under the condition
of cathodic protection in artificial seawater. Gurcik et al. [13] discussed the impacts of
different shielding gases (Ar, CO2, O2 and He) on the shape of the welded joint and
welding productivity. The results showed that increasing the content of O2 or decreasing
the contents of CO2 and He can adjust the shape of welded joint, reduce the residual stress
of the welded structure, and increase welding production efficiency. Numerous studies
have shown that choosing mixed gases as the shielding gas has substantial advantages
to improve the solid wire MIG welding properties and performance. A few articles were
published related to mixed gases of Ar-CO2 [14–17]. Despite these progresses, welding
under gas mixtures of Ar-O2 and Ar-N2 has been not well explored regarding property
enhancements, especially corrosion resistance. At present, the research on the corrosion
resistance of duplex stainless steel is mainly to analyze the influence of microstructure
changes on the corrosion resistance of duplex stainless steel. Jerzy et al. [18] studied the
influence of microstructure changes on the corrosion resistance of DSS2205 with aging
treatment at 500 ◦C and 700 ◦C. At 500 ◦C, the hardness of the sample increased with
aging time, which may be due to the formation of α phase, and the stress corrosion
sensitivity of DSS2205 increased. At 700 ◦C, as the aging time increases, DSS2205 secondary
austenite γ phase was existed, and the stress corrosion sensitivity of DSS2205 did not
change significantly. In addition, the current research on duplex stainless steel welded joint
is mainly to analyze the influence of welding process on its corrosion resistance by changing
crafts. Marek et al. [19] studied the effects of heat input and nitrogen content in the welding
process on corrosion resistance of duplex stainless steel, and the results showed that the
appropriate increase in heat input energy would improve the microstructure uniformity
and corrosion resistance of duplex steel welded joints, and the addition of 2–4% N2 would
also improve the corrosion resistance of the welded joints. It can be seen that the research
on the corrosion resistance of DSS2205 welded joints has been relatively systematic, but
there are still some aspects that need to be supplemented.

In this work, the microstructures and the properties (especially corrosion resistance)
of the DSS 2205 welded joints prepared in three different atmospheres were studied, which
give the technology support for shielding gases standard and the application for solid wire
MIG welding.

2. Materials and Methods

The base metal used in the current study was commercial DSS 2205 plates with a
thickness of 6 mm (500 × 250 × 6 mm), and the MIG welding of DSS 2205 was performed
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by using ER2209 solid wire with a diameter of 1.2 mm. The specific chemical composition
of DSS 2205 plate and ER2209 solid wire are detailed in Table 1 [20].

Table 1. Chemical composition of DSS 2205 plate and ER2209 solid wire (wt%).

Material C Si Mn Cr Ni Mo N Fe

DSS2205 0.025 0.60 1.50 22.50 5.70 3.00 0.15 Balance
ER2209 0.017 0.57 1.61 22.06 8.84 2.68 0.11 Balance

The experiments in this study were divided into three groups. The first group was
welded with pure argon as the shielding gas (No.1); the other two groups were welded
with shielding gas mixtures: 98%Ar + 2%O2 (No.2) and 98%Ar + 2%N2 (No.3), respectively.
Before welding, a “V” groove with an angle of 60◦ was made on the joint of two steel plates.
Automated MIG welding of 2205 duplex stainless steel plate was carried out by three-layer
welding process. A backing bar was used during the MIG welding process. The welding
current was 160~220 A, arc voltage 27 V, welding speed 100~160 mm/min and gas flow
rate 12~15 L/min, and contact tip to work distance (CTWD) 15 mm.

In order to evaluate the susceptibility of the different microstructural components
to pitting, pitting corrosion immersion testing was carried out according to ASTM A923
C-2006 of the U.S. The corrosion testing was carried out by immersing samples with the
dimensions of 30 mm × 20 mm × 3 mm in a 10 wt% FeCl3 solution at a test temperature
25 ± 1 ◦C for 24 h. The property of corrosion resistance was characterized by corrosion
rate which can be calculated by the following corrosion rate Equation:

K =
240 × (g0 − g1)

S × t
(1)

where K is the corrosion rate [mg/(dm2·day),mdd], g0 is the specimen mass before corro-
sion (g), g1 is the specimen mass after corrosion (g), S is the specimen superficial area (m2),
and t is corrosion time (h).

The Gill AC Bi-STAT electrochemical workstation was used to evaluate the electro-
chemical corrosion performance of DSS 2205 solid wire MIG welded samples prepared
in different shielding gases. Pitting corrosion electrochemical testing was carried out ac-
cording to GB/T 24196-2009 of China. The samples with a dimension of 10 mm × 10 mm
were selected to be near-surface on welded seam (WS) of joint. The test was conducted in
3.5% NaCl solution with 40(±1) ◦C. Before the test, the open circuit potential (Eocp) was
recorded by exposing the specimen in the solution for about 60 min. When potential was
stable, the test was started at the potential of −150 mv/SCE+Eocp with a scanning rate
of 0.833 mV/s. The scanning range was from −150 mv/SCE+Eocp to 200 mV/SCE+Ep
(pitting corrosion potential). The results were disposed by OriginLab after test, then the
polarization curves were obtained to calculate electrochemical parameters.

According to ASTM A262-15 of the U.S., intergranular corrosion immersion testing
was carried out by immersing samples with the dimensions of 30 mm × 20 mm × 3 mm
in the 3 wt%(Fe)2(SO4)3-50 wt%H2SO4 solution boiling about 120 h. The property of
corrosion resistance was characterized by corrosion rate and photographs at the polished
sections. The corrosion rate was calculated by Equation (1). The double loop electrochemi-
cal potentiokinetic reactivation (DL-EPR) method was performed to evaluate the samples’
susceptibility to intergranular corrosion. The tests were carried out according to ASTM
G108-1994 (2005), the Gill AC Bi-STAT electrochemical workstation was conducted to test
DL-EPR specimens in each group. The samples were taken from near surface in welded
joints of 10 × 10 mm. The electrolyte consisted of 2 mol H2SO4 + 1 mol HCl at 30(±1) ◦C.
Cyclic potentiokinetic polarization was conducted from the open circuit potential to 200 mV
vs. SCE with a scanning rate of 1 mV/s. The scanning range was from 200 mV/SCE+Eocp
to 200 mV/SCE+Ep. The results were disposed by OriginLab after test, then DL-EPR curves
were obtained. The samples were electrolytically etched to observe the metallographic
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structure of welded joint after DL-EPR test. Hardness was measured using HVS10B Vickers
indenter with 10 kg load and 10 s holding time. Locations of test points are shown in
Figure 1 [20]. Tensile test specimens in accordance with GB/T 2651-2008, with a gauge
length of 75 mm, gauge width of 18 mm, and thickness of 6 mm, were prepared as shown in
Figure 2 [20]. Since the properties of the welded joint can be considered to be symmetrically
distributed to the sides of the weld axis, thus, only one side of the weld axis was selected
to test. The tensile tests were carried out on the tensile workstation (Instron5587), and the
loading speed was set to 0.5 mm/min.

Figure 1. Hardness point location.

Figure 2. Schematic diagram of plate tensile specimen.

The metallographic microstructure in welded seam (WS) and heat-affected zone
(HAZ) was observed by scanning electron microscope (SEM). The metallographic spec-
imens’ preparation was carried out following standard procedures for microstructure
characterization. Sodium sulfite hydrochloric acid solution was used as an etchant to reveal
the ferrite and austenite phases. The ferrite content was measured by metallographic image
analysis software, ten photos (100×) at least in each group. The transmission samples were
cut into slices of 0.5 mm along the weld axis, and then prepared by the method of double
jet electrolysis and ion-beam thinning. Finally, specimen microstructure was amplified to
analyze in the TEM (CM200) with 200 kV accelerated voltage.

3. Results
3.1. Microstructure

Figure 3 shows the metallographic microstructure of WS and HAZ in DSS 2205 solid
wire MIG welding joints prepared in different shielding gases. As shown in Figure 3, it is
clear that the microstructure characteristics of the welded joints in three groups are same,
that are all composed of ferrite (black region) and austenite (white region). However, for
one welded joint, the microstructure characteristics of WS and HAZ are different. In the
WS, intergranular austenite, intracrystalline austenite and Widmanstätten austeniteare
primary depositions, and the white regionsare typical cast structure. However, in the HAZ,
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only intergranular austenite and intracrystalline austenite are formed, and the austenite
content is lower than that of WS (Figure 3). Comparing ferrite content of samples in three
groups (refer Table 2), it is noticed that ferrite contents of No.1 and No.2 are almost the
same. The ferrite contents of No.1 and No.2 samples are 58.54% and 57.18% in the WS, and
are 65.17% and 64.58% in the HAZ, respectively. The ferrite content of No.3 in WS and
HAZ, respectively, are 51.35% and 59.24%, both are lower than that of other two groups.

Figure 3. Metallographic structure of DSS 2205 solid wire MIG welding joints prepared in different shielding gases. (a,b)
WS and welding joints region (pure Ar gas); (c,d) WS and welding joints region (98%Ar + 2%O2); (e,f) WS and welding
joints region (98%Ar + 2%N2); (1) BM (2) HAZ (3) WS.

Table 2. Ferrite content of WS and HAZ in different shielding gases (wt%).

Samples No.1 No.2 No.3

Ferrite content in WS (%) 58.54 57.18 51.35
Ferrite content in HAZ (%) 65.17 64.58 59.24
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Figure 4 shows the TEM images of DSS 2205 solid wire MIG welding joints and the
diffraction patterns of ferrite phase (α phase) and austenite (γ phase). It can be observed
that no phase is precipitated in α and γ phase, even interface between α and γ phase.
However, there are some dislocations in α and γ phase obviously, especially for the samples
of No.2 and No.3 (Figure 4b,c). In contrast, a large number of stacking faults occur in the
interface between α and γ phase closing to α phase in the sample of No.1. In addition, the
dislocation density of α phase is higher than that of γ phase. Due to more slip systems
in ferrite than austenite, dislocation tangling in ferrite are easier created than in austenite
under the same deformation conditions. This behavior results in different deformation
in the biphase interface of α and γ phase. After that, dislocation pile-up occurs in this
region inevitably.

Figure 4. TEM images of DSS 2205 solid wire MIG welding joints prepared in different shielding gases. (a) Ar; (b) 98%Ar +
2%O2; (c) 98%Ar + 2%N2; (d) ferrite diffraction pattern; (e) austenite diffraction pattern.

3.2. Mechanical Properties

Figure 5 shows the hardness distribution of DSS 2205 solid wire MIG welding joints
prepared in different shielding gases. As shown in Figure 5, the hardness of No.3 sample
remains stable, changing little from BM to WS, while the hardness of No.1 and No.2
samples both gradually decreases from BM to WS, and the lowest hardness appears in the
weld seam. In addition, the hardness of No.2 sample, by contrast, is higher than that of
No.1 sample in both HAZ and WS.
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Figure 5. Hardness distribution chart.

Figure 6 shows fracture positions of tensile specimens of DSS 2205 solid wire MIG
welding joints under different shielding gases. As can be seen in Figure 6, the fracture
positions of tensile specimens in three groups are both in WS. In general, the lower the
hardness, the lower the strength. This is a good explanation for the fracture of No.1 and
No.2 samples appeared at the WS, because of the lowest hardness of WS. However, for
No.3 sample, the reason why the fracture appears at the WS may be that the BM zone is
close to clamps which would reinforce this region; thus, the fracture position is also in WS,
although the hardness of WS is equivalent to that of BM. The tensile strength values of
No.1, No.2 and No.3 samples are 803 MPa, 812 MPa and 823 MPa, respectively. That is
consistent with the results of hardness. Therefore, adding 2%O2 or 2%N2 into pure Ar gas
as the shielding gas can improve hardness and tensile strength of DSS 2205 solid wire MIG
welding joints. Among above, adding 2%N2 performed has the best effect.

Figure 6. Fracture position of flat tensile specimens of DSS 2205 solid wire MIG welding joints
prepared in different shielding gases. 1#-Ar; 2#-98%Ar + 2%O2; 3#-98%Ar + 2%N2.

3.3. Corrosion Resistance
3.3.1. Pitting Corrosion

The corrosion rate of DSS 2205 solid wire MIG welding joints under different shielding
gases were obtained by chemical immersion test. Figure 7 shows the results of the corrosion
rate using a bar chart. In Figure 6, the corrosion ratesof No.1, No.2 and No.3 samples are 3.48
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mdd, 3.29 mdd and 1.36 mdd, respectively. The results indicate that adding 2%O2 or 2%N2
into pure Ar gas can leads to the reduction of corrosion rate. Additionally, the corrosion
rate reduces significantly when adding 2%N2 into pure Ar gas as the shielding gas.

Figure 7. Pitting corrosion rate of welded joint under different shielding gases.

Figure 8 shows polarization curves of DSS 2205 solid wire MIG welding joints prepared
in different shielding gases, and the experimental results of electrochemistry are listed in
Table 3. From Figure 8 and Table 4, the corrosion potential (ECorr) of No.2 sample is the
highest of −255 mV, and the ECorr of No.1 sample (−286 mV) is close to that of No.3 sample
(−291 mV). These results suggest that adding 2%O2 into the pure Ar gas can lead to an
increase in the ECorr. This is because the formation of compact metal oxide film on the
WS surface with O2 addition reduces the initial corrosion activity of sample surface. The
pitting potential (Ep) of No.1, No.2 and No.3 samples are 1025 mV, 1050 mV and 1103 mV,
respectively. Compare with No.1 sample, the Ep of No.2 and No.3 samples both increases
due to the addition of O2 or N2 into pure Ar gas as mixed shielding gas. Ep is the potential
at which the metal oxide film begins to be damaged with increasing of scanning potential.
Based on this, the larger the Ep, the better the pitting corrosion resistance. Considering the
pitting corrosion resistance of these three samples, the No.3 sample is the best, followed by
No.2 and No.1 samples. This consequence is consistent with of immersion test.

Furthermore, ECorr and Ep are both related to property of pitting corrosion resistance,
so the potential difference (∆E = Ep − ECorr) is conducted on characterizing pitting corro-
sion resistance property scientifically [21]. Obviously, a larger ∆E indicates better pitting
corrosion resistance. Table 3 presents the potential difference of the samples in three groups.
From Table 4, the ∆E value of No.1, No.2 and No.3 samples are 1311 mV, 1305 mV and
1394 mV, respectively. The ∆E of No.3 sample is significantly higher thanthat of No.1
and No.2 samples, which can confirm further that adding 2%N2 into pure Ar gas as the
shielding gas improves the pitting corrosion resistance significantly.
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Figure 8. Polarization curves of DSS 2205 solid wire MIG welding joints under three different
shielding gases.

Table 3. The tensile strength values of No.1, No.2 and No.3 samples.

Samples No.1 No.2 No.3

Tensile strength (MPa) 803 812 823

Table 4. Potential difference of welded joint under three different shielding gases.

Samples Corrosion Potential
ECorr (mV)

Pitting Potential
Ep (mV)

Potential Difference
∆E (mV)

No.1 −286 1025 1311
No.2 −255 1050 1305
No.3 −291 1103 1394

3.3.2. Intergranular Corrosion

The intergranular corrosion of DSS 2205 solid wire MIG welding joints under different
shielding gases were obtained by chemical immersion test. Figure 9 shows the results of
the corrosion rate using a bar chart. It can be found that the corrosion rates of No.1, No.2
and No.3 samples are 337.52 mdd, 329.59 mdd and 314.42 mdd, respectively, which is
confirmed that the corrosion rate of welded joint is reduced by adding 2%O2 or 2%N2 into
pure Ar gas. By contrast, the effect of adding 2%N2 on the intergranular corrosion rate is
significantly higher than that of adding 2%O2.

Figure 10 shows the specimens’ cross section morphology of the samples after inter-
granular corrosion test. There is no intergranular corrosion feature on the sample surface,
but there are general heterogeneous corrosion pits because pits morphology can be seen
in some areas. It is confirmed that DSS 2205 welded joints are not sensitive to intergranu-
lar corrosion according to the standard test results. This indicates that the intergranular
corrosion rates in column graph (Figure 9) are general heterogeneous corrosion rates. The
double-loop electrochemical potentiokinetic reactivation (DL-EPR) techniques were used
to evaluate the susceptibility to intergranular corrosion of DSS 2205 solid wire MIG weld-
ing joints under different shielding gases. The DL-EPR curves in the WS zone of MIG
welding joints can be seen in Figure 11. It is clearly observed that anode activation peak
current densities of No.1, No.2 and No.3 samples are 3.74 mA/cm2, 3.16 mA/cm2 and
2.23 mA/cm2, respectively. Additionally, reactivation peak current densities of the three
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samples are roughly the same, about 0.24 mA/cm2. To further determine whether inter-
granular corrosion occurred after DL-EPR test, microstructure observation was conducted
on the surface of samples in each group (Figure 12). On the surface of No.1 sample, there
are some general heterogeneous corrosion obviously, but there is no intergranular corrosion
feature. However, there are few signs of corrosion occurred on the surface of No.2 and
No.3 samples, only ferrite and austenite microstructuresareobserved obviously. The results
are in good agreement with those of the chemical immersion method.

Figure 9. Intergranular corrosion rate of the welded joints under different shielding gases.

Figure 10. Cross section morphology of intergranular corrosion for the welded joints under different shielding gases.
(a) 1#-Ar; (b) 2#-98%Ar + 2%O2; (c) 3#-98%Ar + 2%N2.
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Figure 11. DL-EPR test for the welded joints under different shielding gases.

Figure 12. Metallographic structure of the welded joints under different shielding gases after DL-EPR test (a) 1#-Ar; (b)
2#-98%Ar + 2%O2; (c) 3#-98%Ar + 2%N2.
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4. Discussion

During the process of DSS 2205 solid wire MIG welding, the microstructure of WS
firstly transforms into high-temperature ferrite; then, the austenite phase nucleated and
grew in grain boundary and intragranular ferrite, and finally the intergranular austenite
and the intracrystalline austenite were formed in the cooling process. In addition, Wid-
manstätten austenite are formed because the cooling rate is too fast. The microstructure of
HAZ is formed by the rapid heating and cooling process of the BM. Due to the fast heating
and cooling rate, the ferrite-to-austenite transformation was not sufficient. Therefore, the
austenite mainly nucleated along the ferrite grain boundary rather than in ferrite grains,
and a large amount of ferrite lamellae is remained [22]. Because O2 is an excellent oxidizing
agent in shielding gas that increases the temperature of molten pool, adding 2%O2 into
pure Ar gas increases the metal fusibility of WS, thus improving the appearance of the
weld and reducing the welding defects [23]. However, the excess oxygen will show strong
oxidizer, which increases heat production and uneven microstructure in WS, and even
produces more defects. Nakamura et al. [16,24] studied the influence of O2 content in
shielding gas on the properties of welded joints, and found that 98%Ar + 2%O2 used as the
shielding gas had the best effect on improving the uniformity of weld microstructure and
improving the service performance of welded joints. It is consistent with the conclusion
of this work. In this study, the faults in transmission microstructure of No.2 sample are
disappeared. However, the ferrite content of No.1 sample is almost the same as that of
No.2 sample. It indicates that the addition of 2%O2 into pure Ar gas can not effectively
reduce the cooling rate of WS and HAZ, and does not promote the ferrite-to-austenite
transformation. Nitrogen is an indispensable element of austenite, and beneficial for the
ferrite-to-austenite transformation [25,26]. Varbai et al. [27,28] studied the influence of
weld thermal cycles and shielding gas nitrogen content on DSS weld microstructure by sim-
ulated experiment. The results showed that the nitrogen loss from the molten pool caused
a lower austenite fraction in the weld metal, and higher nitrogen content in the shielding
gas will result in higher initial austenite fraction. Therefore, adding 2%N2 into pure argon
as the shielding gas can replenish the N element lost in welding process and promote the
ferrite-to-austenite transformation. Thus, for the No.3 sample, the ferrite content in WS
and HAZ is effectively reduced, the phase equilibrium of the microstructure is improved,
and the crystal defects are inhibited. Besides, the dislocation density of No.3 sample is
higher than that of No.2. After analysis, the nitrogen atoms can create Cottrell atmosphere
and cause the pinning effect on dislocation line, which block dislocation movement and
cause dislocation pile-up [29,30].

The hardness of No.1 and No.2 samples both reduced from BM to WS. On the one
hand, it is because the carbon content of welding wire is lower than that of BM (Table 1).
On the other hand, it is also related to the incomplete formation of austenite and the faults
in WS and HAZ. Controlling the appropriate ferrite-austenite ratio (1:1) is an excellent
method to improve the strength and toughness of dual-phase stainless steel [31]. The
crystal defects can reduce the strength of welded joints because it promotes dislocation
movement and crack initiation in tensile process [32,33]. It follows from the above that the
hardness of No.2 sample is higher than that of No.1 due to the disappearance of faults in
microstructure, and the hardness of No.3 sample is almost unchanged, which benefits by
adding 2%N2 into pure Ar gas that can promote the ferrite-to-austenite transformation
and obtain the appropriate ferrite-austenite ratio in WS and HAZ (Table 2). Furthermore,
the disappearance of fault in microstructure and increasing of dislocation density can
also improve sample’s hardness due to the dislocation pile-up [34], which can cause the
strengthening of materials, thus, No.3 welded joint has the highest strength.

The formation of crystal defects (faults) not only reduces the strength of welded joins,
but also becomes the initial points of corrosion, whichpromotes the occurrence of pitting
corrosion [35–37]. This is the reason why the corrosion resistance of No.1 sample is the
worst in both the pitting corrosion test and the intergranular corrosion test. After adding
2%O2 into pure Ar gas, the stacking faults disappear and the metal oxide film becomes



Materials 2021, 14, 2671 13 of 15

denser (higher ECorr), and the corrosion resistance is improved. In addition, after adding
2%N2 into pure Ar gas, the ferrite-to-austenite transformation is promoted, the phase
equilibrium and microstructure homogeneity of WS and HAZ are improved, and the
corrosion resistance of welded joints is significantly increased.

5. Conclusions

In this paper, the microstructure, mechanical property and corrosion resistance of 2205
duplex stainless steel MIG welded joints under three shielding gases were investigated.
The main conclusions are listed as follows.

1. When DSS 2205 solid core MIG welding is performed in 98%Ar + 2%O2 mixed
atmosphere, the crystal defects (layering faults) are reduced, and the joint strength
and corrosion resistance are improved, although the ferrite content of welded joints is
similar to that of welded joints in pure Ar atmosphere.

2. When DSS 2205 solid core MIG welding is performed in 98%Ar + 2%N2 mixed
atmosphere, the austenite contents in WS and HAZ are both increased. The phase
equilibrium and microstructure homogeneity are improved, and the strength and the
corrosion resistance of the welded jointsare also enhanced.

3. Compared with DSS 2205 solid core MIG welding in 98%Ar + 2%O2 mixed atmo-
sphere, the strength and corrosion resistance of welded joints are improved more
obviously in 98%Ar + 2%N2 mixed atmosphere.
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