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Abstract: Fly ash/magnetite material was used for the adsorption of copper ions from synthetic
wastewater. The obtained material was characterized by scanning electron microscopy (SEM), energy
dispersive X-ray analysis (EDAX), X-ray diffractometer (XRD), Fourier transform infrared spec-
troscopy (FTIR), Brunauer–Emmett–Teller (BET) surface area, and vibrating sample magnetometer
(VSM). Batch adsorption experiments were employed in order to investigate the effects of adsorbent
dose, initial Cu (II) concentration and contact time over adsorption efficiency. The experimental
isotherms were modeled using Langmuir (four types of its linearization), Freundlich, Temkin, and
Harkins–Jura isotherm models. The fits of the results are estimated according to the Langmuir
isotherm, with a maximum adsorption capacity of 17.39 mg/g. The pseudo-second-order model
was able to describe kinetic results. The data obtained throughout the study prove that this novel
material represents a potential low-cost adsorbent for copper adsorption with improved adsorption
capacity and magnetic separation capability compared with raw fly ash.

Keywords: copper ions adsorption; Fe3O4; fly ash; isotherms; kinetic models; wastewater

1. Introduction

The discharge of wastewater that contains heavy metals into aquatic environments is
one of the most common sources of environmental pollution and is the reason why vital
ecosystems are often affected [1,2].

Copper ions are one of the most widespread metals used in industry [3]. Among the
three forms in which copper can be found, Cu2+ is considered to be the most toxic [4,5],
leading to negative impacts on human health and the environment [6–8]. The allowable
limit of copper ions in drinking water was established by World Health Organization
at 2 mg/L. On the other hand, according to the United State Environmental Protection
Agency (USEPA), the maximum copper concentration in industrial water is recommended
to be 1.3 mg/L [9].

A variety of technologies have been applied for the treatment of waters contaminated
with copper ions, among which the adsorption process is considered the most favorable
alternative [10–14]. A series of materials were involved in Cu (II) adsorption, such as fly
ash (FA) and modified fly ash [15,16], manganese ore [17], LSX zeolite [18], zeolite 4A [19],
mesoporous silica [20], macro algae [21], and chitosan-based biodegradable composite [22].
Different methods have been developed for obtaining adsorbent materials, such as co-
precipitation, chemical vapor depositions, plasma, electro-depositions, sol–gel, and ball
milling. Of these methods, ball milling has the benefits of simplicity, low-cost, time-saving,
no waste generation (water or solvent), ease of application, and possibility to be scaled up
to the industrial level. [23].
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Fly ash is preferred as an adsorbent since it is a cheap and highly-available
material [24,25]. On the other hand, there are highlights that the presence of fly ash dis-
charged from thermal power plants by the burning of coal represents a big environmental
issue [26–29]. Unmodified fly ash presents small adsorption capacities. This fact could be
explained through low surface area; hence, it is recommended to find a solution in order
to remediate this problem. On the other hand, FA suspended in wastewater cannot be
separated from the medium due to its too small particle size. Currently, the recycling of
adsorbents is an actual issue [1] in the recovery process that is performed by centrifuga-
tion; unfortunately, this process exhibits high costs and energy consumption. A feasible
alternative that would overcome these disadvantages consists of the use of magnetic
adsorbents [30], with quick separation from wastewater [31].

Fe3O4 nanoparticles were utilized in a synthesis of various adsorbents due to some
advantageous characteristics, such as the presence of surface functional groups, magnetic
response ability, small particle size, biocompatibility, and biodegradability [32]. Thus,
the obtaining of a new material based on the insertion of Fe3O4 and Fe2O3 within fly
ash represents an interesting research field and a promising pathway to overcome these
environmental problems.

The new material obtained by inserting Fe3O4 into fly ash particles can be used as
adsorbent in wastewater treatment due to some advantages, such as its maximal number
of active sites, its high surface area, and its high porosity. It is quickly separated from the
solution by an external magnetic field without the use of supplementary steps such as
filtration or centrifugation.

An important property to note is that the magnetic adsorbents, the core of which is
a cluster of magnetic nanoparticles, do not show remanent magnetization. By removing
the magnetic field, these adsorbents can be easily re-suspended in another solution. The
adsorption–desorption processes can be performed due to this property. It should also be
pointed out that secondary effluents are not generated [33,34].

The functional groups from the structure of unmodified fly ash would become active
after combining with magnetite particles, thus yielding in a higher adsorption capacity
of the synthesized materials. Also, the obtained material can be considered as a low-cost
adsorbent.

The main objective of this paper was to obtain a low-cost and a very efficient magnetic
adsorbent based on fly ash combined with Fe3O4 by a green method as well as to investigate
the ability of the obtained composite to remove copper ions from synthetic wastewater.
The effects of adsorbent dose, initial Cu (II) concentration, and contact time were checked.
Furthermore, adsorption isotherms and kinetic models were investigated.

2. Materials and Methods
2.1. Materials

Class F fly ash was collected from a power plant operated by CET II Holboca, located
in Iasi, North-East Romania. Generally, fly ash can contain many toxic trace elements that
can be easily released into the environment. Leachability tests demonstrated that the FA
used in this study did not contain any toxic trace elements such as Cr, As, Se, etc., and that
it was not radioactive.

Fe3O4 was purchased from Alfa Aesar (Haverhill, MA, United States). All the chemical
reagents were used as received.

Copper stock solution of 1000 mg/L was prepared by dissolving pentahydrate sulfate
salt of copper in distilled water (Chemicals Company, Iasi, Romania). Thus, a quantity
of 3.9294 g of CuSO4 5H2O was dissolved in 1 L of distilled water in order to prepare
1000 mg/L of copper stock solution. The working solutions of 100–700 mg/L Cu (II)
were obtained by diluting an exact volume of stock solution with distilled water. The
5-(4-nitrophenylazo) salicylic acid and 2,2′-dipyridyl solution (0.05%) were obtained by
dissolving a quantity of the reagent in ethanol. The pH value of 3.5 necessary for metal
ions complexation was obtained by using Citrate buffer solution [35].
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Morphology of the adsorbent samples was observed with a field emission scanning
electron microscope, JEOL JSM-6390 (Jeol USA Inc., Brno-Kohoutovice, Czech Republic).
X-ray diffraction patterns were recorded using a Brucker AXS D8-Advance powder X-
ray diffractometer with CuKa radiation, k = 0.1541 nm (Brucker, Brno, Czech Republic).
Specific surface area was obtained with a Quantachrome instruments Nova 2200e model
(Quantachrome Instruments, Graz, Austria). The magnetization data were acquired on a
LakeShore 7410 vibrating sample magnetometer (VSM, Lake Shore Cryotronics, Inc, West-
erville, OH, USA) in magnetic fields ranging between −20 and 20 kOe. Fourier transform
infrared spectroscopy (FTIR) was performed on a Bruker Vertex 60 (Bruker Optik GmbH,
Ettlingen, Germany) spectrometer.

2.2. Adsorbent Synthesis

The composite was obtained by milling 1 g of Fe3O4 with 9 g of raw fly ash (FA) in a
planetary ball mill (PM-200 Retsch, Haan, Germany) for 4 h at 300 rpm. The grinding balls,
10 mm in diameter, and grinding bowls of the mill were made up of hard alloy tungsten
carbide intended to operate in extreme conditions. The obtained magnetic material, noted
as FA/Fe3O4, was washed with deionized water and dried at 60 ◦C for 24 h.

2.3. Adsorption Experiments

On the basis of previous researches on electroplating wastewater monitoring from Iasi
area, the initial working concentration of synthetic solutions was established between 300–
700 mg/L, the results being in accordance with the literature [36]. On the other hand, Al-
Saydeh et al. (2017) states that copper is usually found at high concentrations in wastewater
because it is the most used metal in various industrial applications, such as metal finishing,
electroplating, plastics, and etching [9].

The equilibrium experiments were carried out at pH 5 using Berzelius beakers with
0.2 g adsorbent dispersed in 20 mL Cu (II) solution (initial concentrations of 100–700 mg/L).

The laboratory tests were carried out with intermittent stirring at room temperature.
Cu (II) concentration in the supernatant was analyzed spectrophotometrically using 5-(4-
nitrophenylazo) salicylic acid and 2,2′-dipyridyl in ethanol medium at 520 nm [37] with a
Shimadzu UV-2450 DR UV–vis spectrophotometer (Shimadzu, Tokyo, Japan).

The adsorption study conditions are presented in Table 1.

Table 1. Adsorption study conditions.

Parameter Effect

Dose of adsorbent→ 0.2 g adsorbent/20 mL Cu (II)
solution, 0.4 g adsorbent/20 mL Cu (II) solution,

0.8 g adsorbent/20 mL Cu (II) solution

Initial Cu (II) concentration: 300 mg/L;
pH = 5

Initial Cu (II) concentration→ 100 mg/L,
200 mg/L, 300 mg/L, 400 mg/L, 500 mg/L,

600 mg/L, 700 mg/L

Dose of adsorbent = 0.2 g
adsorbent/20 mL Cu (II) solution; pH = 5

Contact time→ 5–480 min
Initial Cu (II) concentration: 300 mg/L;

dose of adsorbent = 0.2 g
adsorbent/20 mL Cu (II) solution; pH = 5

The adsorption capacity, q (mg/g) and the adsorption efficiency, R (%), were calculated
through Equations (1) and (2):

q_e = (C_0− C_e)V/m (1)

R = (C_0− C_e)/C_0 × 100 (2)
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where C_0 and C_e are the initial and equilibrium Cu (II) concentrations (mg/L), respec-
tively, q is the amount of Cu (II) adsorbed onto FA/Fe3O4 (mg/g), V is the volume of Cu
(II) solution (L), and m is the quantity of FA/Fe3O4 (g).

The adsorption capacity at different time intervals was calculated with Equation (3):

q_t = (C_0− C_t)V/m (3)

where C_t is Cu (II) concentration at different time intervals (mg/L), q_t is the amount of
Cu (II) adsorbed onto FA/Fe3O4 at time intervals = 5–480 min, V is the volume of solution
(L), and m is the quantity of FA/Fe3O4 (g).

3. Results
3.1. Characterization of FA/Fe3O4 Adsorbent

FA/Fe3O4 adsorbent was characterized through SEM, EDAX, XRD, FTIR, and VSM.

3.1.1. SEM Analysis

The morphology shown in Figure 1 demonstrated that FA/Fe3O4 is composed by
spherical particles, with large size distribution. Together with regular spherical particles,
there were smaller irregular fly ash particles, which were likely derived from the high
content of iron oxide and unburned carbon, as well as irregularly shaped amorphous
particles. The sizes of the particles observed in Figure 1a are less than 5 µm, and the
majority of the particles consisting in solid spheres ranged in size from 1 to 5 µm [38].

Materials 2021, 14, x FOR PEER REVIEW 4 of 18 
 

 

݁_ݍ = 0_ܥ) − ܴ(1) ݉/ܸ(݁_ܥ = 0_ܥ) − × 0_ܥ/(݁_ܥ 100 (2)

where 0_ܥ and ܥ_݁ are the initial and equilibrium Cu (II) concentrations (mg/L), re-
spectively, ݍ is the amount of Cu (II) adsorbed onto FA/Fe3O4 (mg/g), ܸ is the volume of 
Cu (II) solution (L), and ݉ is the quantity of FA/Fe3O4 (g). 

The adsorption capacity at different time intervals was calculated with Equation (3): ݐ_ݍ = 0_ܥ) − (3) ݉/ܸ(ݐ_ܥ

where ݐ_ܥ is Cu (II) concentration at different time intervals (mg/L), ݐ_ݍ is the amount 
of Cu (II) adsorbed onto FA/Fe3O4 at time intervals = 5–480 min, V is the volume of solu-
tion (L), and m is the quantity of FA/Fe3O4 (g). 

3. Results 
3.1. Characterization of FA/Fe3O4 Adsorbent 

FA/Fe3O4 adsorbent was characterized through SEM, EDAX, XRD, FTIR, and VSM. 

3.1.1. SEM Analysis 
The morphology shown in Figure 1 demonstrated that FA/Fe3O4 is composed by 

spherical particles, with large size distribution. Together with regular spherical particles, 
there were smaller irregular fly ash particles, which were likely derived from the high 
content of iron oxide and unburned carbon, as well as irregularly shaped amorphous 
particles. The sizes of the particles observed in Figure 1a are less than 5 µm, and the ma-
jority of the particles consisting in solid spheres ranged in size from 1 to 5 µm [38]. 

  
(a) FA (b) FA/Fe3O4 

Materials 2021, 14, x FOR PEER REVIEW 5 of 18 
 

 

  
(c) FA/Fe3O4 (d) FA/Fe3O4 

Figure 1. SEM image of the prepared composite. 

By milling, the agglomerated particles of FA were destroyed, and the magnetite 
added was uniformly distributed (Figure 1c). The SEM images show a uniform distribu-
tion of both small particle and magnetite within the composite. The SEM of the FA/Fe3O4 
demonstrated that the fly ash was well crushed, and that the shapes of the particles be-
came more uniform. The sizes were significantly reduced to about 600 nm, indicating the 
breakdown of the original spherical-shaped fly ash. 

3.1.2. EDAX Analysis 
The chemical composition established through EDAX analysis is presented in Figure 

2. 

 

Figure 1. SEM image of the prepared composite.



Materials 2021, 14, 63 5 of 17

By milling, the agglomerated particles of FA were destroyed, and the magnetite added
was uniformly distributed (Figure 1c). The SEM images show a uniform distribution
of both small particle and magnetite within the composite. The SEM of the FA/Fe3O4
demonstrated that the fly ash was well crushed, and that the shapes of the particles
became more uniform. The sizes were significantly reduced to about 600 nm, indicating
the breakdown of the original spherical-shaped fly ash.

3.1.2. EDAX Analysis

The chemical composition established through EDAX analysis is presented in Figure 2.
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Figure 2. EDAX spectrum of FA/Fe3O4.

The comparison between raw material and synthesized material is presented in
Table 2.

As determined by EDS, the predominant elements in the adsorbent samples in various
compositions were oxygen, unburned carbon, silicon, aluminum, iron, and calcium [39].
Minor amounts of magnesium, titanium, sodium, and potassium were found in analyzed
samples. By comparing the data obtained for Fe in the case of FA/Fe3O4 (7.74%) vs. FA
(2.05%), it can be highlighted that the synthesis took place successfully. The mapping
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diagram demonstrated that the magnetite was uniformly distributed; consequently, milling
time (4 h) led to a proper homogeneity.

Table 2. Elemental analysis of FA and FA/Fe3O4, mass %.

Element FA FA/Fe3O4

C 18.27 18.25
O 45.82 46.72
Si 18.81 13.95
Al 11.09 10.22
Ca 1.75 1.7
Fe 2.05 7.74
K 0.79 0.41

Mg 0.60 0.34
Ti 0.74 0.67

3.1.3. FTIR Analysis

The results of the FTIR analysis are illustrated in Figure 3. The FTIR analysis was
realized to estimate the presence of the functional groups on the solid surface, the strength
of the bonds, and the interactions between the surface functional groups and the adsorbed
Cu (II).
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The band, observed at the ∼530 spectrum of FA/Fe3O4, corresponds to the Fe-O/Fe-
OH vibration of magnetite phase. The significant peak at 634 cm−1 is characteristic to
magnetite. Apart from these, no significant change was observed between the FTIR spectra
of FA and FA/Fe3O4.

The peak at 456 cm−1 was assigned to Si-O/Al-O in plane bending vibration and Si-O
bending vibration, and the peak at 558 cm−1 was attributed to the Si-O vibration [40].

On the other hand, the peak at 1092 cm−1 was assigned to the asymmetric stretching
of Si-O-Si. The very small peaks corresponded to H-O vibration (the samples were dried
before analysis).

Taking into consideration that the only compositional difference between samples was
the content of Fe3O4, no transformations were obvious in the structure of the material. The
only difference in Figure 3 emerges from the higher Fe3O4 content, leading to an increase
in the intensity of the spectrum associated with FA/Fe3O4.
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3.1.4. XRD Analysis

The XRD analysis was performed in order to receive information about the miner-
alogical composition of the synthesized adsorbent, the results being presented in Figure 4.
As it can be seen from the Figure 4, FA/Fe3O4 has the crystal phases of mullite (M) and
quartz (Q). According to the X-ray pattern, the hematite (He) was found in the synthesized
material. Also, from Figure 4 it can be noted that the XRD curve of FA/Fe3O4 has an
amorphous structure [41] due to the formation of broad bands, and a crystalline phase
within a wide scanning interval of 10–70◦. Besides these peaks originating from the ash,
the peaks at 2 theta (degrees) equaling 18.35◦, 30.35◦, 35.8◦, 43.06◦, 57.12◦, and 62.73◦

correspond to Fe3O4. Additionally, an important variation in the peak intensity can be
noticed from Figure 4. The comparison between the XRD diffraction patterns indicated the
introduction of Fe3O4 on the FA structure.
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3.1.5. BET Analysis

The N2 adsorption–desorption isotherm for FA/Fe3O4 is shown in Figure 5.
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The BET data shows that the specific surface area of FA/Fe3O4 is 6.153 m2/g, while
the total pore volume is 0.0121 cm3/g. FA used in this study has the BET area of 4.03 m2/g
and the total pore volume 0.009 cm3/g. The results show that the surface area of FA/Fe3O4
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is 1.5 times higher compared with FA, which can be attributed to the interfacial interac-
tion between FA and magnetite. Furthermore, FA/Fe3O4 is a mesoporous material, in
accordance with the classification of IUPAC (International Union of Pure and Applied
Chemistry, USA) [42], with an average pore volume of 7.85 nm.

3.1.6. VSM Analysis

The specific saturation magnetization (ssM) of the FA increased by more than 300%
after mixing with Fe3O4 (Figure 6). Taking into account the mass ratio of 9:1 between FA
and magnetite, a value of 88.6 emu/g can be calculated for the ssM of magnetite dispersed
in the FA. This is consistent with the ssM obtained for magnetite, i.e., 87.1 (Figure 6),
showing a negligible influence of the ball milling process on the magnetic properties.

Materials 2021, 14, x FOR PEER REVIEW 9 of 18 
 

 

From Figure 6, it can be observed that there are significant differences in the coercive 
field (Hc) and squareness values (Mr/Ms) of the samples. FA shows lower values for Hc 
and Mr/Ms ratio, being therefore less susceptible to agglomeration than FA-Fe3O4 parti-
cles. However, FA would need much more intense magnetic fields to be separated, after 
completing the water cleaning process, compared with FA/Fe3O4 particles. 

 
Figure 6. Magnetization hysteresis loop of the FA/Fe3O4 vs. FA. 

3.2. Effect of Adsorption Parameters 
3.2.1. Effect of FA/Fe3O4 Dose 

Generally, the adsorbent dose has a high impact on the adsorption capacity. To es-
tablish the effect of an FA/Fe3O4 dose on Cu (II) adsorption, a series of adsorption ex-
periments were carried out using three adsorbent doses (0.2 g/20 mL, 0.4 g/20 mL, and 0.8 
g/20 mL). The other parameters involved were an initial Cu (II) concentration of 300 
mg/L, a pH of 5, a contact time of 24 h, and a temperature of 26 °C. It can be observed that 
with the increase in the FA/Fe3O4 dose, for a constant volume of solution and for the same 
initial concentration of Cu (II) ion, the adsorption capacity decreases. As shown in Figure 
7, the best result was obtained using 10 g/L of FA/Fe3O4, with 13.48 mg/g of the Cu (II) 
adsorbed. 

 
Figure 7. The effect of FA/Fe3O4 dose (experimental conditions—initial pH = 5.0; initial metal con-
centration = 300 mg/L; contact time = 24 h; temperature = 26 °C). 

-20 -10 0 10 20

-120

-80

-40

0

40

80

120

-2 -1 0 1 2

-10

0

10

Magnetic field (kOe)
 

 

Sp
ec

ifi
c 

m
ag

ne
tiz

at
io

n 
(e

m
u/

g)

 Fe3O4

 FA-Fe3O4

 FA

Sp
ec

if
ic

 m
ag

ne
tiz

at
io

n 
(e

m
u/

g)

Magnetic field (kOe)

 Fe
3
O

4

 FA/Fe
3
O

4

 FA

0.2g/20mL 0.4g/20mL 0.8g/20mL
0

3

6

9

12

15

q,
 m

g/
g

Adsorbent dose

 FA
 FA/Fe3O4

Figure 6. Magnetization hysteresis loop of the FA/Fe3O4 vs. FA.

From Figure 6, it can be observed that there are significant differences in the coercive
field (Hc) and squareness values (Mr/Ms) of the samples. FA shows lower values for
Hc and Mr/Ms ratio, being therefore less susceptible to agglomeration than FA-Fe3O4
particles. However, FA would need much more intense magnetic fields to be separated,
after completing the water cleaning process, compared with FA/Fe3O4 particles.

3.2. Effect of Adsorption Parameters
3.2.1. Effect of FA/Fe3O4 Dose

Generally, the adsorbent dose has a high impact on the adsorption capacity. To estab-
lish the effect of an FA/Fe3O4 dose on Cu (II) adsorption, a series of adsorption experiments
were carried out using three adsorbent doses (0.2 g/20 mL, 0.4 g/20 mL, and 0.8 g/20 mL).
The other parameters involved were an initial Cu (II) concentration of 300 mg/L, a pH of 5,
a contact time of 24 h, and a temperature of 26 ◦C. It can be observed that with the increase
in the FA/Fe3O4 dose, for a constant volume of solution and for the same initial concentra-
tion of Cu (II) ion, the adsorption capacity decreases. As shown in Figure 7, the best result
was obtained using 10 g/L of FA/Fe3O4, with 13.48 mg/g of the Cu (II) adsorbed.

Also, FA presents the same trend. The adsorption capacity decreases with an increase
in the adsorbent dose. The rationale behind this behavior might be related to the aggre-
gation of the magnetic particles once the dose is increased, which consequently leads to
the decrease in adsorption capacity. This fact was observed when the fly ash was treated
with NaOH and H2SO4 [15,26]. Additionally, other researchers have obtained similar
results [12,24].
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Figure 7. The effect of FA/Fe3O4 dose (experimental conditions—initial pH = 5.0; initial metal
concentration = 300 mg/L; contact time = 24 h; temperature = 26 ◦C).

3.2.2. Effect of Initial Concentration

The results regarding the influence of the concentration of FA and FA/Fe3O4 in the
range of 100–700 mg/L are presented in Figure 8.
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The following observations could be drawn from Figure 8: the lower Cu (II) con-
centrations (100 mg/L and 200 mg/L) show lower adsorption capacities; the initial Cu
(II) concentration of 300 and 400 mg/L mark out the adsorption capacities of 11.9 mg/g
and 12.26 mg/g for FA, respectively, whereas 13.48 mg/g and 14.22 mg/g mark out the
adsorption capacities for FA/Fe3O4; the increase in concentration toward 500 mg/L led to
an adsorption capacity of 13.05 mg/g for FA and 15.05 mg/g for FA/Fe3O4; at an initial Cu
(II) concentration of 500, 600, and 700 mg/L, the adsorption capacity was approximately
similar, although the removal efficiency decreased.

The adsorption efficiency shows a decreasing trend with the initial concentration of
the Cu (II) ions from 100 to 700 mg/L. The adsorption sites are rapidly occupied at low
Cu (II) concentration. As the initial concentration of Cu (II) increased, the majority of the
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accessible adsorption sites were no longer available, leading to a decrease of the removal
efficiency.

3.2.3. Effect of Contact Time

In order to establish the contact time necessary to reach equilibrium, different contact
times (5–480 min) were used. The effect of contact time on Cu (II) adsorption capacity
using FA and FA/Fe3O4 adsorbents is presented in Figure 9.
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According to the obtained results, Figure 9 clearly proves that the contact time has
an influence on Cu (II) adsorption capacity; by increasing contact time, the adsorption
capacity increases. The results show that a maximum adsorption capacity of 12.21 mg/g is
obtained in 4 h of contact in the case of Fe3O4, as opposed to 11.9 mg/g after 6 h in the case
of FA. The superiority of FA/Fe2O3 material was observed between 180 and 300 min of
contact time. The reduction of contact time in the process of wastewater treatment saves
energy and time. This fact shows that the insertion of Fe3O4 in the structure of raw fly ash
represents a worthy advantage added to the induced magnetization.

3.3. Adsorption Isotherms

Adsorption isotherms and kinetic study offer valuable information regarding the
adsorption process and specific properties of the adsorbent surface which are necessary for
designing the adsorption systems.

The amount of Cu (II) adsorbed on the FA/Fe3O4 and the concentration of Cu (II)
at equilibrium was explained using four common adsorption isotherms: Langmuir (four
types of its linearization), Freundlich, Temkin, and Harkins–Jura (Figure 10 and Table 3).
The related literature offers a complete description regarding the hypothesis, and the
equation characteristic for each type of isotherm and kinetic model [20,43–46].

The correlated parameters of both equations are shown in Table 3. It should be men-
tioned that the value of experimentally obtained qmax is 15.991 mg/g.

In the case of FA/Fe3O4, by comparing the four isotherm models, it is noticed that the
Langmuir equation shows a higher value of correlation coefficient, R2, compared with the
Freundlich, Temkin, and Harkins–Jura isotherm models.
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Table 3. The correlated parameters of isotherms of Cu (II) adsorption onto FA/Fe3O4.

Model Parameter Value

Langmuir type 1
q_max 17.39

K_L 0.0191
R2 0.9987

Langmuir type 2
q_max 16.44

K_L 0.025
R2 0.9792

Langmuir type 3
q_max 16.71

K_L 0.0237
R2 0.9487

Langmuir type 4
q_max 16.91

K_L 0.0225
R2 0.9487

Freundlich
K_F 2.88
1/n 0.2816
R2 0.9625

Temkin

B 3.1282
b 0.792

AT 3.25
R2 0.9821

Harkins–Jura
AHJ 0.0075
BHJ 0.0226
R2 0.9002

where: q_max is the maximum adsorption capacity (mg/g); K_L is Langmuir constant (L/g); K_F is
the Freundlich constant; 1/n is the heterogeneity factor; AT is Temkin isotherm equilibrium binding
constant (L/g); bT is Temkin isotherm constant; B is the constant related to heat of adsorption (J/mol);
AHJ and BHJ are Harkins–Jura constants. The bold of 0.0987: to highlight the high value of R2.

The four different linear Langmuir equations show that the adsorption capacities
obtained are 17.39 mg/g for Type I, 16.44 mg/g for Type II, 16.71 mg/g for Type III,
and 16.91 mg/g for Type IV, while the values of the K_L are 0.0191, 0.025, 0.0237, and
0.0225 L/g, respectively. The value of the correlation coefficient, R2, of 0.9991, shows that
Langmuir equation type 1 is able to describe the Cu (II) adsorption process onto FA/Fe3O4.
Consequently, it can be concluded that the adsorption process is a monolayer uniform
adsorption [47].

The nature of the adsorption process (favorable/unfavorable) is established according
with the dimensionless separation factor, RL:

R_L = 1/(1 + K_L× C_0) (4)

where K_L is Langmuir constant and C_0 is the initial Cu (II) concentration in the range
100–700 mg/L.

The fitting curve of RL vs. C0 is presented in Figure 11.
The value achieved between 0 and 1 demonstrates that the adsorption process of Cu

(II) onto FA/Fe3O4 is a favorable process [48].
The results obtained for two kinetic models: pseudo-first-order and pseudo-second-

order are presented in Figure 12 and Table 4.
In the case of the pseudo-first-order equation, the value of correlation coefficient,

R2, was 0.9871 with a reaction rate constant, k1, of 0.0124 (L/min). The k2 constant of
the pseudo-second-order equation and R2 for Cu (II) adsorption onto FA/Fe3O4 were
0.00056 g/mg min and 0.993, respectively.
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Table 4. Kinetic parameters of Cu (II) adsorption onto FA/Fe3O4.

Kinetic Model Parameters Values

Pseudo-first order
k1, 1/min 0.0124

R2 0.9871

Pseudo-second order
qe cal, mg/g 15.64

k2, g/mg min 0.00065
R2 0.993

After applying the two kinetic models, it can be seen that the process of adsorption
is described by the pseudo-second-order model. This fact indicated that the adsorption
process of the Cu (II) ions onto FA/Fe3O4 was complex and more than one mechanism
was involved [12]. Also, the parameter of the initial adsorption rate when t→ 0 h was
calculated using Equation (5).

h = k2qe
2 (5)

The value obtained was 0.0969 mg/g min.
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These results suggested that the adsorption is predominantly chemical in nature.
Table 5 shows a comparison of the maximum adsorption capacities between the

adsorbent prepared in this study and materials presented in the literature.

Table 5. Maximum Cu (II) adsorption capacities (qmax).

Adsorbent qmax (mg/g) References

FA (Fly ash) 14.46 [15]
Fly ash treated with 5 M of NaOH at 90 ◦C, 4 h 27.904 [15]

PPy/Perlite (Polypyrrole composite on perlite zeolite) 3.57 [49]
ARH (Bentonite treated with sodium) 17.241 [50]
ARC (Bentonite treated with calcium) 18.181 [50]

ARS (Bentonite treated with sulphuric acid) 24.390 [50]
Modified clay 13–21 [51]

Natural zeolites 2.5 [14]
Fe3O4 particles with 1,6-hexadiamine 25.77–26.58 [52]

Magnetic Prussian blue 8.93 [53]
FA/Fe3O4 17.39 This study

The FA/Fe3O4 material obtained in this study presents a comparable or even higher
adsorption capacity in comparison with other materials used for Cu (II) adsorption.

This research represents a preliminary investigation. Further work will be focused
on the optimization of the process related to the FA-Fe3O4 ratios and contact time, but
also on the evaluation of the influence of ultrasonication applied at specific time points in
order to disperse the particles aggregated during the adsorption process. The capacity of
the magnetic composite to be magnetically separated from synthetic wastewater by using
magnetic fields with different intensities and geometries will be also assessed.

4. Conclusions

An easy and simple method was used for the synthesis of a magnetic composite
with fine adsorption properties. The effect of various variables, such as FA/Fe3O4 dose,
initial Cu (II) concentration, and contact time were investigated. From the obtained results,
it can be concluded that these three parameters have an important influence on copper
adsorption capacity. The synthesized material can be successfully used in large domains of
the initial concentration of Cu ions in the wastewater (100–700 mg/L).

The results demonstrated that for fly ash/magnetite material, the adsorption capacity
increases with about 20% compared with FA. Also, an important thing to note is that the
maximum adsorption capacity was reached in 4 h, while for FA the adsorption capacity at-
tained the maximum value after 6 h. This emphasizes that the insertion of Fe3O4 represents
a clear advantage. The adsorption capacities are higher compared with natural zeolites
and close to those of zeolites synthesized from FA, but the proposed method is very easy
and cheaper.

Not least, this novel material represents progress that is opposite of other low-cost
adsorbents for copper removal since it can be quickly removed by magnetic separation.

Langmuir Type 1 isotherm can predict the experimental data with a maximum adsorp-
tion capacity of 17.39 mg/g. The Fe3O4 was inserted in the fly ash structure through the
ball milling treatment and the material obtained did not break up into initial components.

Overall, it can be stated that this novel material represents a potentially low-cost
adsorbent for copper removal, with improved adsorption capacity compared with the raw
fly ash.
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onto magnetite modified fly ash. J. Environ. Manag. 2018, 224, 263–276. [CrossRef]
39. Cretescu, I.; Harja, M.; Teodosiu, C.; Isopescu, D.N.; Chok, M.F.; Sluser, B.M.; Salleh, M.A.M. Synthesis and characterisation of a

binder cement replacement based on alkali activation of fly ash waste. Process. Saf. Environ. Protect. 2018, 119, 23–35. [CrossRef]
40. Han, Z.; Zhang, Y.; He, P. One-Step Synthesis of Magnetic Zeolite from Zinc Slag and Circulating Fluidized Bed Fly Ash for

Degradation of Dye Wastewater. J. Renew. Mater. 2020, 8, 405. [CrossRef]
41. Sutcu, M.; Erdogmus, E.; Gencel, O.; Gholampour, A.; Atan, E.; Ozbakkaloglu, T. Recycling of bottom ash and fly ash wastes in

eco-friendly clay brick production. J. Clean. Prod. 2019, 233, 753–764. [CrossRef]
42. Sing, K.S. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and

porosity. Pure Appl. Chem. 1985, 57, 603–619. [CrossRef]
43. Yildiz, S. Kinetic and isotherm analysis of Cu (II) adsorption onto Almond Shell (Prunus dulcis). Ecol. Chem. Eng. S 2017, 24,

87–106. [CrossRef]
44. Grande-Tovar, C.D.; Vallejo, W.; Zuluaga, F. Equilibrium and Kinetic Study of Lead and Copper Ion Adsorption on Chitosan-

Grafted-Polyacrylic Acid Synthesized by Surface Initiated Atomic Transfer Polymerization. Molecules 2018, 23, 2218. [CrossRef]
45. Yetilmezsoy, K.; Özçimen, D.; Koçer, A.T.; Majid Bahramian, M.; Kıyan, E.; Akbin, H.M.; Goncaloğlu, B.I. Removal of An-
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