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Abstract: Lightweight cement mortars containing end-of-life tire rubber (TR) as aggregate were
prepared and characterized by rheological, thermal, mechanical, microstructural, and wetting tests.
The mixtures were obtained after total replacement of the conventional sand aggregate with untreated
TR with different grain sizes (0–2 mm and 2–4 mm) and distributions (25%, 32%, and 40% by weight).
The mortars showed lower thermal conductivities (≈90%) with respect to the sand reference due
to the differences in the conductivities of the two phases associated with the low density of the
aggregates and, to a minor extent, to the lack of adhesion of tire to the cement paste (evidenced by
microstructural detection). In this respect, a decrease of the thermal conductivities was observed
with the increase of the TR weight percentage together with a decrease of fluidity of the fresh mixture
and a decrease of the mechanical strengths. The addition of expanded perlite (P, 0–1 mm grain size)
to the mixture allowed us to obtain mortars with an improvement of the mechanical strengths and
negligible modification of the thermal properties. Moreover, in this case, a decrease of the thermal
conductivities was observed with the increase of the P/TR dosage together with a decrease of fluidity
and of the mechanical strengths. TR mortars showed discrete cracks after failure without separation
of the two parts of the specimens, and similar results were observed in the case of the perlite/TR
samples thanks to the rubber particles bridging the crack faces. The super-elastic properties of the
specimens were also observed in the impact compression tests in which the best performances of
the tire and P/TR composites were evidenced by a deep groove before complete failure. Moreover,
these mortars showed very low water penetration through the surface and also through the bulk
of the samples thanks to the hydrophobic nature of the end-of-life aggregate, which makes these
environmentally sustainable materials suitable for indoor and outdoor elements.

Keywords: cement conglomerates; end-of-life tire rubber; perlite; thermal insulation; mechani-
cal strength

1. Introduction

Industrial waste recycling and reuse are considered important issues to face the
need for a more sustainable and environmentally friendly building trade in order to
obtain an appropriate management of a large quantity of by-products such as agro-food
waste [1], plastics [2], batteries [3], municipal solid waste [4], and glass [5–7]. Indeed,
the construction industry has an extensive impact on raw materials consumption and
waste production; accordingly, the reuse and the conversion of a waste into a new resource
(recycling operation) is fundamental to increasing the sustainability of a product, the so-
called secondary raw material that can be re-used in the construction industry [8–11] or in
environmental applications [12–15].

In this respect, the large amount produced and the disposal of abandoned waste tires
represent fundamental issues to be addressed from an environmental point of view [16–19].
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Tire rubber shows biopersistence, chemical inertia, resistance to organic agents (mold
and bacteria), temperature changes, and atmospheric agents; accordingly, the performances
of this material do not decrease over time. For this reason, tire stockpiles can generate
health and safety risks through air, water, and soil pollution, and thus tire burning can
represent an easy and cheap solution for the management of the accumulated rubber,
although substantial pollution in the air, ground, and surface water can occur [20,21].

For this reason, the conversion of this waste into a new resource through recycling
operations is an alternative to incineration and landfilling in the sustainable tire rubber
management.

Recycled tire rubber can be considered a valuable resource because many properties
tend to be unchanged after its transformation, which can take place through different
processes. The most common operation is the mechanical grinding, carried out at room
temperature, the result of which is represented by the rubber granulate and powder [22,23].
The granulate recovery is characterized by tire shredding and chipping, by which small
pieces of different sizes (crumb rubber: 0.1–5 mm, chips: 15–75 mm, and shreds: 25–450
mm) are obtained.

This material shows elastic properties [24,25], acoustic absorption [26], and has a good
thermal resistance [27]. Applications of recycled tire rubber include asphalt conglomer-
ates [9,18], thermo-acoustic insulators [26,27], geotechnical systems and structures [28],
waterproofing and absorbing vibrations materials [23,29], energy production [30], and
playground equipment, all of which have been proven to be effective in protecting the
environment and preserving natural resources.

Several studies have been carried out on the incorporation of waste tire rubber as
aggregate in cement conglomerates, which were characterized by investigations on the
physico-mechanical [31–34], thermo-acoustic [26,35], and durability [32,36] properties.
These lightweight materials can be considered a resource for an appropriate management
of the large quantity of industrial by-products, and the production of these cheap and
environmentally friendly composites is considered one of the most effective alternatives to
tire incineration and landfilling [37,38].

Rubber–cement composites show lower compression resistances as compared to the
conventional conglomerates based on sand and gravel because these organic aggregates
are softer than the surrounding media, acting like “holes” inside the cement mixture.
Nonetheless, although nonstructural applications can be considered, an enhancement of
toughness and ability to absorb impact energy can be attributed to these unconventional
materials.

Moreover, the low density of tire rubber is beneficial because the cement conglomerates
show lightweight properties with respect to the conventional building materials due to
the decrease of the specific mass, which enhances sound and thermal insulation. This is
in perfect agreement with the current policies of environmental sustainability based on
the use of recycled industrial products as secondary raw by-products together with the
advantage of the production of composites with low costs and that generate large energy
savings as building materials.

The aim of this research was to prepare an environmentally beneficial cement compos-
ite based on end-of-life tire rubber (TR) as aggregate, realized as a cheap process without
any treatment of the organic material. Specifically, the rheological, mechanical, thermal,
microstructural, and wetting properties were studied in order to characterize the conglom-
erate for indoor and outdoor nonstructural applications. The mixtures were obtained after
full substitution of the conventional sand aggregate with TR, and we evaluated the effect
of the different grain sizes (0–2 mm (TRF) and 2–4 mm (TRL)) and dosages (25%, 32%, and
40% by weight).

We also discuss the contribution of tire rubber to macroscopic deformation—in partic-
ular, the super-elastic properties of this soft material to deform more under loading and the
interface affecting the composite strength due to the lower stiffness of the rubber particles
with respect to the cement paste [39,40]. Moreover, the thermal insulating properties of
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these lightweight composites were studied by analyzing the effects of the grain size and of
the composition of the mixtures. Moreover, the wetting properties are discussed in consid-
eration of the low surface energy of the rubber particles that tend to inhibit the absorption
of water in the artifacts. These properties were also studied after the addition of expanded
perlite (P, 0–1 mm grain size), with the aim of improving the mechanical strengths of the
resulting composites with negligible modification of the thermal and wetting properties.

2. Experimental Part
2.1. Materials and Mortar Specimens Preparation

A limestone Portland cement, CEM II A-LL 42.5 R with resistance to compression
Rc (2 days) > 25.0 MPa, Rc (28 days) > 47.0 MPa, and 3100–4400 cm2/g Blaine specific surface
area, was provided by Buzzi Unicem, Barletta, Italy, and used for the preparation of the
cement mortars [41]. In a first set of tests, an investigation on the mechanical, thermal, and
microscopical properties of composites based on bare end-of-life tire rubber as aggregate
was carried out. End-of-life tire rubber (0–2 mm (TRF) and 2–4 mm (TRL) size range,
500 kg/m3 and 550 kg/m3, respectively) was provided by Maltek Industrie S.r.l. (Terlizzi,
Bari, Italy). TR grains were added as total replacement of the conventional aggregate,
which was made on a volume basis rather than on a weight basis due to the low specific
weight of the waste material. In the present case, the total volumes of aggregate were
set at 450, 600, and 750 cm3, corresponding to weight percentages in the range of 25%,
32%, and 40%, respectively. Tables 1 and 2 report, respectively, the aggregate and mortar
composition. The samples were prepared with a water/cement ratio equal to 0.5 ± 0.01,
specifically with 225 g of water and 450 g of cement [42]. A normalized (sand) mortar was
prepared as a control with the same water to cement ratio and with 1350 g of sand. Dry
siliceous natural sand in the range of 0.08–2 mm from Societè Nouvelle du Littoral (Leucate,
France) was used as aggregate with clean, isometric, and rounded-shaped particles. The
rheology of the fresh mixtures was evaluated by the flow-test [43], which allowed us to
determine the consistency of the mixtures after evaluation of the percentage increase of
the diameter of the non-consolidated sample over the base diameter. Successively, all the
specimens were prepared as prisms (40 × 40 × 160 mm) for the flexural and compressive
tests (28 days curing) [42]. Moreover, the specimens were prepared as cylinders for the
thermal (ϕ = 100 mm; H = 50 mm) tests (28 days curing).

Table 1. Type, aggregate composition, density ρ, and porosity of the tire rubber (TR) mortar speci-
mens. Samples prepared with 225 g of water and 450 g of cement. TRF = fine (0–2 mm) tire rubber,
TRL = large (2–4 mm) tire rubber.

Sample Type Aggregate Composition ρ Kg/m3 Porosity %

REF Control Normalized mortar 1950 21

1 TRF (25%) 100% TR (0–2 mm) 1160 43

2 TRL (25%) 100% TR (2–4 mm) 1215 42

3 TRF/TRL (25%) 50% TR (0–2 mm)/50% TR (2–4 mm) 1180 43

4 TRF (32%) 100% TR (0–2 mm) 1080 45

5 TRL (32%) 100% TR (2–4 mm) 1130 44

6 TRF/TRL (32%) 50% TR (0–2 mm)/50% TR (2–4 mm) 1100 45

7 TRF (40%) 100% TR (0–2 mm) 970 47

8 TRL (40%) 100% TR (2–4 mm) 1005 45

9 TRF/TRL (40%) 50% TR (0–2 mm)/50% TR (2–4 mm) 990 46
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Table 2. TR mortar composition.

Sample Type Cement (g) Water (cm3)
TRF Volume

(cm3)
TRF Weight

(g)
TRL Volume

(cm3)
TRL Weight

(g)

REF Control 450 225 0 0 0 0

1 TRF (25%) 450 225 450 230 0 0

2 TRL (25%) 450 225 0 0 450 250

3 TRF/TRL (25%) 450 225 225 115 225 125

4 TRF (32%) 450 225 600 300 0 0

5 TRL (32%) 450 225 0 0 600 330

6 TRF/TRL (32%) 450 225 300 150 300 165

7 TRF (40%) 450 225 750 380 0 0

8 TRL (40%) 450 225 0 0 750 420

9 TRF/TRL (40%) 450 225 375 190 375 210

In a second set of tests, an investigation on the mechanical, thermal, microscopical,
and wetting properties of cement mortars based on end-of-life tire rubber (TRF) and dry
expanded perlite as aggregate was carried out. Expanded perlite (P) (0–1 mm size range,
100 kg/m3) is a chemically inert, sterile, and incombustible silica material obtained after
heat treatment at 760–1100 ◦C of a vulcanic rock, which determines expansion in granular
form and consequent high thermo-insulating properties [44]. It showed the following
chemical composition: SiO2 74.5%, Al2O3 12.3%, K2O 4.2%, Na2O 4%, Fe2O3 1%, CaO
1.4%, and was provided by Maltek Industrie S.r.l. (Terlizzi, Bari, Italy). Moreover, in this
case, the samples were prepared with 225 g of water and 450 g of cement [42], and the total
volume of aggregate was set at 450, 600, and 750 cm3. Tables 3 and 4 report, respectively,
the aggregate and mortar composition. The rheological, thermal, and mechanical [42,45]
properties of the mortars were evaluated as reported previously. These specimens were
also molded in the form of cylinders for impact resistance (ϕ = 150 mm; H = 60 mm) tests
and cured in water for 28 days after demolding [46]. Moreover, the TRF and perlite samples
were characterized by wettability tests.

Table 3. Type, aggregate composition, density ρ, and porosity of the expanded perlite and TR mortar
specimens. Samples prepared with 225 g of water and 450 g of cement. P = perlite (0–1 mm),
TRF = fine (0–2 mm) tire rubber.

Sample Type Aggregate Composition ρ Kg/m3 Porosity %

10 P (450 cm3) 100% perlite (0–1 mm) 1250 37

11 P/TRF (450 cm3) 50% perlite (0–1 mm)/50% TR (0–2 mm) 1210 39

12 P (600 cm3) 100% perlite (0–1 mm) 1180 37

13 P/TRF (600 cm3) 50% perlite (0–1 mm)/50% TR (0–2 mm) 1130 41

14 P (750 cm3) 100% perlite (0–1 mm) 1100 38

15 P/TRF (750 cm3) 50% perlite (0–1 mm)/50% TR (0–2 mm) 1060 42
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Table 4. Expanded perlite and tire rubber mortars composition.

Sample Type Cement (g) Water (cm3)
TRF Volume

(cm3)
Perlite Volume

(cm3)

10 P (450 cm3) 450 225 450 0

11 P/TRF (450 cm3) 450 225 275 275

12 P (600 cm3) 450 225 600 0

13 P/TRF (600 cm3) 450 225 300 300

14 P (750 cm3) 450 225 750 0

15 P/TRF (750 cm3) 450 225 375 375

2.2. Mechanical and Thermal Tests

Compression strengths were obtained as the average of the measurements carried out
on 12 semi-prisms (2400 ± 200 N/s loading rate) obtained by flexural tests carried out on
6 prisms (40 × 40 × 160 mm) (50 ± 10 N/s loading rate) [42]. The mechanical tests were
carried out by the use of a MATEST device (Matest S.p.A., Milan, Italy).

The impact resistance test [46] was carried out by dropping a 4.50 kg weight on a
steel ball (63 mm diameter) from a height of 45 cm. The steel ball was placed centrally
on the upper surface of the specimen and it was evaluated the number of weight drops
before the fracture. Thermal conductivity (λ) measurements were carried out by inducing a
constant thermal flow through a heating probe, which was applied on the sample surface,
and the temperature was recorded during the time period. The results were obtained by
the comparison between the experimental temperature values with the analytical solution
of the heat conduction equation [45]. Measurements were carried out by ISOMET 2104
device (Applied Precision Ltd., Bratislava, Slovakia).

2.3. Microscopical, Wetting, and Porosimetric Characterization

A FESEM-EDX Carl Zeiss Sigma 300 VP (Carl Zeiss Microscopy GmbH, Jena, Ger-
many) electron microscope was used for the microstructural characterization of the aggre-
gates and of the composites. The samples were applied onto aluminum stubs and sputtered
with graphite (Sputter Quorum Q150 Quorum Technologies Ltd., East Sussex, UK) before
detection.

A Premier series dyno-lyte portable microscope and background cold lighting allowed
the aggregate distribution of the mortars to be shown, allowing us to evaluate the wettabil-
ity of the specimens after deposition of a drop of water onto the side and fracture surface
of each sample.

Porosimetric measurements were carried out by an Ultrapyc 1200e Automatic Gas
Pycnometer (Quantachrome Instruments, Boynton Beach, FL, USA). The tests were carried-
out on three specimens of the same type in which an inert gas (helium) penetrated the
finest pores. The results were the average of three measurements on each sample.

3. Results and Discussion

Figure 1A shows the end-of-life TR grains used for the mortars preparation, whereas
Figure 1B shows the scanning electron micrograph (SEM) of a tire rubber grain.
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Figure 1. (A) Tire rubber (TR) and (B) tire rubber grain (≈1 mm diameter) from electron microscope detection. 

Table 1 shows that the TR samples were lighter and with a much higher porosity than 
the reference (control) because of the density of the lightweight aggregates, whereas, 
among the lightweight composites, the TRF samples (samples 1, 4, and 7) were lighter than 
the TRL samples (samples 2, 5, and 8) because fine particles tend to cause more air entrap-

Figure 1. (A) Tire rubber (TR) and (B) tire rubber grain (≈1 mm diameter) from electron microscope detection.

Table 1 shows that the TR samples were lighter and with a much higher porosity than
the reference (control) because of the density of the lightweight aggregates, whereas, among
the lightweight composites, the TRF samples (samples 1, 4, and 7) were lighter than the
TRL samples (samples 2, 5, and 8) because fine particles tend to cause more air entrapment
during mixing. Specimens with mixture of aggregates (TRF/TRL) showed intermediate
values of specific mass with respect to samples with only one type of aggregate. Finally, TR
(40%) mortars resulted in the lightest and the most porous due to the highest dosage of the
organic aggregate.

The consistency of the fresh specimens was determined by the flow test measurements
(Figure 2). In the case of the lowest aggregate dosage (25% of TR), the TR sample with
finer grains (TRF, sample 1) showed similar workability of the sand reference (control),
while the TR sample with larger grains (TRL, sample 2) resulted as more fluid (+24%).
This result can be ascribed to the lower specific surface area of the TRL aggregates with
respect to the higher specific surface area of the TRF aggregates, which contributed to
the decrease of cohesiveness of the specimen. A huge decrease of fluidity (−30%, −45%)
and increase of cohesiveness was observed with the increase of the tire dosage in the TR
samples with finer grains (TRF, samples 4 and 7). TRL samples also showed a decrease
of fluidity (+6%, −10%) with the increase of the tire dosage (samples 5 and 8) and, in the
case of the intermediate dosage (32% of TRL, sample 5), the flow percentages resulted in
being similar to the control (plastic behavior). Specimens with a mixture of aggregates
(TRF/TRL) showed intermediate values with respect to samples with only one type of
aggregate; similar workability to the control was found in the case of the sample 6 (32% of
TRF/TRL), although less fluid than sample 5 (32% of TRL).
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Figure 3 reports the flexural (Figure 3A) and compressive (Figure 3B) strengths of
the TR samples with relative correlation and the evaluation of the percentage increase of
the diameter of the non-consolidated sample over the base diameter. Successively, all the
specimens with larger grains (TRL, samples 2, 5, and 8) resulted in being more resistant
than the composites based on finer grains (TRF, samples 1, 4, and 7) due to the higher
specific mass that induced an increase of the flexural resistance and of the compressive
resistance in the range of +15% and +20%, respectively. Specimens with a mixture of
aggregates (TRF/TRL) showed intermediate values with respect to samples with only one
type of aggregate. A decrease of the mechanical strengths was observed with the increase
of the TR weight percentage because of the decrease of the specific mass of the composites.
Moreover, TR mortars did not show the typical flexural and compressive brittle rupture
that can be observed in the reference mortars, but we observed the presence of discrete
cracks after failure without collapse, an effect that can be ascribed to the rubber residual
strength contribution, with particles bridging the crack faces (Figure 3C) [47,48].

Materials 2021, 14, x FOR PEER REVIEW 7 of 20 
 

 

 

Figure 3. (A) Flexural and (B) compressive strengths of the TR mortars. The Rf and Rc of the control sample were, respec-
tively, 8 ± 1 MPa and 45 ± 2 MPa. (C) Discrete cracks after rupture in the TR specimens (evidenced by the arrow), with the 
two parts of the sample still connected by tire rubber. 

The sections of the specimens after the flexural tests are shown in Figure 4, where the 
different dimensions of the TR grains and the different and homogeneous distribution of 
the aggregates can be observed. 

Figure 3. (A) Flexural and (B) compressive strengths of the TR mortars. The Rf and Rc of the control sample were,
respectively, 8 ± 1 MPa and 45 ± 2 MPa. (C) Discrete cracks after rupture in the TR specimens (evidenced by the arrow),
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The sections of the specimens after the flexural tests are shown in Figure 4, where the
different dimensions of the TR grains and the different and homogeneous distribution of
the aggregates can be observed.
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Figure 4. Sections of the (A) TRF (25%) sample (sample 1), (B) TRF/TRL (25%) sample (sample 3), (C) TRL (25%) sample
(sample 2), (D) TRL (40%) sample (sample 8). The cross-section of these samples was analyzed by optical microscope after
flexural rupture of the specimens.

The mortars also showed lower thermal conductivities (≈85–90%) with respect to
the sand reference (≈2 W/mK) due to the lower density of bare TR samples (Figure
5A). The specimens with finer grains (TRF) showed lower thermal conductivities than
the composites based on larger grains (TRL) due to the lower specific mass that induced
an increase of thermal insulation in the range of 25–30%. Specimens with a mixture of
aggregates (TRF/TRL) showed intermediate values with respect to samples with only one
type of aggregate, whereas a decrease of the thermal conductivities was observed with the
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increase of the TR weight percentage because of the lower specific mass of the composites.
An exponential decrease of the conductivity data was observed with the decrease of the
density of the composites (Figure 5B).
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An explanation of the decrease of the mechanical performances and of the remarkable
increase of the thermal insulation of these composites is associated with the low density
of the tire rubber compared to the cement paste [36] and, to a minor extent, to the lack
of adhesion of tire to the cement paste, as observed in microscopical observations. The
sand replacement with tire rubber determined the formation of voids in the composite
(Figure 5C) at the organic/inorganic interface due to the unfavorable adhesion of the
aggregate to the cement paste [49–54], with a decrease of the specific mass and increase
of the porosity of the samples with respect to the references (Table 1). The hydrophobic
tire rubber with its organic compounds can explain the poor adhesion to the inorganic and
hydrophilic cement matrix, on the contrary to what was observed with the sand in the
reference sample with a good adhesion of this aggregate to the cement paste [55].

Thus, these conglomerates can be considered very low thermal insulating composites
with low mechanical strengths. For this reason, a second set of experiments was carried-out
with the aim of improving the resistances of the more lightweight mortars (based on finer
tire rubber) without significant modification of the thermal properties [44,56–58]. Thus,
an investigation on the rheological, mechanical, thermal, and microscopical properties of
cement mortars based on end-of-life tire rubber (TRF) with the addition of a lightweight
but more stiff aggregate such as expanded perlite was carried out.

The scanning electron micrographs (SEMs) of a perlite bead can be observed in
Figure 6, which shows large open (Figure 6A) and closed (Figure 6B) porosity.
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Figure 6. SEM image of a (A) perlite bead and (B) bead magnification (inner porosity).

Table 3 shows that the perlite and TR/perlite specimens were lighter and had a higher
porosity than the reference (control), while bare perlite samples (samples 10, 12, and 14)
showed higher specific mass (>100 Kg/m3) and lower porosity (<6–9%) than bare TRF
samples (samples 11, 13, and 15). The mortars were lighter and more porous with the
increase of the aggregate dosage.

The addition of perlite to the mixture determined a large decrease of fluidity in the
fresh specimens (Figure 7) because of the low grain size (high surface area) and large
porosity of the silico-aluminate aggregates (Figure 6B). This effect was remarkable in terms
of the increase of dosage, which determined an increase of cohesiveness of the specimens.
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Figure 7. Flow test results of the TRF and perlite samples with respect to the normalized mortar
(control).

Figure 8 reports the flexural (Figure 8A) and compressive (Figure 8B) strengths of the
TRF, perlite (P), and TRF/P samples. It was observed that bare perlite samples (samples
10, 12, and 14) showed flexural resistances almost double that of bare TRF composites
(samples 1, 4, and 7), and compressive resistances three times higher. This was ascribed to
the presence of the stiffer material perlite [44,56–58]. Intermediate values were in the case
of mixtures of aggregates (samples 11, 13, and 15). A decrease of the mechanical strengths
was observed with the increase of the TRF and perlite volume because of the decrease of
the specific mass of the composites.
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Figure 8. (A) Flexural and (B) compressive strengths of the TRF and perlite mortars. The Rf and Rc of the control sample
were, respectively, 8 ± 1 MPa and 45 ± 2 MPa.

A brittle flexural and compressive failure mode of the perlite mortars was observed,
which was very different respect to the bare TR behavior, while a semi-brittle rupture was
observed in the TR/perlite samples, where an evident separation of the two parts of the
specimens was not observed, with this being ascribed to the tire contribution [47].

The sections of the specimens after the flexural tests are shown in Figure 9, where the
homogeneous distribution of the organic and inorganic aggregates can be observed.

Materials 2021, 14, x FOR PEER REVIEW 11 of 20 
 

 

 
Figure 8. (A) Flexural and (B) compressive strengths of the TRF and perlite mortars. The Rf and Rc of the control sample 
were, respectively, 8 ± 1 MPa and 45 ± 2 MPa. 

A brittle flexural and compressive failure mode of the perlite mortars was observed, 
which was very different respect to the bare TR behavior, while a semi-brittle rupture was 
observed in the TR/perlite samples, where an evident separation of the two parts of the 
specimens was not observed, with this being ascribed to the tire contribution [47]. 

The sections of the specimens after the flexural tests are shown in Figure 9, where the 
homogeneous distribution of the organic and inorganic aggregates can be observed. 

Figure 9. Sections of the (A) TRF sample (sample 1), (B) P sample (sample 10), (C) P/TRF sample (sample 11). The cross-
section of these samples was analyzed by optical microscope after flexural rupture of the specimens. 

The mortars with bare perlite (samples 10, 12, and 14) were less insulating than the 
mortars with bare tire rubber (<35–40%), while P/TR mortars (samples 11, 13, and 15) 
showed similar thermal conductivities to bare TR samples (samples 1, 4, and 7), with λ 
values in the range of 80–85% lower than the sand reference (Figure 10A). Moreover, in 
this case, an exponential decrease of the conductivity data was observed with the decrease 
of the density of the composites (Figure 10B). Thus, these composites showed lightweight 
features due to the low density but also better mechanical properties ascribed to the stiff-
ness of perlite. 

Figure 9. Sections of the (A) TRF sample (sample 1), (B) P sample (sample 10), (C) P/TRF sample (sample 11). The
cross-section of these samples was analyzed by optical microscope after flexural rupture of the specimens.

The mortars with bare perlite (samples 10, 12, and 14) were less insulating than the
mortars with bare tire rubber (<35–40%), while P/TR mortars (samples 11, 13, and 15)
showed similar thermal conductivities to bare TR samples (samples 1, 4, and 7), with λ
values in the range of 80–85% lower than the sand reference (Figure 10A). Moreover, in
this case, an exponential decrease of the conductivity data was observed with the decrease
of the density of the composites (Figure 10B). Thus, these composites showed lightweight
features due to the low density but also better mechanical properties ascribed to the stiffness
of perlite.
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Figure 10. (A) Thermal conductivity of the TRF and perlite specimens. The thermal conductivity of the sand reference was
≈2 W/mK. (B) Exponential increase of the thermal conductivity with the density increase.

The low thermal and mechanical strengths of these samples with respect to the con-
ventional sand-based mortar is ascribed to the low density of the aggregates. In this specific
case, an explanation of the mechanical and thermal results of the lightweight mortars can
be obtained after microscopical observations. In the case of the aggregate mixtures, it we
confirmed the unfavorable adhesion of the TR aggregate but a good adhesion of the perlite
to the cement paste (Figure 11), a result ascribed to the similar chemical composition of
the ligand and of the inorganic aggregates based on silicates and aluminates together with
the beads’ roughness [23]. The microscopical observations can explain the low mechanical
strengths in the presence of tire rubber and the higher values with perlite characterized
by stiffness and adhesion to the cement paste, which determined an increase of the spe-
cific mass and a decrease of the porosity of the samples. Accordingly, better mechanical
performances were obtained in the case of perlite/TR mixtures with respect to bare TR
mixtures, together with good thermal properties associated with the low specific mass of
these composites characterized by both lightweight aggregates.
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Figure 11. SEM images of (A) P/TRF bead, (B) cement/TRF interface, (C) cement/perlite interface.

The impact compression tests (Figure 12A) showed that the perlite samples were
extremely fragile and the breakage occurred after few blows due to the presence of the
brittle aggregate (Figure 12B), while the specimens characterized by the presence of tire
rubber (Figure 12C,D) showed the best results due to the super-elastic properties of the
elastomeric material. Indeed, the highest energy absorption capacity and a deep groove
before complete failure [49,59] were specifically observed in the case of the TRF samples
while average values were observed in samples with 50% of TR and 50% of perlite. As
reported previously, a decrease of the mechanical strengths was observed with the increase
of the TRF and perlite volume because of the decrease of the specific mass of the composites;
nonetheless, the decrease of the specific mass of the TRF and P/TRF samples determined
an increase of the impact resistance because of the higher tire dosage. In the case of the
bare perlite samples, the variation of the composition did not influence the performances
because of the extremely brittle behavior of these conglomerates.

The wetting properties of these specimens was also carried out. The wettability is
defined as the attraction of a liquid to a solid surface with an interaction determined by
a balance between adhesive and cohesive forces. A poor wettability is associated with a
hydrophobic behavior of the surface of a material while a high wettability is associated with
a hydrophilic behavior [60]. Tire rubber specimens showed poor wettability (negligible
water penetration) on the surface and on the bulk [23] (Figures 13A and 14A). These
results were totally ascribed to the hydrophobic nature of the organic aggregate in spite
of the higher porosity with respect to the reference and the bare perlite samples. The
surface and the bulk of the bare perlite samples showed a fast water absorption and a
hydrophilic behavior (Figures 13B and 14B) due to the hydrophilic porous domains of
the inorganic aggregate and of the cement paste, a result also observed in the case of the
reference sand mortars [23,55]. In the case of the rubber/perlite sample (P/TRF), the water
absorption was significantly lower than the perlite and reference samples but higher than
the TR mortars (≈20% on the side surface, ≈20% on the fracture surface), thanks to the
opposite contribute of the hydrophilic and porous perlite and of the hydrophobic tire
rubber (Figures 13C and 14C).
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Figure 13. Wettability tests on the side surface of (A) TRF sample (sample 1) at t = 0 s (left) and at t = 150 s (right), (B) P
sample (sample 10) at t = 1 s, (C) P/TRF sample (sample 11) at t = 0 s (left) and at t = 150 s (right).
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4. Summary and Conclusions

The rheological, thermo-mechanical, wetting, and microstructural properties of lightweight
cement mortars containing end-of-life tire rubber (TR) as aggregate were evaluated. The mix-
tures were obtained after total replacement of the conventional sand aggregate with untreated
TR having different grain sizes (0–2 and 2–4 mm) and distributions (25%, 32%, and 40% by
weight).

The main results showed that

1. The fresh mortars showed a decrease of fluidity with the increase of dosage. The
TRL mixtures resulted in having more fluid than the TRf mixtures. This result can be
ascribed to the lower specific surface area of the TRL aggregates with respect to the
higher specific surface area of the TRF aggregates, which contributes to the decrease
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of cohesiveness of the TRL specimens. The TRF (25%) specimen showed a plastic
behavior as in the case of the sand reference, and similar results were found in the
case of the TRL (32%) fresh mixture.

2. The mortars showed lower thermal conductivities (≈85–90%) and lower mechanical
strengths (Rf and Rc) with respect to the sand reference due to the decrease of specific
mass of the conglomerates associated with the low density of the aggregates and, to a
minor extent, to the voids at the TR/cement interface, which were microstructurally
detected.

3. The specimens with larger grains (TRL) showed higher mechanical strengths (Rf and
Rc) but higher thermal conductivities than the composites based on finer grains (TRF)
due to the higher specific mass of the conglomerates associated with the different
density of the aggregates.

4. A decrease of the thermal conductivities and of the mechanical strengths were ob-
served with the increase of the TR weight percentage, which determined a decrease
of the specific mass of the conglomerates.

5. TR mortars showed discrete cracks after failure without separation of the two parts
of the specimens due to the rubber residual strength contribution, with particles
bridging the crack faces.

6. The addition of expanded perlite (P, 0–1 mm grain size) to the mixture allowed us to
obtain less fluid mortars because of the low grain size (high surface area) and large
porosity of the silico-aluminate aggregates.

7. An improvement of the mechanical strengths was obtained with the addition of
perlite. Indeed, the flexural resistances were almost double with respect to bare TRF
composites and the compressive resistances three times higher due to the stiffness of
the inorganic aggregate.

8. Negligible modification of the thermal insulating properties (≈80–85% lower than
the sand reference) was obtained due to the high porosity of perlite.

9. P/TR mortars also showed discrete cracks after failure without separation of the two
parts of the specimens, and this behavior, although less evident than bare TR samples,
was exclusively ascribed to the contribute of the elastomeric particles, as opposed to
the brittle failure obtained by bare perlite samples.

10. From the impact compression tests, we found the best performances of the tire and,
to lesser extent, of the P/TR composites were evidenced by a deep groove before
complete failure. Moreover, in this case, this result was associated to the super-elastic
properties of the end-of-life tire rubber.

11. TR mortars showed very low water penetration through the surface and also through
the bulk of the samples, thanks to the hydrophobic nature of the end-of-life aggregate.
Interesting results were obtained in the case of the P/TR samples.

12. The present composites can be considered environmentally sustainable materials
because they are prepared with recycled materials and without any treatment of
the aggregates. Moreover, the lightweight properties can be effective for thermal
insulating elements (vertical elements, screeds, panels), which can be applied for
indoor and outdoor structures.
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