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Abstract: HfO2 was deposited at 80–250 ◦C by plasma-enhanced atomic layer deposition (PEALD),
and properties were compared with those obtained by using thermal atomic layer deposition (thermal
ALD). The ALD window, i.e., the region where the growth per cycle (GPC) is constant, shifted from
high temperatures (150–200 ◦C) to lower temperatures (80–150 ◦C) in PEALD. HfO2 deposited at 80 ◦C
by PEALD showed higher density (8.1 g/cm3) than those deposited by thermal ALD (5.3 g/cm3) and a
smooth surface (RMS Roughness: 0.2 nm). HfO2 deposited at a low temperature by PEALD showed
decreased contaminants compared to thermal ALD deposited HfO2. Values of refractive indices
and optical band gap of HfO2 deposited at 80 ◦C by PEALD (1.9, 5.6 eV) were higher than those
obtained by using thermal ALD (1.7, 5.1 eV). Transparency of HfO2 deposited at 80 ◦C by PEALD
on polyethylene terephthalate (PET) was high (> 84%). PET deposited above 80 ◦C was unable to
withstand heat and showed deformation. HfO2 deposited at 80 ◦C by PEALD showed decreased
leakage current from 1.4 × 10−2 to 2.5 × 10−5 A/cm2 and increased capacitance of approximately
21% compared to HfO2 using thermal ALD. Consequently, HfO2 deposited at a low temperature by
PEALD showed improved properties compared to HfO2 deposited by thermal ALD.
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1. Introduction

The semiconductor industry has developed rapidly, and electronic devices have been scaled down.
However, scaled-down devices can show many problems, such as direct tunneling, high gate leakage
current and poor reliability [1,2]. Therefore, HfO2 has been studied to replace conventional SiO2 as a
high-κmaterial because of its advantages, such as high density, good ductility and corrosion resistance,
as well as its high-k [3,4]. HfO2 has mainly been deposited by thermal atomic layer deposition (thermal
ALD) because this method produces thin films that are pinhole-free, high density and have low
contaminants levels (Carbon, Nitrogen); this process also allows excellent thickness control [5–8].

Recently, as the importance of wearable devices has increased, low-temperature deposition of HfO2

thin films has been required [9,10]. However, HfO2 thin films normally must be deposited at around
200 ◦C because the metal–organic precursors used as sources during the ALD process fully decompose
at high temperatures [11]. Many methods have been studied to lower the deposition temperature of
HfO2 in ALD [12–16]. However, in those studies, HfO2 thin films deposited at low temperatures had
problems, such as a high level of carbon impurities (5.15%–8.9% carbon impurity in HfO2 thin films
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deposited at 150 ◦C) or low density (3.7 g/cm3 when deposited at 30 ◦C, 4.1 g/cm3 at 50 ◦C, 4.8 g/cm3

at 80 ◦C and 5.3 g/cm3 at 100 ◦C); these problems cause high leakage current and poor reliability in
electronic devices [12–14].

Using plasma to produce oxygen radicals with high reactivity can solve these problems, and plasma
has been used in other low-temperature deposition processes [17]. Consequently, plasma-enhanced
atomic layer deposition (PEALD) can be used to decompose a source at a lower temperature by making
atomic oxygen radicals using O2 gas as a reactant; this is in contrast to the conventional thermal ALD
process, which uses O3 as a reactant. In the previous studies, it was found that the electrochemical
oxidation potential, a measure of the sensitivity of the oxidation reaction, of atomic oxygen radicals
(2.42 V) is higher than that of O3 (2.08 V) [18–20]. In the ALD process, electrochemical oxidation
potential of the reactants indicates the ligand-decomposing power [21–24]. Higher oxidation potential
of reactants enables the low-temperature processes because less thermal energy is required for source
decomposition [16].

In this study, HfO2 thin films were deposited by PEALD at 80 ◦C, and their variable properties,
such as film structures, surface morphology and surface components, were compared with thin films
deposited by using thermal ALD and PEALD at various temperatures (80, 150 and 250 ◦C). Moreover,
values of densities, refractive index, optical bandgap determined by Tauc plot and transmittance of
HfO2 deposited at 80 ◦C by thermal ALD and PEALD were compared. In our study, the HfO2 deposited
at a low temperature (80 ◦C) by PEALD showed a low carbon ratio (3.5%) and high film density
(8.1 g/cm3). Finally, electrical characteristics, such as capacitance–voltage (C–V) curve, current–voltage
(I–V) and fixed-charge density (Qf) of HfO2 deposited at 80, 150 and 250 ◦C were analyzed, using an
MOS capacitor. The HfO2 thin films deposited at a low temperature (80 ◦C), using PEALD, showed
improved structural, chemical, optical and electrical properties, without any degradation.

2. Materials and Methods

Using an automated ALD system (iCV d300, ISAC Research,Daejeon, Korea), HfO2 thin films
were fabricated on doped (ρ ~ 15 Ω·cm) p-type Si (100) wafers. Substrates were cleaned for 10 min with
acetone, 10 min with ethanol and 10 min with IPA in an ultrasonic generator; they were immediately
dried by blowing argon over the sample. The substrates were loaded at different temperatures, in a
range of 80–250 ◦C. The main pump was an MVP-90 (WOOSUNG VACUUM PUMP, Jeju, Korea),
and the base pressure was 10 mtorr. An ISP-90 (ANEST IWATA Corporation, Yokohama, Japan) was
used as a by-pass pump for constant flow. In this experiment, direct plasma was used; the plasma
power was fixed at 150 W, using a 13.56 MHz RF power supply (REX2-3K, RF Power Tech, Anyang,
Korea). Tetrakis(ethylmethylamino) hafnium (TEMAH-99.999% purity from UP Chemical, Pyungtaek,
Korea) was used as a precursor. High-purity O3 and O2 were used as oxidants. O3 was produced from
O2 by an ozone generator (LAB-II, Ozonetech, Daejeon, Korea). Ar gas, used as a carrier gas and purge
gas, also had a purity of 99.999%. TEMAH precursor canister was maintained at 75 ◦C. The precursor
flow line and the chamber were also maintained at 80 ◦C, to prevent condensation and clogging.

The thickness of the HfO2 thin films was measured by using a Reflectometer (ST2000, K-MAC,
Daejeon, Korea) and Spectroscopic Ellipsometry (SE, M2000D, J.A. WOOLLAM CO, Lincoln, NE, USA).
In addition, the film structures and density in HfO2 were examined by Grazing Incidence X-ray diffraction
and X-ray reflectivity, respectively (GIXRD, MXD10, Rigaku, Tokyo, Japan, Cu Kα radiation). The root
mean square (RMS) roughness values of the HfO2 films (50 nm) were obtained by Atomic Force Microscope
(AFM, XE7, Park Systems Suwon, Korea) images and scanned at 2 µm × 2 µm size. The chemical bonding
states and components were examined by using X-ray photoelectron spectroscopy (XPS, K-Alpha+,
Thermo Fisher Scientific Waltham, MA, USA) To remove carbon- and nitrogen-contaminant layers from
air, approximately 7 to 10 nm of the HfO2 films was removed via Ar etching, at 1 keV, for 30 s [25,26].
Refractive index and absorption coefficient of HfO2 (50 nm) were extracted from the Ellipsometry (SE,
M2000D, J.A. WOOLLAM CO, Lincoln, NE, USA) data. The transmittance of HfO2 (50 nm) at 550 nm
on the PET substrate (ST510, DuPont Teijin Films, Wilmington, DE, USA) was measured in a range
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from 190 to 1100 nm, which was measured in the normal incidence of light by UV-vis spectroscopy
(HP 8453, Agilent, Santa Clara, CA, USA). To measure the electrical properties (I–V and C–V), MOS
capacitors were fabricated. Cu/Ti top electrodes were deposited on HfO2/p-Si, using an E-beam evaporator
(KVET—C500200, Korea Vacuum, Gimpo, Korea). Cu/Ti circular electrodes were patterned, using a
shadow mask. Electrical properties, as indicated by the I–V and C–V curves, were measured by using a
Manual Probe Station (SUMMIT 11862B, Cascade, Beaverton, OR, USA). The C–V curve was obtained at
1 MHz in the range of −7 to +7 V, and the I–V curve was obtained from −2 to 2 V.

3. Results and Discussion

To show the experimental conditions of HfO2 thin films deposited at 80 ◦C, Figure 1a–d provides
growth per cycle (GPC) curves for each step time; these were measured by using a reflectometer,
because the process is easier and simpler than ellipsometry.
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Figure 1. (a–d) GPC values of HfO2 deposited at 80 ◦C by thermal ALD and PEALD as functions of
precursor exposure time, reactant exposure time, purge time and plasma exposure time. (e) Thickness
values as a function of ALD cycles with thermal ALD and PEALD. (f) ALD windows as functions of
deposition temperature with thermal ALD (150–200 ◦C) and PEALD (80–150 ◦C).

GPC curves, which changed according to the feeding and purge times, were clearly saturated at
the same time with sufficient feeding and purge times. The experimental periods were determined
according to these saturation times, as indicated by the arrows in Figure 1a–d. The thermal ALD cycle
for HfO2 deposition consisted of 2 s source feeding, 15 s Ar purging, 1.5 s O3 reactant feeding and
15 s Ar purging. Additionally, the PEALD cycle for HfO2 deposition consisted of 3 s source feeding,
25 s Ar purging, 1.5 s O2 reactant feeding, a 1.5 s O2 plasma-on state and 25 s Ar purging. Since direct
plasma was used in the experiment, O2 plasma was used for a relatively short time compared with
remote plasma. Figure 1e shows the thickness increase with the deposition cycle; resulting values were
obtained by ellipsometry, to measure the thicknesses of the thin films, because the reflectometer has
difficulty accurately measuring thicknesses under 100 nm. The HfO2 thickness increased linearly as
the cycle increased, without a growth delay problem; GPC values were similar to those obtained from
using the reflectometer.

Figure 1f shows the GPC of HfO2 thin film according to the deposition temperatures of the thermal
ALD and PEALD processes. The temperature section in which GPC shows constant temperature is
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called the ALD window and is a problem-free deposition region. The region between 150 and 200 ◦C
is the ALD window in thermal ALD. In PEALD, the ALD window shifted to lower temperatures
(80–150 ◦C) from high temperatures (150–200 ◦C) because of the high reactivity of O2 plasma; this
allowed more stable low-temperature deposition. When thin films were deposited at 80 ◦C, using
thermal ALD, GPC increased and exhibited condensation because of the insufficient thermal energy.
Above 250 ◦C in thermal ALD, because of source decomposition due to high thermal energy, the GPC
increased as the temperature increased. Conversely, in PEALD, GPC decreased, and desorption
occurred in a manner different from that in thermal ALD [27]. The reason for this is that, as the
temperature rose, increased ion energy of the plasma promoted etching of the HfO2 thin film and
caused desorption [28].

Figure 2a,b shows the XRD pattern of HfO2 when deposited by thermal ALD and PEALD [29].
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Figure 2. (a,b) XRD pattern in HfO2 thin films (50 nm) deposited at 80–250 ◦C by thermal ALD and
PEALD, measured by GIXRD. (c) Density of HfO2 thin films (50 nm) formed at 80 ◦C by thermal ALD
and PEALD, measured by XRR. (d,e) AFM topography images of HfO2 thin films (50 nm) deposited by
thermal ALD and PEALD. (f) Root mean square (RMS) roughness of HfO2 by growth temperatures
(80–250 ◦C).

XRD patterns of HfO2 deposited at 80–250 ◦C by thermal ALD showed a broad peak at 2θ =

32◦, indicating a dominantly amorphous structure HfO2 thin film [30]. Moreover, HfO2 deposited
at 80–150 ◦C by PEALD also had an amorphous structure, but HfO2 deposited at 250 ◦C by PEALD
contained a polycrystalline structure. This means that the crystallization of HfO2 thin film deposited by
PEALD started at a lower temperature than that of HfO2 deposited by thermal ALD [31]. Figure 2c
shows the thickness and density of HfO2 deposited at 80 ◦C, obtained from a period and critical angle
of reflectivity oscillation pattern, as measured by XRR. Thickness was measured and found to be
approximately 50 nm for both thermal ALD and PEALD samples, and density increased in PEALD from
5.3 to 8.1 g/cm3. This means that the HfO2 thin film deposited by PEALD at a low temperature was
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denser than that deposited to the same thickness by thermal ALD. Figure 2d–f provides root mean square
(RMS) roughness and morphology images of HfO2 deposited according to temperature (80–250 ◦C)
in thermal ALD and PEALD. In the PEALD samples, there was no difference of roughness compared
to the thermal ALD samples, and the HfO2 thin film was still flat at 80 ◦C (0.2 nm). Additionally, no
large particles were seen when HfO2 was deposited at a low temperature. As the temperature rose,
the roughness of the thin film rapidly increased due to the formation of crystallite [32].

Figure 3a,b shows XPS results for Hf 4f formed by thermal ALD and PEALD, respectively.

Materials 2020, 13, x FOR PEER REVIEW 5 of 10 

 

be approximately 50 nm for both thermal ALD and PEALD samples, and density increased in PEALD 

from 5.3 to 8.1 g/cm3. This means that the HfO2 thin film deposited by PEALD at a low temperature 

was denser than that deposited to the same thickness by thermal ALD. Figure 2d–f provides root 

mean square (RMS) roughness and morphology images of HfO2 deposited according to temperature 

(80–250 °C) in thermal ALD and PEALD. In the PEALD samples, there was no difference of roughness 

compared to the thermal ALD samples, and the HfO2 thin film was still flat at 80 °C (0.2 nm). 

Additionally, no large particles were seen when HfO2 was deposited at a low temperature. As the 

temperature rose, the roughness of the thin film rapidly increased due to the formation of crystallite 

[32]. 

Figure 3a,b shows XPS results for Hf 4f formed by thermal ALD and PEALD, respectively.  

 

 

Figure 3. (a,b) Hf 4f and (c,d) O 1s spectra of HfO2 thin films (50 nm) on Si substrate fabricated by 

thermal ALD and PEALD. Gray dotted lines and blue solid lines are sum of the spectra before fitting 

and sum of the deconvoluted peaks after fitting, respectively. (e) Surface component percentages of 

O, Hf, C and N in HfO2 thin films (50 nm). The error bars represent the standard deviations. 

The deconvoluted Hf 4f spectra show the doublet of peaks at binding energy of 18.31 and 19.99 

eV, which is associated with HfO2 [33]. Moreover, at binding energy lower than those of the 4f doublet, 

the suboxide peaks are located at 16.93 and 18.63 eV, and they are associated with HfO2−x. The atomic 

concentration of hafnium in HfO2 thin film deposited at a low temperature by thermal ALD was the 

lowest at 23.7%, because many defects, such as carbon, nitrogen and hydroxyl groups (−OH), were 

Figure 3. (a,b) Hf 4f and (c,d) O 1s spectra of HfO2 thin films (50 nm) on Si substrate fabricated by
thermal ALD and PEALD. Gray dotted lines and blue solid lines are sum of the spectra before fitting
and sum of the deconvoluted peaks after fitting, respectively. (e) Surface component percentages of O,
Hf, C and N in HfO2 thin films (50 nm). The error bars represent the standard deviations.

The deconvoluted Hf 4f spectra show the doublet of peaks at binding energy of 18.31 and 19.99 eV,
which is associated with HfO2 [33]. Moreover, at binding energy lower than those of the 4f doublet,
the suboxide peaks are located at 16.93 and 18.63 eV, and they are associated with HfO2−x. The atomic
concentration of hafnium in HfO2 thin film deposited at a low temperature by thermal ALD was the
lowest at 23.7%, because many defects, such as carbon, nitrogen and hydroxyl groups (−OH), were
located in the HfO2 thin films. Conversely, the atomic concentration of hafnium in HfO2 deposited
at 80 ◦C by PEALD was high, at 30.0%, due to the low level of contaminants, similar to the sample
deposited at 250 ◦C by thermal ALD. Figure 3c,d shows the XPS results for O 1 s after thermal ALD and
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PEALD. O 1 s peaks are deconvoluted into two components, a signal associated with HfO2 at 530.03 eV
and an additional peak associated with carbon and oxygen at 531.68 eV [33]. The C–O peaks represent
impurity carbon defects combined with oxygen, which can reduce the performance and efficiency of
electronic devices [34,35]. According to these results, as the deposition temperature increased from 80
to 250 ◦C in both the thermal ALD and PEALD processes, the ratio of the C–O peaks showed a tendency
to decrease. Furthermore, in the PEALD process, the ratio of C–O peaks was reduced compared with
thermal ALD at all temperatures. In particular, at 80 ◦C in PEALD, C–O peaks decreased more than
at 250 ◦C in thermal ALD. The atomic concentration of oxygen in HfO2 was similar, except for the
thin film deposited at a low temperature by thermal ALD. As mentioned previously for elemental Hf,
the presence of many contaminants can lower the atomic concentration of oxygen in thin films.

Figure 3e shows surface component percentages of O, Hf, C and N in the HfO2 thin films. Carbon
and nitrogen inside the film act as defects, causing a decrease of density or degradation of properties.
At a low temperature, HfO2 deposited through thermal ALD had high ratios of carbon (13.8%) and
nitrogen (7.0%) because of incomplete source decomposition. Conversely, in the case of thin films
deposited through PEALD, both carbon (3.5%) and nitrogen (2.8%) ratios were low, even at low
temperatures. This suggests that, in PEALD, because the precursor was decomposed more by O2

plasma than by O3, the number of inner defects was lower than in thermal ALD at a low temperature.
Figure 4a shows refractive index (n) and extinction coefficient (k) as a function of the photon

energy (eV) of HfO2 films (50 nm) deposited at 80 ◦C.
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Figure 4. (a) Refractive index (n), extinction coefficient (k) and (b) optical bandgap values extracted using
the Tauc method for HfO2 films (50 nm) formed at 80 ◦C, using thermal ALD and PEALD, as measured
by ellipsometry. (c) Transmittance of HfO2 thin films (50 nm) deposited at 80 ◦C by thermal ALD and
PEALD on PET substrate.

Using ellipsometry, values of n and k were calculated from the real and imaginary parts of the
complex dielectric function (ε = ε1 + iε2), respectively [36]. The n values of the HfO2 are associated
with the density of HfO2 thin films [37,38]. Since the HfO2 film deposited by PEALD had less carbon
content and a lower O/Hf ratio than that obtained from using thermal ALD, it is expected that the HfO2

film deposited by PEALD has a higher density than that deposited by using thermal ALD. Therefore,
the n value of the HfO2 deposited with PEALD was higher than that of HfO2 deposited with thermal
ALD in all photon energy ranges. Figure 4b shows optical-band-gap values obtained from using the
absorption coefficient (α = 4πk/λ) of HfO2 thin films (50 nm) deposited at 80 ◦C. The band gap of HfO2

thin film in the previous studies were typically between 5.6 and 5.7 eV [39,40]. However, the band
gap of HfO2 deposited by thermal ALD was lower at 5.1 eV. When HfO2 was deposited by PEALD,
the optical band gap increased to 5.6 eV. If the optical band gap is small, HfO2 thin films cannot
function properly as insulators. Optical band gap was plotted by using the Tauc method, as described
in Equation (1) [41]:

(αhν)1/2 = A
(
hν− Eg

)
(1)

where α(= 4πκ/λ) is the absorption coefficient, h is Planck’s constant, ν is photon frequency, A is a
proportionality constant and Eg is the optical band gap.
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Figure4cshowsthetransmittanceofHfO2 (50nm)depositedat80 ◦ConPETsubstrate. Thetransmittance
of HfO2 deposited by PEALD was high (>84%) in the visible region (89.7% for bare PET substrate, 87.2%
after thermal ALD and 84.3% for PEALD at wavelength of 550 nm). The transmittance decreased slightly
for PEALD compared to thermal ALD because the HfO2 film deposited by PEALD was denser [42].
When HfO2 was deposited at more than 80 ◦C on PET substrate, PET could not endure the heat,
and deformation occurred.

Figure 5a,b shows C–V curves of HfO2 deposited by thermal ALD and PEALD, respectively.
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Capacitance of HfO2 deposited at 80 ◦C by PEALD increased from 444.9 to 540.1 nF/cm2, an approximately
21% increase. The dielectric constant (κ-value) of HfO2 deposited at 80 ◦C in PEALD (12.6) was higher
than those of samples deposited by thermal ALD (8.7). Since the native oxide was not etched on the
Si substrate, the κ-value was calculated by considering the native oxide thickness (~3 nm) [43,44].
Moreover, the κ-value of HfO2 thin film was calculated from the value of CHfO2, using the following
formula, Equation (2):

1
CHfO2

=
1

Cox
−

1
CSiO2

(2)

where CHfO2 and CSiO2 are the capacitance of HfO2 and SiO2, respectively. Cox is the overall capacitance
of the MOS capacitor.

There was no significant improvement at temperatures other than 80 ◦C. Figure 5c,d shows I–V
curves of HfO2 deposited by thermal ALD and PEALD. Leakage currents at negative voltage in PEALD
were reduced overall compared to those for thermal ALD. Significantly, at 80 ◦C, the leakage current
decreased from 1.4 × 10−2 A/cm2 to 2.5 × 10−5 A/cm2 at −2 V, which was lower than that of HfO2

deposited at 250 ◦C by thermal ALD. Because HfO2 films deposited by PEALD at a low temperature
were denser, contaminants in the thin films were reduced [45]. Because we used an NMOS capacitor
with a p-type Si substrate, a depletion layer formed at the interface when the voltage was positive.
For this sample, almost no current flowed, because the capacitor was in an inversion state.

Figure 5e shows the flat band voltage (Vfb) and fixed charge density (Qf), extracted from the C–V
curves in Figure 5a,b. Vfb of HfO2 deposited by PEALD at 80 ◦C was lower than those of sample
formed by thermal ALD. Qf of HfO2 deposited at 80 ◦C by PEALD decreased about 90%, from 9.5 ×
1012 to 1.0 × 1012, the lowest value in all temperature ranges (80–250 ◦C). Vfb and Qf showed almost
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identical values at all temperatures, except 80 ◦C. Qf has a (+) charge and is distributed at the interface
between Si and the HfO2 thin film, which puts the device into a (+) state and makes it to work at higher
voltage. This suggests that, at low temperatures of around 80 ◦C, capacitors using HfO2 deposited
by PEALD will have better electrical properties than those using HfO2 deposited by thermal ALD.
However, the Qf value of HfO2 deposited by PEALD tended to increase as the temperature increased.
This means that, as the deposition temperature rose, the substrate was damaged by increased plasma
ion energy during deposition [46,47].

4. Conclusions

In this study, HfO2 thin films deposited at a low temperature (80 ◦C), using PEALD with O2

plasma, showed improved properties compared to films deposited by using thermal ALD. The ALD
window shifted from high temperatures (150–200 ◦C) to low temperatures (80–150 ◦C) when using
PEALD, allowing stable deposition at a low temperature. HfO2 deposited by low-temperature PEALD
showed a flat surface and higher density than films deposited by thermal ALD. Moreover, HfO2

deposited at 80 ◦C by PEALD showed a decreased presence of contaminants, such as carbon and
nitrogen, compared to films deposited by thermal ALD. HfO2 thin films deposited by PEALD showed
an increased refractive index, improved optical band gap (5.6 eV) and high transparency of ~84%.
Denser and lower-contaminant HfO2 thin films deposited by PEALD contributed to capacitance
improvement of about 21%, low leakage current of 2.5 × 10−5 A/cm2 and the lowest fixed charge
density (1.0 × 1012). As a result, due to the higher decomposition power of O2 plasma, HfO2 thin films
deposited at a low temperature by PEALD showed improved properties compared to those of films
deposited by thermal ALD.
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