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Abstract: This study follows from Maurel et al., Phys. Rev. B 98, 134311 (2018), where we reported
on direct numerical observations of out-of-plane shear surface waves propagating along an array
of plates atop a guiding layer, as a model for a forest of trees. We derived closed form dispersion
relations using the homogenization procedure and investigated the effect of heterogeneities at the
top of the plates (the foliage of trees). Here, we extend the study to the derivation of a homogenized
model accounting for heterogeneities at both endings of the plates. The derivation is presented in
the time domain, which allows for an energetic analysis of the effective problem. The effect of these
heterogeneous endings on the properties of the surface waves is inspected for hard heterogeneities.
It is shown that top heterogeneities affect the resonances of the plates, hence modifying the cut-off
frequencies of a wave mathematically similar to the so-called Spoof Plasmon Polariton (SPP) wave,
while the bottom heterogeneities affect the behavior of the layer, hence modifying the dispersion
relation of the Love waves. The complete system simply mixes these two ingredients, resulting in
hybrid surface waves accurately described by our model.

Keywords: metamaterial; homogenization; elastic metasurface; time domain analysis; elastic energy

1. Introduction

The problem of waves propagating in an elastic half-space supporting an array of beams or plates
is well known in seismology, where the site—city interaction aims at understanding the interaction of
seismic waves with a set of buildings. Starting with the seminal work of Housner [1] (see also [2]),
the site—city interaction has been intensively studied numerically [3-5] and analytically [6-11]. In this
context, seismic shields, or metabarriers, have been considered using resonators buried in soil [12-15]
or arrays of trees with a gradient in their heights [16-18]. More generally, this configuration is the
elastic analog of a corrugated interface able to support surface waves, studied in acoustics [19] and
in electromagnetism [20,21], where they are known as Spoof Plasmon Polaritons (SPPs). SPPs play a
fundament role in the extraordinary transmission of long wavelength electromagnetic waves through
metallic gratings [22,23] and have been studied intensively in the past twenty years for their potential
applications in subwavelength optics, data storage, light generation, microscopy, and bio-photonics;
see, e.g., [24]. Such similarities between surface waves in electromagnetism and elastodynamics fuel
research in seismic metamaterials [25], as they lead to simplified models that see behind the tree that
hides the forest [26].
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To describe classical SPPs, the homogenization of a stratified medium is an easy and efficient
tool [27,28]; the analysis is valid in the low frequency regime, namely owing to the existence of a small
parameter measuring the ratio of the array spacing to the typical wavelength, and it provides, at the
dominant order, the dispersion relation of SPPs. Thanks to the mathematical analogy between the
problem in electromagnetism and in elasticity, this approach was applied in [18] accounting for the
presence of a guiding soil layer underlain by an elastic half-space. Simple dispersion relations have
been obtained from the effective model for the resulting spoof Love waves, so-called because of the
characteristics they share with classical Love waves (surface waves supported by the layer on its own)
and SPPs. Next, to account for the presence of heterogeneities (a foliage) at the top of the plates (trees),
a hybrid model was used where the homogenization was performed locally (near the top of the plates)
at the second order.

The present study generalizes and complements this study following two ways: (i) from a physical
point of view, we include the effect of heterogeneities at the bottom of the plates (Figure 1), and (ii)
from a technical point of view, we derive the full model at second order. This produces a significant
increase in the accuracy of the theoretical prediction: in the reported examples, the model at order two
is accurate up to a 1-2% error margin, while the model previously used in [18], at order one, would be
accurate up to 10-30%. The second order model (see Equations (2) and (3)) provides a one-dimensional
problem along the z-direction with a succession of homogeneous layers: the substrate occupying
a half-space, the guiding layer, and an effective anisotropic layer replacing the region of the plates
(see Figure 2). The effect of the heterogeneities at the bottom is encapsulated in transmission conditions,
which tell us that the displacement and the normal stress are not continuous; this holds for plates
without ending heterogeneities, a fact that was disregarded in [18]. The effect of the heterogeneities
at the top is encapsulated in a boundary condition that differs from the usual stress free condition,
as in [18]. We recover that for most of the frequencies, the plates do not interact efficiently with the
layer; in the present case, it results that the surface wave resembles that of the layer only, hence a
wave of the Love type. However, the resonances of the plates produce cut-off frequencies around
which the dispersion relations are deeply affected. For simple plates, this can already produce drastic
modifications in the dispersion relations (hybridization of the Love branches, avoided crossings at the
cut-off frequencies of the plates). When heterogeneities at the endings of the plates are accounted for,
additional changes happen. The heterogeneities at the bottom of the plates modify the behavior of
the layer on its own, resulting in modified Love waves. The heterogeneities at the top of the plates
modify the resonances of the plates, hence the cut-off frequencies. These two simple ingredients
allow us to interpret qualitatively the various dispersion relations obtained in the configuration of
the plates decorated at both ends. Next, the dispersion relations are accurately recovered by our
homogenized model.
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Figure 1. Periodic array of plates decorated at their endings with spacing ¢ = 1, height h;, and thickness
@rl; the substrate occupying a half-space is surmounted by a guiding layer of thickness /. able to
support Love waves. The insets show a zoom on the two endings with heterogeneity surfaces S, = ¢ h,
and S, = ¢, Iy,
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Figure 2. Configuration of the effective problem (2) and (3): The region of the plates has been replaced
by a homogeneous medium; the effective boundary condition and transmission conditions encapsulate
the effects of the heterogeneities at the decorative endings of the plates.

The paper is organized as follow. Section 2 summarizes the main results of the analysis: the effective
model, Equations (2) and (3), and the resulting equation of energy conservation, Equation (10). The
full derivation of the effective model is detailed in the Appendices A and B. In Section 3, we inspect
the characteristics of waves guided by an array of decorated plates. The dispersion relations of these
waves are exhibited numerically and compared to the closed forms provided by the effective model,
Equations (21)—(23). The heterogeneities have the form of an additional thin hard layer at the bottom of
the plates and a thin hard cap on the top. These simple shapes of heterogeneities allow us to discuss the
Love waves modified by the bottom heterogeneity only and the resonances of a plate modified by the
top heterogeneity.

Throughout the paper, we use the following notations:

- Material properties: mass density p and shear modulus y, with subscripts “S” for the substrate,
“L” for the guiding Layer, “P” for the Plates, and “b,t” for the heterogeneities at the bottom and at
the top of the plates.

- Geometrical parameters: the layer has a total height H, = h, + h, with h, occupied by the
heterogeneities. The array of plates is periodic with spacing ¢, with plate thickness ¢,h, and total
height H, = h; + h, (h, occupied by the heterogeneities). The heterogeneities at the bottom and
top of the plates have surfaces S, = ¢,h, and S, = ¢h,.

2. Summary of the Main Results

In the actual problem, the Navier equations for shear waves simplify to a wave equation for the
antiplane displacement u = u,(x, t) and the stress vector o (x, t), of the form [29]:

2
(%) = 4(x)Vi(x b, p(x)aaTg‘(x,t) — dive(x b), 1

with x = (x,z) and ¢ the time. The mass density p(x) and the shear modulus y(x) are piecewise
constant in the different materials, substrate/layer/plate/heterogeneities; see Figure 1. At each
boundary between the elastic materials, the continuity of the displacement u and of the normal stress
o - n holds (with n the local normal vector). Eventually, at the boundaries separating elastic media and
air, the stress-free boundary condition o - n = 0 applies. In this section, we present the effective model
deduced from the asymptotic analysis developed in Appendix A.

2.1. Effective Model

In the effective homogenized model, the regions of the substrate z ¢ (—oo, —HL) and of the
guiding layer z € (—H,, —h,) are kept as in the actual problem, while the region of the plates
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€ (0,hp) is replaced by an equivalent homogeneous region of the same height. In this region,
the medium is highly anisotropic, with propagation being allowed in the vertical direction z only;
this calculation follows from [18] and applies almost identically in the acoustic case for arrays of
Helmbholtz resonators [30]. The boundary condition at the top of the effective medium, z = h,, is a
condition of the Robin type for the normal stress. The transmission conditions at the bottom of the
effective medium apply across the actual region of the heterogeneity, and they involve four parameters
depending on the geometry of the heterogeneity and of the plates. Specifically, the homogenized
model reads as:

2
forz € (—oo,—H,), o =usVu, psﬁ = dive,
o%u .
forz € (-H,—h,), o=uVu, pLW = dive, (2)
0 0 %u .
forz € (0,hy), o= UpPp ( 0 1 ) Vu, pp<ppa—t2 =divo,
along with the continuity of u and ¢ - n at z = —H, and the dynamic effective conditions:
. by Jou Jo; o%u 0%
across the region (—h,,0), [u] = ]/Tl; oz + 1, %, [o=] = lb — — Ly 2 + I 32
3)
at the top of the platesz = hy,  0z(x, hp, t) = —L, %ﬁ (x,hp, t).

The transmission conditions involve [u] = u(x,0,t) — u(x, —h, t) and = § (u(x,0,t) + u(x, —h,, t)),
being the jump of u across the bottom heterogeneity and its mean value, respectively, and the same
for 0.

Among the five effective parameters (4, ,, L,, f», L) entering in the effective conditions, two are
known explicitly, while three are defined by elementary problems on (V;, V) that satisfy static
problems set in non-dimensional coordinate x = (x,{) = (x/¢,z/{) in the vicinity of z = 0
(see Figure A3 in Appendix A.3). These problems read as:

div (‘uVV1> =0, Iim VV; =e,, Iim VV; = il ———ey,
He {——o0 {—+oo Prlp
4)
div (‘uV (V, —i—)()) =0, lim VWV, =0, Iim VV, = —e,,
Ho {——o0 {—+o0

with V;, uVV; - n continuous at each interface between two elastic media and VV; - n = 0 at the
boundaries with the air and V; and ¢ VV; one periodic with respect to x for { < 0 (the same for V; and
uV (Vo + x)). Then, we have:

6 = ¢ lim (vl L g) T,
{—rtoo Prpp

I, =0 lim (Vo +)),
{—+oo

Effective parameters in (3) Ly=¢ ﬁr’ o (Vs + x) dx +€/ 77‘/2 dX+ y [Qpbl/‘b + (1 - @), 5)
Yp HL

0o = @b+ (1 — )01,

L =n PP
PP(PP
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It is worth noting that the homogenized problem is set in a domain where the regions (—h,,0)
and (hy, Hy) occupied by the heterogeneities have disappeared. It should be possible to extend the
anisotropic region to (0, H;) as done in [18]; this would lead to a different, but as accurate effective
model, with slightly different boundary condition at z = H, (specifically, a different value of L,).
However, this is not suitable from an energetic point of view (see Section 2.2). Similarly, the transmission
conditions involve jumps of the displacement and of the normal stress across a non-zero interface.
It should be possible to express the transmission conditions across a zero thickness interface located
say at z = 0. Again, this would lead to a different and as accurate effective model, with slightly
different transmission conditions (with different values of ¢, and L,); again, our choice guaranties good
properties of the energy in the effective problem.

2.2. Effective Energy

The solution (1, o) of the homogeneous problem is expected to approximate the, say numerical,
solution (Upum, Trum) Of the actual problem. Hence, we expect that the actual elastic energy is also
correctly approximated in the effective problem. In the actual problem, the elastic energy simply reads

as [29]:
o 1 1 2 aMnum 2
Erum = E/Dmm <y|0num| +P( 3t ) ) dx. (6)

We shall now interrogate the equation of energy conservation in the homogenized problem where

the effective boundary and jump conditions in (3) make additional energies appear. These terms
appear primarily as fluxes within the bounded region D (see Figure 3), but they can be written as the
time derivative of effective energies supported by the surface vy at the top of the plates and across the
heterogeneities at the bottom of the plates (I'%).

v boundary condition

transmission conditions

Figure 3. Domain D where the energy is conserved in the absence of incoming/outcoming fluxes
through X. The effective boundary condition on « and jump conditions between T in (3) result in
additional effective energies &, in (10).

By simple manipulation of the equations in (2), the equation of energy conservation in the
homogenized problem is found to be of the form:

d
a(55+5L+€P)+q>:O, (7)
with: ) 5
1 |o|? ou 1 |o2|? ou
SS,L = E Dor < st + Psi <8t) ) dx, & = E Do <‘quDP + Pr@r g dx, (8)
and: 3
o= Yo ndl )
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(here, @ is a line integral). The flux ® has a contribution on X and two contributions that do not
cancel even if the region D is bounded, that is if X is associated with Neumann or Dirichlet boundary
conditions. Specifically, ® = @y, + ®, + &, with:

d
o, = T &, and,

1 N> . (N> b, 1 au\? (10)
5b—§/r lyLLb (ax> +thb (at) +El7'z dx, Et_i/;quDPLt (at) dx,

where n is the normal interior and D, the parts of D occupied by the substrate, the layer, and the
plates, respectively. We have used that 0; = —L,¢@e011 on 7y from (2) and (3). We also have that @, =
J;- (@6t [02] + 3[u] 7) dx; hence, ®, = |y ([lba,fZ — 1 LDyl + 1o, 03411] 1l + [%a@ + lbaxtﬁ] Fz) dx.
The two terms in [, cancel after integration by parts of one of them, and we integrate also by parts
the term in L,. It is worth noting that the integrations by parts make boundary terms (b.t.) appear.
These terms can be interpreted as concentrated forces at the ending points of I'* along x; they are
disregarded in the present study. Next, &, in (10) are energies since they are definite positive quadratic
forms. Indeed, L, > 0 from (5) and g, > 0 from (5), and it is shown in Appendix B that ¢, and L, are
positive as well. It is also worth mentioning that choosing a different position for v would produce a
different and possibly negative value of L. Similarly, expressing the transmission conditions across a
zero thickness interface would produce a possibly negative value of L,. Discussions on the effective
energies can be found in [31,32].

We further stress that the homogenized problem is set on D, which differs from D,,,; the regions
D, for z € (—h,,0) and D, for z € (h;, H;) are missing. Intuitively, we expect that the effective energies
&, represent the elastic energies in D, and D, in the actual problem; specifically, we expect that:

1 1 ) Oty \ >
gb/l_i_/pb,t <‘u|0'num| +p< ot ) ) dx. (11)

We shall illustrate in Section 3.4 that these intuitive relations are indeed legitimate.

3. Hybrid Love Waves in a Guiding Layer Supporting Decorated Plates

In this section, we inspect the ability of the effective problem (2) and (3) to reproduce the scattering
properties of an actual array. We consider the geometry of Figure 4: ¢ = 1 in arbitrary unit length,
¢@r = ¢, = 0.5and ¢, = 1. The total heights H, = h, + h, = 12, H, = h, + h, = 8 are fixed. When the
heterogeneities are considered, we set I, = 1 (hence, h, = 11) and/or h, = 1 (hence, h, = 7). We give
in the tables below the material properties and the values of the effective parameters entering in the
effective conditions (3).

We consider the time-harmonic regime with a time dependence ¢
following, and inspect the solution of a scattering problem for a wave coming from z = —oo with a
wavenumber 3 along x, resulting in a reflected wave with a complex reflection coefficient R. This scattering
problem allows us to cover the case of an incoming propagating wave, with |R| =1 for B < w/cs, and the
case of guided waves, when |R| = oo for B > w/c,. The actual problem has to be solved numerically, and
this was done using classical multimodal calculations.

In the rest of this section, we shall use for § the component of the wavenumber along x and make
use of the following quantities:

w w? [ w?
P o’ T C% B4 s CZ B*, (12)

(c. = +/H./p.fora=PL,S).

—iwt which is omitted in the
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(=1,0.0=05

h,=8or7

Figure 4. Configuration of the array. The total thickness Hy, = hp + h, = 12 of the array and the total
thickness H; = h; + h, = 8 of the layer are kept constant; / = 1 and ¢, = 1, ¢, = ¢r = 0.5. When the
heterogeneities are considered, i, = h, = 1.

3.1. Two Reference Solutions

To begin with, we establish two families of reference solutions that will be useful to analyze our
problem. The first is that of Love waves supported by a guiding layer on the top of a substrate with
¢, < ¢s, which can be affected by the presence of the bottom heterogeneities. The second family is
that of the Spoof Plasmon Polaritons (SPPs) in the plates, which can be affected by the presence of
heterogeneities at the bottom of the plates.

3.1.1. Love Waves and Modified Love Waves

If we remove the array (Figure 5), the problem is reduced to a guiding layer sandwiched between
air and the semi-infinite substrate (classical Love wave), and its modified version when a thin hard
layer is added. The exact solutions of these problems are easily obtained. For classical Love waves,
the solution of the scattering problem reads as:

‘ Acos (1z), z € (—h,,0),
u(x,z) = e'f* x (13)
§sh) Ry, e E), 2 € (o0, —h,),

and using the continuity of the displacement and of the normal stress provides (A, R,...), in particular:

R — _tan(nh) —i  withy = B2 (14)
tan (y.h) +1Y UYL

We recover the usual dispersion relation of Love waves for Y imaginary (s imaginary with a
positive imaginary part) and |R,,..| = oo, which guaranties a family of Love wave dispersion branches
inw/c; < B < w/c;see Figure 5.

If we add a layer of thickness £, in the guiding layer, the exact solution reads as:

Acos (1p2), z € (—h,0),
u(x,z) = e'f* x Bcos (y.z) + Csin (1.2), z € (=h,—h,), (15)

gs(etin) 4 Ry e PSR,z € (~o0,~h,),

Again, applying the continuity of the displacement and of the normal stress at z = —h,, —h,
provides (A, B,C,R®, ) and, in particular:
tan (. +©,) — 1Y -1 (,”b'}’b )
Ry..=— —, O,=t —t h,) ), 16
Love tan (,thL + ®b) +iY b an s an ('Yb b) ( )
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. 2 . . . .
where we have defined 7, = ‘;’—% — B2, ¢, = \/ph/ps. Surface waves in this configuration have a

dispersion relation tan (y. /1, + ©,) +iY = 0, which can differ significantly from the dispersion relation
of the classical Love waves; see Figure 5.

modification of the shapes of the dispersion branches
of the Love waves
¢ <
4
§ l L w2 w2 w2
2 ﬂ My T_IBZtan 7_B2HL = Hs ﬂZ_T
= - CL CL CS
=
n
[
z e
= i [ |3
)
4 L w? w? ,
3 < puy| =5 — B% tan ([ =5 — B2 b+ O, (w, B) | = ps
o] I (&5 &3
é E
£ | o
<]
g
Shift of the asymptotes of the SPPs
<
Il
n N P
& = ) <w;PPhp> .
wn - cotan — ==
Cp
o2l
& < t 30
2 + WSPPL]y L WSPP], B _F—
o ¢ e cotan [ ~—L ) = [ ©
= <= ¢ hp cp Q
= “ -P F ~F 3 7#_—
<) - !
E mn. ! w’SLPF‘,t
I
0 B¢ 1

Figure 5. Reference solutions: Dispersion relations of Love waves and modified Love waves (with a
bottom layer of thickness /,). In the presence of a thin layer b atop the guiding layer, the dispersion
relation is modified (®, in (16)) resulting in different shapes of the Love dispersion branches. SPP,
Spoof Plasmon Polariton.

3.1.2. SPPs and Modified SPPs

The dispersion relation of spoof plasmons was derived using approximate methods [19,21]
including classical homogenization [27,28]. However, the asymptotes at the cutoff frequencies can
be straightforwardly calculated since they correspond to resonances of the plates associated with
Dirichlet-Neumann boundary conditions at the bottom-top of the plate. For the classical SPPs,
with k; = w/ ¢y, the solution simply reads as u(x,z) = A cos (ky(z — Hy)) eP* for z € (0, Hy ), where we
have anticipated the Neumann boundary condition (stress-free condition) at the top of the plate.
At resonance, the Dirichlet boundary condition applies at z = 0 (the plate is clamped to the layer or to
the substrate), resulting in the resonance frequency defining the asymptotes for:

Asymptotes of SPPs:  cotan (k,H;) =0, hence w;" = (2n + 1);;—1 (17)
P

When the plate is terminated by a cap of the same thickness ¢, and height i, (with k, = w/c,), the

solution reads as u(x,z) = (Bcos (kyz) + Csin (k;z)) e/P* for z € (0,h,) and u(x,z) = Acos (k,(z — H,))
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ePx forz € (he, Hy). Still at resonance, the Dirichlet boundary condition at z = 0 imposes B = 0;
then applying the continuity of the displacement and normal stress at z = h;, provides two relations on
(A, C), which are compatible if:

Asymptotes of modified SPPs:  cotan (ky/1,) = 5 JI? tan (k1) ~ k,L,, (18)

and the last equality holds in the case where ks, < 1 with L, defined in (5) (and L, = 0 for i, = 0).
In our geometry, with L, = 10, H, = 12, and ¢, = 240, the first three asymptotes of the classical
SPPs are obtained for wy"/(27) = 3,15,25. In the presence of the caps of thickness #, = 1 (hence,
hy = 11), solving the implicit relation cotanX = %X, with X = wh;/cp, provides the first three
modified asymptotes at w5™/ (27r) = 3.1,12.0,22.4; see Figure 6.

Shift of the asymptotes of the SPPs 30
= 5 _h___
- A - T
a
& = WP b g - pR—
%) cotan [ —— ) =0 3 app

he + h,

cotan wo e \ _ Lo (w0 e
h cp he cp

+
P

modified SPPs
w/(2m)

H

Figure 6. Asymptotes of the SPPs (at wi"/(27r) = 3,15,25) and modified SPPs (at w; ™/ (271) =
3.1,12.0,22.4).

3.2. Dispersion Relation of Hybridized Love Waves

We shall see that the properties of the hybridized Love waves can be understood in light of
the two ingredients studied in the previous section. On the one hand, for weak coupling between
the plates and the guiding layer, our surface waves resemble Love waves, which are affected by the
presence of heterogeneities. On the other hand, their dispersion relation is deeply modified in the
vicinity of the SPPs asymptotes at cut-off frequencies (the coupling is maximum at those frequencies);
the cut-off frequencies are dictated by the characteristics of the plates, hence sensitive to the presence
of heterogeneities at their tops.

For the geometry of Figure 4, the solution of the scattering problem reads as:

A [cos (kp(z — hp)) + ke Ly sin (ke(z — hp))], z € (0, k),
u(x,z) =P x { Bcos(v.(z+h,))+Csin(v.(z+h)), z € (—H,,—h), (19)
elvs(zHHL) | Re~irs(ztH) z € (—oo,—H,).

We have accounted for the boundary condition 0; = —L,d,0; at z = h, (from (3)). Next, accounting
for the continuities of the displacement and of the normal stress at x = —H, and for the effective
transmission conditions in (3) between x = —h, and x = 0 provides the four relations needed to
deduce (A, B,C, R). This leaves us with:

_ D'(w,p)
R="Dlwp) @0)
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where:

D(w,B) = {W (tan (kphp) + ko L) + C, (1 — kpL, tan (kphp))} (1 —iYtan (y.h))

e 1)

+ {1 — koL tan (kolty) — L0 k0, (tan (khy) + KoL) } (tan (7)) + 1Y),

L

and:
Y — %/ = hbpbwz - HLLbﬁz '
[N g P
In (20), D* is deduced from D by substituting iY by —iY. It results that for waves propagating
in the substrate (7, and 75 real for f < w/cs < w/c.), D* is the complex conjugate of D, and |R| =1,
as expected. Next, surface waves correspond to s imaginary with a positive imaginary part,

and |R| = co; hence, we deduce that:

(22)

Dispersion relation of guided waves: D(w,p) =0, —iysreal > 0. (23)

It is worth noting that we recover the exact dispersion relations of the classical and modified Love
waves for H, = 0, whence h, = h, = 0 and L, = 0 in (5). We still have to determine C, in (22), and to do
so, we have to adapt the elementary problem for V; to find L, in (5). This can be done easily by setting
(09)(x,0,t) = 0in (A30) and replacing the limit to +co by a boundary condition on x = 0; it results that
the limit at +co of V; in (4) is replaced by VV, = —ey at { = 0, and the integral over ) cancels in (5);
the problem is simpler, but still non-trivial. However, in the case where the heterogeneity in the bottom
is a thin layer (¢, = 1), the integral over )), cancels as well by periodicity, and L, = h,p, /.. Thus,
we get D(w, B) = C, (1 —iY (tany,h,)) + (tan (y.h) +1iY), with C, = %ﬁilzb ~ tan ©,. Expectedly,
we recover the exact dispersion relation of Love waves for k, = 0 (C, = 0) and that of the modified
Love waves in the limit of small A,.

3.3. Validation of the Homogenized Solution

Figure 7 shows the main results of the present study; we report the dispersion relations in four
cases from the undecorated plates to the plates decorated at both endings; see the Table 3. They are
visible by means of a large (diverging) reflection coefficient in R, computed in the direct numerics
and from the explicit homogenized R value in (20)-(22).

The exact dispersion relations of the classical, (14), and modified, (16), Love waves are given
for comparison. As previously said, the interaction of the plates with the layer is weak except in the
vicinity of the cut-off frequencies. However, for the relatively tall plates that we have considered,
these cut-off frequencies are sufficiently close to each other to modify the dispersion relation of our
guided waves deeply.

This is already visible for the undecorated plates (Case 1); the guided waves tend to resemble
the classical Love waves, but they experience several hybridizations at the cut-off frequencies of the
SPPs in (17), accompanied by avoided crossings (sometimes not so pronounced). In the presence of the
caps on the top of the plates, the same scenario is observed, with now cut-off frequencies given by the
modified SPPs in (18). Eventually, Cases 3 and 4 with the thin hard bottom layer reproduce the same
sequence as Cases 1 and 2 with the guided waves, which tend to resemble the modified Love waves.

The ability of our homogenized solution to reproduce the actual dispersion relations accurately
is excellent, less than 2% on average in the reported ranges of w and B, once |R|-values larger than
10 have been saturated. This is particularly visible in the zooms of Figure 8 in the vicinity of avoided
crossings for the decorated plates (AC1 and AC2 in Figure 7). In particular, we stress that in the
absence of heterogeneity, we have a stress-free condition since L, = 0 in (5), but we do not have
the continuity of the displacement and normal stress across z = 0 since ¢, and L, do not vanish
(see Table 1). In comparison, the homogenized model (see Table 2 for homogenized coefficients) at
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the leading order provides the usual stress-free condition and continuity relations regardless of the
presence of heterogeneities. Thus, it misses the effects of the heterogeneities and provides the same
prediction for Cases 1 to 4. The resulting error is significantly higher, about 10% for Cases 1 and 2,
and about 30% for Cases 3 and 4.

Ryl

Love

exact reference solutions

direct numerics
w/(2m)

homogenized
solution
w/(2m)

array unit cell

Figure 7. Dispersion relations of guided waves in four configurations of plates from direct numerics
and from the homogenized solution (20)-(22); the dispersion relations are revealed by large |R| values.
The exact reference dispersion relations of classical and modified Love waves are given in the top panel
for comparison. Dotted lines are a guide for the eye showing light lines for Love waves and asymptotes
for SPPs. AC1 and AC2 are avoided crossings magnified in Figure 8. Details of homogenized coefficients
and geometrical parameters are given in Tables 2 and 3.
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Avoided crossing 1 Avoided crossing 2
13 22.5
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Figure 8. Magnified views of the two avoided crossings AC1 and AC2 from Figure 7 (Case 4).

Table 1. Elastic material properties (in arbitrary units).

Substrate Layer Plate Bottom Top

s = 2000 =72 jp = 14.4 1, = 1600 1, = 1600
05 = 2000 o1 = 1800 pr =250 0y = 2500 p; = 2500
cs = 1000 ¢, =200 cp =240 ¢, =800 ¢, =800

Table 2. Homogenized coefficients entering in the effective conditions (3) in (5).

Coeff. in (5) L, i £, L, I,
h,=0 0 2500 h, =0 0.1324 0.0120 0
h=1 10 2500 h,=1 0.0511 22.2357 0

Table 3. Geometries of the four configurations, whose dispersion relations are given in Figure 7.

hy h, H, hy h, H,
Love 8 0 8 0 0 0
Modified Love 7 1 8 0 0 0
Case 1 8 0 8 12 0 12
Case 2 8 0 8 11 1 12
Case 3 7 1 8 12 0 12
Case 4 7 1 8 11 1 12

Eventually, we report in Figure 9 examples of the displacement fields of the guided wave at
w/(2m) = 24 for the arrays of undecorated plates and of decorated plates. Both in the numerics and
in the homogenized problem (19), the whole solutions were divided by R, and R respectively in
order to produce an evanescent wave in the substrate of the form ¢/~ el7s|(HHL) that has the unitary
amplitude at z = —H,. This allows for quantitative comparison between the direct numerics and the
homogenized solution without any adjustable parameter, see Table 2. The agreement in the strengths
of the resonances and in the repartition of the amplitudes in the substrate, in the layer, and in the
plates is again excellent. At the reported frequency, the wave is evanescent in the substrate as soon as
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B > 0.15, and it becomes evanescent in the layer for f > 0.75; this is visible for the undecorated plates
for the guided waves with 8, = 0.77, which is supported by the array only.

w/(27) =24

homogenized
direct numerics solution
LABULLLARLITURRRITTARITTAR] o B B & & | LLLBULLBRLIRTIRRI BRI LRI L 8 8 & & & & & J
p (T R R R R B | (WM A R L L)
LT LA AT SReas e ssss s s
L . . - .
- pr=0.52 B2 = 0.77
| ||
—60 60 -200 200
_t ,,,,,,,,,,,,,,,,,,
T -
} DT CEIODRRIOEE T — -
— D [ g et e Saaman R
L
- - w NRRRRRRRARAAMY
- B =022 B2 = 0.61
| | |
-10 10 -30 30

Figure 9. Displacement fields corresponding to the two branches of guided waves (8; and B;) at
w/(27) = 24 for the undecorated plates (top) and decorated plates (bottom). On each panel, the field
from direct numerics is plotted for x < 0, and the homogenized solution from (19) is plotted for x > 0.
In both cases, the displacement at z = —H, is unitary, which allows for a quantitative comparison
without any tuning parameter.

3.4. Energies in the Actual/Homogenized Problems

In this section, we inspect the intuitive relations announced in (11), namely that the effective
energies &,, coincide with the elastic energies stored in the regions of the heterogeneities.

In the actual problem, we define D,,, = {x € (0,1),z € (=H*,0)} U{x € (0, ¢s),z € (0, Hy)}.
The energies in the actual problem are the usual elastic energies, which read, in the succession of
regions, substrate, layer, bottom, plate, and top, as:

1
Enuma =

— 2 2 2
2 Jo, (oo Tt pr? ) e, (24)

where A=S,L,b, P, tand Ds = {x € (0,1),z € (—H*,—h,)}, D, = {x € (0,1),z € (—h,,—h,)},
D,={x€(0,1),z€ (—h,0)}, Dy ={x € (0,¢s),z€ (0,h:)}, D, = {x € (0, ¢5),z € (hy, Hy) }

In the effective problem, the energies are obtained explicitly owing to the solution in (19), which
provides the fields in the substrate, layer, and effective region accounting for the plates. We denote
u(x,z) = fo(2)eP* in (19); hence, fi(z) = e/1s(z+H) 4 Re=11s(z+H1) | £ — Bcos (,(z + I,)) 4 Csin
(v.(z+hy)), and fo(z) = A[cos (ke(z — hp)) + koL, sin (kp(z — h») )], R given by (20)-(22), and:

A 21Y
D(w, B) cos (kphy) cos (y.h.)’
o 2iY B el
B = D(w, :B) cos (lYLhL) |:1 kPLt tan kPhP ) kpgb (tan (kphp) + kPLk):| , (25)
c % {(ppmkv (tan (kohy) + kL) + Co (1 — koL, tan (kphp))} .
D(w, B)cos (mh) | ‘ ‘
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It follows that the effective energies in (8) read as:

_hL —hb

& = /—H (.u5|fs/|2 + (PS“J2 + VS/32) |f5|2) dz, & = /—hL (P‘L|fL/|2 + (pr2 + VL,32> |fL|2) dz,

hp
& = /0 (MP(PP|fIf|2 +PPfPPW2|fP|2> dz,
(26)
and for the last integral, we accounted for the effective stress—displacement relations in (2). Next,
from (10) along with (3), it is easy to see that:

14 . ¢ L
&= 5 [MLBLEOR +hpal FOF + 5 ok PIEOE|, &= SoaLa AP @)

We computed the energies in the actual problem, (24), and in the homogenized problem, (26) and (27),
for an incident propagating wave (s real in (19)). The real part of the reflection coefficient R is
reported in the left panel of Figure 10. In the case of weak coupling with the array of plates, R ~ R} ,
(16); hence, R ~ 1, except in the vicinity of the resonances of the layer (diverging tan (/1 + ©,))
where it goes to —1; see light grey arrows. Next, strong coupling with the array occurs at the resonance
of the plates, resulting in R ~ —1; see the dark grey arrows. The resulting repartition of the energies is
plotted against the frequency for a wave at incidence 45° (we normalized the energies to the total
energy). For w/(27) € (030), three resonances of the plates and two resonances of the layer take place.
Expectedly, the energy in the plates &, is small except at the resonance of the plates where almost
all the energy is shared in the plates and their top heterogeneities. This is particularly visible at the
first resonance where 35% of the total energy is supported by the heterogeneities. Symmetrically;,
at the resonances of the layer, most of the energy is supported by the layer (£,) and the bottom
heterogeneities (£,). The ability of the homogenized solution to reproduce the solution in the substrate,
in the layer, and in the plates is recovered in the energies with error margins of 0.1%, 0.5%, and
4%, respectively, in the reported case. More remarkably, the effective energies £, and &, accurately
reproduce the variations of the actual elastic energies, with error margins of 0.7%, which legitimizes
the intuitive relations (11).

w/(2m)

w/(2m)

Figure 10. Left: Real part of the reflexion coefficient R € (—1,1) in colorscale against f and

w > csf. The dashed white line corresponds to an incident propagating wave at oblique incidence
with B = ¢ sin45°. Right: Repartition of the energies in the bottom and top heterogeneities
(upper panel) and in the substrate, layer, and plate (normalized with the total energy); see the lower
panel. Open symbols are obtained from direct numerics, Equations (24), and plain lines from the
homogenized problem, Equations (26) and (27).
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Eventually, we report in Figure 11 the surface density of energy e computed numerically (e = %
(;1,“,,“,A|Vum,m|2 + pnum,Aw2|unum|2) for A=S,L, b, P t) and that of the effective problem (which varies
with z only from (26)); it is worth noting that the energies &,, do not give rise to surface density since
they are defined along lines. We recover the observations of Figure 10: at a resonance of the layer
(w/(2m) = 19), almost all the energy is stored in the layers; at a resonance of the plates (w/ (27r) = 19),
it is stored in the plates; and otherwise, it is equally distributed.

direct  homogenized
numerics  golution

w/(2r) =19 w/(2m) =22.7

0.15

w/(2m) = 30

Figure 11. Surface densities of energy in the actual problem (computed numerically) and given by the
homogenized solution at w/ (277) = 19 (corresponding to the resonance of the Love type with R = —1,
the energy is stored in the layer and in the bottom layer), at w/(27r) = 22.7 (resonance with R = —1
of the SPP type; the energy is stored in the plate), and at w/(27), which is a standard case (R ~ 1,
the energy is spread).

4. Concluding Remarks

We studied the problem of wave propagation in a geometry that combined two resonators, a soft
layer in a substrate and an array of plates. In particular, we focused on the ability of thin heterogeneities
at the endings of the plates to impact on the response of the system significantly. This was done thanks
to asymptotic homogenization accounting for the boundary effects to be captured at the endings of the
plates (e.g. foliages and roots for a model of trees). Such an analysis provides a simple effective model
in which the region of the plates are replaced by a homogeneous highly anisotropic region and the
effects of the heterogeneities were encapsulated in effective dynamic conditions. It was shown that the
resulting effective model accurately predicts the dispersion relation of surface waves far beyond the
quasi-static limit. These anti-plane shear waves share common features with Love waves in geophysics
and surface plasmon polaritons (SPPs) in photonics; the dispersion relation of such hybridized Love
waves was obtained in a closed form that allowed us to discriminate the role of the layer and that
of the plates. Besides, we showed that the presence of heterogeneities at the decorative endings of
the plates may affect significantly the characteristics of the surface waves. We also showed that the
variations of the actual elastic energies (in the different regions) are accurately reproduced by the
effective energies identified in the actual problem. In particular, the contributions of the effective
interface and of the effective surface correspond to the actual energies stored in the thin regions
containing the heterogeneities, and they disappear in the effective problem.

Our approach is useful for at least two reasons. On the one hand, it provides a simpler problem for
which explicit solutions are available. This was illustrated in the present study where the model was
shown to be very accurate up to frequencies corresponding to a ratio of the wavelength to the spacing
close to one (typically in the layer and in the plates), where the long wavelength homogenization
failed. Next, numerical resolution in the time domain may become intractable due to the separation of
the scales associated with the typical wavelength, the array spacing, and the possible thinner scales in
the heterogeneities. Eventually, the interest in dealing with effective problems was exemplified for
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scalar waves in a 2D geometry; it would be all the more evident for polarized elastic waves in 3D
geometries. We finally note that our approach is well adapted to handle substrates with a gradient in
elastic properties such as granular media [33,34].
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Appendix A. Asymptotic Analysis

In the asymptotic analysis that we shall conduct, we use the macroscopic (usual) coordinate
x = (x,z), and we introduce the so-called microscopic coordinate x = (x, (), defined by:

X
x=3 (A1)

where ¢/ = ¢ is a small positive parameter (and small means small compared to the typical, or maximal,
wavenumber imposed by the source of order unity). The analysis is firstly conducted in the region of
the plates far from their endings. Afterwards specific analyses are conducted in the vicinity of plate
endings to account for the boundary layer effects.

Appendix A.1. The Homogenized Wave Equation

In the region of the plates, the wavefields vary over long distances in the two directions x and z;
these long distance variations are accounted for by x. Next, short distance variations of the fields occur
within a single plate, which are accounted for thanks to the additional coordinate x; note that { is not
needed since the plates are invariant along z (Figure A1).

--------
__________________

— «—
L l=c,
.
Yo = {X S (*QPP/Q:QP/Z)} i‘ L X
. 0
1

Figure A1l. Homogenization in the bulk of the array. In the x = (x,z) coordinate, the array has a
spacing ¢ = &. The rescaling in the horizontal x = x/¢ € Y, coordinate is shown in the inset; Y; is a
one-dimensional domain.

Thus, the differential operator reads as:

V—>e—xi+vx,
€ dx

which will be used in the plates where:

%u

o=V, ppﬁ = dive, (A2)
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apply, owing to the expansions:
u=ul(xxt)+eut(xx, )+, o=c"(xxt)tec(xx,t)+ -, (A3)

with x € Y,. During the homogenization procedure, the coordinate x aims to disappear, and we shall
see that the homogenized wave equation in (2) involves the effective fields (1") and (¢") defined by:

<u”>(x,t)E;P [ W ndr (@) 0 = /Y (o (A4)

Doing so, we anticipate the macroscopic equilibrium of the forces by implicitly extending the
stress by zero in Y\Y,, with Y = {x € (—=1/2,1/2)}.

We start the analysis at the leading order in 1/¢, with % = % = 0; hence u%(x, t) and ¢ (x, t)
do not depend on y. It follows that ¢ is constant in Y,, and as it vanishes at the boundaries with air at
X = £¢:/2,itis zero everywhere in Y,. Thus, we have:

(x,t) =0, u(xt). (A5)
At the order ¥ and accounting for (A5), we have:

oul 9%u0 a0? ook .
Ug(x,x, t) = ypy(x,t), ppﬁ(x, t) = a—zz(x, ) + a—;(x,)(,t), in Y. (A6)

It follows that 02 (x, t) does not depend on x and ¢} (x, t) = 0 (as for ¢?), and thus:

ou’ 0?u a{c?)
0 — — = z
(o) (0 t) = pegr=—(x 1), prgrma(xt) = === (x 1), (A7)
by simply using that:
(@) (x,t) = oo (x,1), 0y =0. (A8)

We now move on to the second order. Starting with (A5), hence 0 = 02 = pp [0,u0(x, 1) + dul (x, x, 1)],
we deduce the displacement u! of the form:

0
ul (x,xt) = —)(aaix(x,t) + (u1>(x, £), inY,, (A9)

with the origin of x such that (x) = 0. It follows that:

oul %0 a(u!
o2 (x X t) = M5 00X ) = pe | =X 55 (0 1) + <az>(x,t) , (A10)

which, after integration over Y, and thanks to (x) = 0, leaves us with:

Ml
(02) 0 8) = g 2 (x, ), (A11)

Eventually, the equation of equilibrium at order one reads as:

82 1 P} 2
pr,% = divye! + a% in'Ys,, (A12)

which after integration over Y, gives:

Pu') _ del)
pp(ppw = ?(X,t). (A13)
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The effective wave equations at the leading order (A7) A and at order one (A11)—(A13) have the
same forms; hence, up to O(e2), (u, o) satisfies the effective equation announced in (2).

Appendix A.2. The Boundary Condition at the Top of the Plates

The homogenized wave equation derived in the previous section has to be supplied with a
boundary condition at the top of the plates. To derive this condition, we have to analyze the near
(or evanescent) field excited in the vicinity of z = h, (Figure A2). In this region of small extent along
z, the long distance variations of the macroscopic fields occur along x only (across the plates). Next,
to describe the short distance variations of the evanescent field, we use the microscopic coordinates

x and:
(== g (A14)

Accordingly, we consider the following asymptotic expansions:
u:Uo(x/X/t)+svl(x/X/t)+"'I 0-:To(x/X/t)+€Tl(x/X/t)+"'/ (A]-S)

with x € YV = ), U )V, where ), is the bounded region containing the heterogeneity (of vertical extent
h/¢and || = @h/0), Yo = Y, X (—00,0) is the unbounded region of the plate since in rescaled
coordinate x, and the bottom of the plate has been sent to —oo.

-
-
______

matching conditions

Figure A2. Elementary cell at the top of the plate in the x = (x,{) coordinate, in the unbounded
two-dimensional region YV = Y + ), the region of the plate is J» = Y; x (—00,0), and the
heterogeneity ), is bounded in Y x (0, k), with || = ¢/ 2.

In ), the fields (u, ) satisfy:

%u .
o =px)Vu, p(x)5, = dive, (A16)

with (u(x), p(x)) varying within ), depending on the characteristics of the heterogeneity and being
equal to (yp, pr) in V. The above system is complemented by a condition of zero normal stress at the
boundaries in contact with air and conditions of continuity of displacement and normal stress at the
interfaces between two elastic media. Eventually, boundary conditions are missing when { — —oo;
these boundary conditions are obtained by imposing that the fields in (A15) match those defined
in (A3), which hold far from the top of the plate. This is written in an intermediate region where
z — hy and { — —oo. Using that z = &, 4 ¢ in (A3) and re-expanding in Taylor expansions for small ,
we get the so-called matching conditions at each order. At the first and second orders and accounting
for the fact that u%(x, t) and ¢%(x, t) do not depend on x from (A5) and (A8), we get:
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uo(x,hp,t) = lim vo(x,x,t), o'o(x,hp,t) = lim ro(x,)(,t),
{——o0 {——0o0
W) = Tim (0 (606 — 22 (x, 7o b)
7 P/Xr - gﬁfoo IX/ aZ 7 "tPr 7 (A17)

1 : 1 90°
o (x,hp,x,t) = lim (7T (x,x,t) ——=—(x,hp,t) ).
{——o0 0z

We can now start the analysis, using V — exaa—x + %VX in (A16) along with (A15). At the leading
order, we have div, T’ = 0, which after integration over )} and accounting for the boundary conditions
and for the matching condition on ¢ leaves us with:

0= lim 2(x, x, ) dx = 02(x, Iy, ). (A18)

{——c0 JYp

At the leading order, the effective boundary condition is the usual stress-free condition, regardless
of the presence of the heterogeneity. Hence, we move to the next order to get the boundary condition
on Uzl, and to do so, we have to determine 7°. We start with V XUO = 0; hence, vO(x, t) is independent
of x; from the matching condition (A17) on u%, we get that:

o (x,t) = ul(x, hy, t). (A19)

This allows us to define the problem satisfied by (v!, 7%) in x coordinate, which reads as:

. ou .
divy® =0, %(xx,t) = u(x) oy (o heDex + Vol (xxt)|, ind,
v, 7% n, continuous at the interfaces between two elastic media,
(A20)
0.7 =0, attheboundaries in contact with air,
lim 7% =o.
{——o

For the limit { — —oo, we used in the matching condition (A17) for 79 that U'O(x, hp, ) = 0 from
(A5) and (A18). It is easy to check that the system (A20) has an explicit solution, which reads as:

0
=0, ol(xxt) = _Xaaix(x, hp, t) 4 01 (x,t), (A21)

where 9! (x, t) does not need to be specified, but it appears since ! is defined in (A20) up to a function
of (x,t). Owing to the above results, the equation of equilibrium at the order €” in (A16), specifically

0
p% = divyt! + aaix“ = 0, simplifies because of (A19) and (A21). After integration over ) and using

that T! - n is either zero (on the boundaries with the air) or continuous, we get:

821/!0 . 1 . 1
ﬁ(x, by, £) /yp(x)dx = /ylexT dx = —ggrio T, (x, x, t)dx. (A22)

Yp

Integrating over Y, the matching condition for crzl in (A17), along with 9, <0’£> = Pp (ppattuo from
(A7), we find that (A22) can be written as:

0
(o1 (x, p, t) = —%(x,hp,t) ggrzloo (§+ ) f)i;gzdx> . (A23)

The integral of the mass density over Y is [y, p(x)dx = [y, p(x)dx — élirn {Pr @, from which:
¢ ——00
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1 o), a(d))
(02) (%, ho 1) = v X o

(x, hp, t). (A24)

The above expression is valid if one considers a heterogeneity with varying mass density, and in
the case of uniform mass density p(x) = p,, it simplifies to:

h a(c?)
1 _ oo Z
(07) (x, hp, t) = 7 —pp% 5 (x, hp, t). (A25)

Eventually, making use of 02 (x, iy, t) = 0in (A18) and of (A25), we get that (00 + &(0})) (withe =
¢); hence o, up to O(&?) satisfies the boundary condition announced in (3).

Appendix A.3. Jump Conditions

The analysis of the problem in the vicinity of the heterogeneity at the bottom of the plates
(Figure A3) is similar to that conducted in the previous section. The elementary cell in which the
analysis is conducted is unbounded for { — £oo since in the microscopic coordinate, the top of the
plate and the lower interface of the layer were set to infinity. We use the same expansions as in (A15),
and for simplicity, we keep the same notations, with x = (x, ) and:

, =" (A26)

€

X zZ
X €

In the present case, the elementary cell involves a part of { < 0 where we impose that (", T") in

(A15) are periodic with respect to x € Y.

matching conditions

_______

matching conditions

Figure A3. Elementary cell at the bottom of a single plate in the x = (x, {) coordinate. Y = )}, U ),
with Yy = {x € Y» X (0,4+00)},and Y, = {x € Y X (—0,0)}; ¢}, /¢ is the non-dimensional surface
of the heterogeneity of vertical extent i, / £.

As in the previous section, the matching conditions tell us that the solution in Y when { — Fo0
matches the solution valid far from the bottom of the plates z € (—h,,0). When { — +oo, it matches
(A3), which holds in the plates; when { — —oo, it matches the solution in the layer. As the layer is a
homogeneous region, the expansion of the solution (1, ) is trivial: of the same form as in (A3) with
all the terms (1", c") being a function of (x, t) only. We thus get that:
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uo(x,Oi,t): lim vo(x,x,t), ao(x,Oi,t): lim To(x,x,t),
[Stoo [ Soo

1 — . 1 auo —
u'(x,07,t) = lim (o (x,)(,t)—gg(x,O 8,

{——c0
ul(x,07,x,t) = lim (ol (x,x,t) - ga—uo(x 0", t) A7
4 7 7 gﬁ*}oo 7 7 az 4 7 7 ( )
1 _ . 1 9cY _
o (x,07,t) = lim (7t (x,x,t)—{—=(x,07,¢) ),
{——00 aZ

a0
10y 0+ _ 1 _ +
o' ,0% ) = tim (0 - £ (1,0%0).

For the limit of (0", ") (n = 0,1) when { — —oo, we used that all the (1", ¢") do not depend on
X in the layer. For the limit of (v", ") (n = 0,1) when { — +co, we used that (1%, ¢°) do not depend
on x in the plates from (A5) and (A8), but (u', o!) do.

We can now start the analysis, using as in the previous section, the differential operator V —
ex% + %VX and the expansions (A15) in:

o2u .
o =px)Vi, p(x)5, = dive, (A28)

with (u(x),p(x)) varying within Y, = {x € Y x (—00,0)} and being equal to (y,0r) in Yo = {x €
Y; x (0,400)}. As previously, the leading order starts with V,v? = 0; hence: v° is independent of ¥,
and from (A27), v°(x,t) = u%(x,0%,t). Next, integrating the relation divy 70 = 0 over Y along with
the (A27) leaves us with:

O(x,t) = u%(x,0,t), [[<US>H0 = [[”OHO =0, (A29)

where we have defined [w], = w(x,0",t) —w(x,07,t) at this stage. At the leading order, the continuity
of the displacement and of the normal stress apply regardless of the presence of the heterogeneities.
Thus, we move to the next order, and as in the previous section, we need to define the problem on
(v!, 70), which reads as:

ot
ox
1.0

v, T -n, continuous at the interfaces between two elastic media,

leXTO =Y, TO - V(X) <VX01 + (JC,O, t) Ex) 7 ln yr

©n=0, at x = £¢p/2, in Y, (A30)

o', %  one periodic with respect to x in ),

0 0 0
lim val = {oz)(x,0,t) e;,, lim val = (o2)(%,0,1) e, — ai(x, 0,t) ex.
{——00 Mo {—+o0 e Pp dx

To find the above limits for { — 4-00, we used the matching conditions for ¢ in (A27) along with
a%(x,07,t) = (69)(x,0,t)e; + u0,u’(x,0,t)ey (since in the layer, 0 = (¢?) and ¢? = ,d,u’) and
along with %(x,07, ) = (¢2)(x,0,t)e;/ ¢, from (A5) and (AS).

The system (A30) is the counterpart of the system (A20) that we obtained at the top of the plate,
but now, the solution is not trivial; hence, (A20) has to be solved numerically. However, instead of solving
(A30) for a given scattering problem, that is for given external loadings (0xu°(x,0,t), (c9)(x,0,t)), we

shall use that (A30) is linear with respect to those loadings. Specifically, we set:
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Z/lo
o' = (o) (5,0, )V (1) + e (3,0, )Val) + 9 (x,),
H * (A31)
MO
0 = ) (00)(3,0,0) V) + 4x) 5 (5,0, V3 (Va(x) +),

and it is sufficient that (V3, V;) satisfy (4) to ensure that v! satisfies (A30). The advantage is obvious:
as (V1,V,) satisfy static problems, they can be computed once and for all, independently of the
scattering problem that will be considered afterwards. We shall see that these elementary solutions
provide the coefficients defined in (5).

From (4), V1 has a linear behavior in { for { — o0, and V} is linear in x when { — +o0. As V1, V;
in (4) are defined up to a constant, we set the constant at zero for { — —oo and define:

lim (V; =) =0, lim V, =0,

{——00 {——oco
i (V 1 g) lim (V- x) (A32)
im - = uq, im = 0.

{—+o 1 (pp]lp 1 {—+o0 2 X 2

The jump of (u!) is obtained using the matching conditions (A27) for u!, with v! in (A31) along
with (A32). Using in addition that (¢9) = 9,0, which holds at z = 0T from (A7), and {¢?) = 02 =
yLazuO, which holds at z = 07, we easily get that:

0
ul(x,07, x,t) = 0'(x,t), andul(x, 0", x,t) = al (02)(x,0,t) + (ag — X)%(x,ﬂ,t) + 01 (x, 1) (A33)

He

(incidentally, we recover that ul is linear w.r.t. x as in (A9)). After integration over Y, (with (x) = 0),

we get:
0

L — %0 ou”
[h]y =2 D)0 + a2 (0. (A34)
To get the jump on (0), we use the equation of equilibrium in (A16) at order zero integrated over
Y, specifically:
T o0
- t dy = di 1 X d A
w00 [ pGodr = [ (diert+ 52 ) dn (A35)

where we use that v° = u%(x,0,t) from (A29). We use (A27) along with (A31), and we account for the

fact that [}, 9yVadx and [}, 9y(V2 + x)dx are bounded and that [}, dx = ¢» CETOOC and [y, dx =

glim . We also use that p,0u° = 9,00 in the plate (from (A7) and (A8), which holds for z = 0%)
—~+oco

and that pL6ttu0 - yLaxxuO - 82(73 = 0 in the layer (from (1), which holds for z = 07). Eventually,

for constant p = p, and y = p, in the heterogeneity, we use that fyb (p—p)dx = @, /L(p, — po),

fyb (4 — ) dx = @ohy/L(y — p)- This leaves us with the jump in o} of the form:

9(c? 9%u0 h 9210
with:
povy po(Va+x) # oV (Mb > @,
= ——=—dy, = —————"dx + ——=dx+ | = - =, A37
i Y e 0 X P2 Y B OX X Wy o OX X I8 14 (A37)

We shall express the jump conditions obtained in (A29) and in (A34)—(A36) in a different form,
but equivalent up to O(?). Specifically, we want the jump between —h, and zero (we shall comment
on this choice later on). With ¢ = ¢ and h, = O(¢), we can use the Taylor expansion of w’(x,0~,t) =
w0 (x, —hy, t) + hy, ;w0 (x,07,t) + O(?) for w® = u®, (¢?) to get the jump of w = w” + ew! defined as
[w] = w(x,07,t) — w(x, —h,t) (as in (3)). From (A29) along with (A34) A and (A36), we get:
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L+ h ou’
[0+ e(u)] = T (0) (,0,8) 4+ aat S (x,0,4) + O(£2), (A38)
Mo ox
where we used that (¢02) = ¢ = p,9,u’. Replicating this for the jump in the normal stress, we get:
0 2,0 2,0
[o2 + lel)] = =Bt 52 (5,0.) = o+ B20) G (1,0,0) s+ (1= o] G (10,0 +O(), (A39)

where we used that 9, (0?) = 9,00 = f‘uLaxxuo + pLattuO (and it will be shown in Appendix B.1 that
1 = —ap). Eventually, we define w = % (w(x, —hy, t) +w(x,0%,t)); with £w®(x,0,t) = ¢ + O(£?) in
the right hand side terms, the jumps in (A38) and (A39) are equivalent to that written in (3) omitting

O(f?), and with:
gb = 0(16 + hb, lb = DQE, Lb = hb + ﬁ2g, (A40)

according to (5) along with (A32) and (A37). We made a choice on the expression of the jump conditions,
and we shall see that this guaranties that the energy in the effective problem is a definite positive
quadratic form. Note that we also made a choice on the position of the effective boundary condition
on the top of the plate; it is possible to choose a different position in the vicinity of the order of ¢ of that
one; however, as already stressed, if all the resulting effective problems are equivalent up to O(¢?),
all of them do not guaranty proper energy of the effective problem; see, e.g., [31,32].

Appendix B. Properties of the Effective Parameters

Here, we shall prove three properties that have been used in the previous Appendix: (1) In (A39),
we used that ay + 1 = 0. Furthermore, the effective energy &, in (10) is a definite positive quadratic
form if: (2) ¢, > 0 and (3) L, > 0, with (4,, L,) defined in (A40).

Appendix B.1. ay + 1 =0

The parameters (a, B1) are defined by a, = élim (Vo + x) (see (A32)) and B; = y %%%dx
—>+o00 L

(see (A37)), with Vj and V; satisfying the elementary problems: (4) (note that ¢, = ¢«; in (5)). We start with:

0= / Vs div (”vm) dy = — / Eov, -V dx + a, (A41)
JYy He JY Mo

where we used that all the boundary terms uV,VVj - n on 0 vanish except at { — +oco where

N, }% VaVVi-e:dx = [y, q}—l (ay — x) dx = ap since p = pp and (x) = 0. Indeed, V, and yVV; - n are

continuous at the interface between two elastic media; next, yVV; - n = 0 at the boundaries in contact

with air; eventually, for { — —oo, V, vanishes. Next, considering:

0= /y v, div (;‘v (V3 +x)) dx = — /y yﬁvv1 VVhdx — B1, (A42)

and here, all the boundary terms vanish since #V (V, + x) - n is continuous or vanish and for { — oo
V(Va+x) - (£ez) = 0. It follows that:
0= —py = / dx vy, v, (A43)
Y 1228

Appendix B.2. £, > 0

To show that ¢, > 0 or equivalently ay + h,/¢ > 0 from (A40), we rely on the variational
formulation of the elementary problem on square integrable field V = V; — Hwith H(x,{ < 0) =
and H(x,{ > 0) = 27, Thus, V satisfies div ((4/p.)V(V + H)) = 0 with glirjr; VV =0, from (4),

—oo

Prr
and (V+ H), (u/p.)V(V + H) - n are continuous at the interfaces between two elastic media and
vanish at the boundaries in contact with air.
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We now define the set V of admissible fields V being continuous with VV — 0 for |{| — +oco.
Next, we introduce the energy defined over V by:

Vev, EWV)= / L < IVV[2+VV- VH) dx — a(V),
Vi (A44)
with a(V —/ (x, +oo)dx — /Y V(x, —o0)dy.

One can show using standard arguments of calculus of variations that the minimizer V of E
defined by:
V =argminE(V), (A45)
Vey
corresponds to V. = V, — H with a(V) = a; since, by the definition of V and from (A32),
lim V=0and lim V = a;. To conclude, we need the expression of E(V'). We multiply the relation

{——oc0 {—+o0

div ((u/u)V(V + H)) = 0by V, thenby H, and integrate by parts. We get that [, yﬂ |VV[2dx+ Iy %VV :
VHdyx = a; and, after straightforward calculations, that f y dx i VV.VH = (pb ( %) It follows

that, from (A44), we have:
= 1 @ _ e
E(V) 5 (gobg (1 m) uq). (A46)

Thus, by bounding the energy E(V'), we shall get a lower bound for a, hence for ¢, = a1/ + h,.
To do so, we chose a test field V being piecewise linear along ¢, with V(x) = f({) and f(Z) = 0,
bl({ + h,/4)/hy, b for { € (—oco,—h,), (—h,,0), and (0, +c0), respectively. At this stage, b is a free
parameter that we shall fix to minimize E(V/). It is easy to see that:

2
-3 ()] w

whose minimum with respect to b is obtained for b* = —(h,/0)¢, (/1. — 1)/ (ot /. +1 — @1)
and provides:

ey = b g/ — 1)
minE(V) = R TR —y (A48)

It is now sulfficient to use (A45) along with (A46) and (A48) to find that:

> oy (A49)

Tkl
Appendix B.3. L, > 0
To obtain a lower bound on L,, we rely on the variational formulation of the elementary problem

on V. First, we define the set 7 of admissible fields ¥ such that:

T-n, continuous at the interfaces between two elastic media,

T-n=0, aty==%¢:/2, in)},

(A50)
%, one periodic with respect to x in ),

lim T =ey, lim #=0.
{——o0 {—+oo
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Next, we introduce the complementary energy defined over 7

2
TeT, E*(%):/ g F,. dx+/y (P;;|i'|2—2i'~ex)dx. (A51)
L P

Yo Ho

One can show from standard arguments of the calculus of variations that the minimizer 7 of E*
defined by:
T =argmin E* (), (A52)
TeT

corresponds to the stress field associated with the solution V5, that is to say:
T= yﬁ(vxvz +ex). (A53)
L

Now, multiplying by V; the equilibrium equation (4) associated with V,, integrating by parts,
and using (A51) and (A53), we find the relation:

L, h, Ho ) O a(V2+X) A% *
22 (0224 (1—0) ) = £ 2 Ay + — —=dx = —E*(1). A54
l l (go e ( 4 ) JYp Mo ax X J% e OX X ) ( :

Thus, by bounding the complementary energy of the solution E*(7), we shall get a bound on
the left hand side in (A54), hence on L, given by (5). To do so, we chose the piecewise constant test
field T such that T(x) = g({)ex with g({) = 1,4, and 0 for { € (—oo, —h, /), (—h,/£,0), and (0, +o0),
respectively. At this stage, a is a free parameter that we shall fix to minimize E* (7). Calculating the
energy of such a test field gives:

2
E() = (0= 20) Bt (0= 1701 ) (A55)

-1
Now, minimizing the energy with respect to a gives the optimum a* = (gob‘zL +1- (pb> .
b

By injecting a* in (A55) and using (A54), we finally obtain:
hy,
L2 —g—77— >0 (A56)
(Pbﬁ +1- [N
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