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Abstract: The research work and related tests aimed to identify the effect of filler metal-free laser
beam welding on the structure and properties of butt joints made of steel 700MC subjected to the
TMCP (thermo-mechanically controlled processed) process. The tests involved 10-mm thick welded
joints and a welding linear energy of 4 kJ/mm and 5 kJ/mm. The inert gas shielded welding process
was performed in the flat position (PA) and horizontal position (PC). Non-destructive testing enabled
classification of the tested welded joints as representing the quality level B in accordance with the
requirements set out in standard 13919-1. Destructive tests revealed that the tensile strength of
the joints was 5% lower than S700MC steel. The results of tensile tests and changes in structure
were referred to joints made using the MAG (Metal Active Gas) method. The tests of thin films
performed using a high-resolution scanning transmission electron microscope revealed that, during
laser beam welding, an increase in dilution was accompanied by an increase in the content of
alloying microadditions titanium and niobium, particularly in the fusion area. A significant content
of hardening phases in the welded joint during cooling led to significant precipitation hardening
by fine-dispersive (Ti,Nb)(C,N) type precipitates being of several nanometres in size, which, in
turn, resulted in the reduction of plastic properties. An increase in the concentration of elements
responsible for steel hardening, i.e., Ti and Nb, also contributed to reducing the weld toughness
below the acceptable value, which amounts to 25 J/cm2. In cases of S700MC, the analysis of the phase
transformation of austenite exposed to welding thermal cycles and the value of carbon equivalent
cannot be the only factors taken into consideration when assessing weldability.

Keywords: laser beam; weldability; thermo-mechanically controlled processed; S700MC TMCP
steel; MAG

1. Introduction

Laser welding involves the melting of the interface of elements being welded by means of
heat supplied to the previously mentioned area and result from the use of a highly concentrated
beam of coherent light characterised by very high power density (i.e., restricted within the range
of approximately 102 to 1011 W/mm2) [1–3]. Processes can be performed using the melt-in welding
technique (as in classical arc welding) or with full joint penetration in one run or with many layers,
with or without the filler metal, i.e., using the key-hole welding technique. Very high laser beam
power density is responsible for the fact that welding linear energy is at the level of the minimum
energy required to melt the joint. Therefore, the heat affected zone (HAZ) and the fusion zone are
very narrow. At the same time, deformations of joints are so insignificant that welded elements, once
finished, do not require additional mechanical treatment [4–9]. Until recently, laser beam welding has
seldom been implemented in the industry, mainly due to high investment costs and some technological
problems. Presently, investing in laser beam welding no longer poses such a risk since, only a few
years ago, everything indicates that the future market will be dominated by companies using laser
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technologies within a wide range. The foregoing results from the fact that many welding companies
are increasingly interested in the application of technological lasers in production processes because
it enables the introduction of such lasers for these companies to modernise during their production
processes, start the production of technologically-advanced products, or manufacture new product
generations. Very often, this process is used to join plates (of thicknesses exceeding 4 mm) since
the application of the laser beam makes it possible to obtain high-quality joints without using the
filler metal, which reduces costs and restricts the formation of welding strains [10–16]. Now, laser
welding is used in the ship-building or power generation industries, where it is necessary to make
thick joints in high-strength steels, e.g., TMCP steels. The implementation of TMCP steels significantly
decreases the time of welding works by reducing the preheating temperature or even eliminating
the preheating process as such. In addition, the use of TMCP steel makes it possible to reduce the
cross-sections of structural elements. As a result, welded structures with the same load capacity are
now thinner and lighter. Furthermore, the use of TMCP steels reduces welding costs by decreasing the
consumption of filler metals, shortening the time of welding processes, and reducing costs related
to the straightening of structures and the testing of welds [17–22]. It should also be noted that the
welding thermal cycle itself significantly differs from the classical thermomechanical treatment cycle
(by being considerably more intense). As a result of the thermal welding cycle, carbide and nitride
deposits are partially dissolved in austenite. In addition, rapid cooling leads to supersaturation of
the α solution with micro-additives, i.e., C and N and/or their uncontrolled precipitation. During
the welding of TMCP steels, the weld is provided with micro-additions such as niobium, vanadium,
and titanium. During cooling, the previously mentioned micro-additions precipitate in the form of
carbides and carbonitrides. The amount of precipitates depends on the rate of cooling. An increase
in the rate of cooling is accompanied by an increase in the concentration of micro-additions in the
solution. A similar situation can be noticed in the heat affected zone. The amount of micro-additions
left in the solution significantly affects phase transformations during cooling as well as changes of
properties following the heat treatment [23–31]. This, in turn, results in an increase in the content of
the products of the diffusionless and intermediate (bainitic) transformation. To a significant extent,
the previously mentioned structures are responsible for the reduction of toughness. In cases of pure
chemical elements, the stability of phases responsible for hardening can be presented on the basis
of Gibbs-free enthalpy [32] (Figure 1). The analysis of the stability of hardening phases during the
production of steel is impeded since the above-named phases are composed of constituents dissolved
in the solution. During welding, the short time of heating, the size of the liquid metal pool, and high
cooling rates impede the analysis of decomposition processes and the re-precipitation of hardening
phases in the weld and in the HAZ (Heat Affectet Zone) area.



Materials 2020, 13, 1312 3 of 20
Materials 2020, 13, 1312 3 of 20 

 

Temperature, oC 

G
ib

b
s

 f
re

e
 e

n
th

a
lp

y
, 

k
J

/m
o

l

0
100

200
300

400
500

600
700

800
900

1000
1100

1200
1300

1400
.

.
-800

-750

-700

-650

-600

-550

-500

-450

-400

-350

-300

-250

-200

-150

-100

-50

0

TiC

VC
VN

TiN

   NbN

   NbC

VC

TiN

NbN

VN

TiC

NbC

 

Figure 1. Free enthalpy of the formation of carbides and nitrides, calculated per one atom of carbon 

or nitride [32]. 

In the process of hardening, a significant role is played by the diffusion coefficient [33,34]. High 

diffusion coefficient values favour the fast formation of carbides and nitrides at high temperatures. 

The highest values of the diffusion coefficient in solution α are characteristic of interstitial elements 

such as carbon, nitrogen, and boron (D = 10−7 cm2/s) and, among substitutional elements, titanium (D 

= 10−8 cm2/s). Vanadium is characterised by a lower diffusion coefficient value than that of interstitial 

elements (D = 10−12 cm2/s) [35–37]. The microstructure of the tested S700MC steel is obtained by 

rolling with a controlled degree of deformation, deformation speed, and the appropriate sequence of 

precipitation processes. The welding process (method, linear energy) can naturally disturb this 

balance, which results in a significant deterioration of the plastic properties in both the HAZ and 

weld area. Different durability of Nb, V, and Ti nitrides and carbides is synonymous with their 

different ability to limit the growth of austenite grain in HAZ and a different impact on weld 

properties. Lack of control over the decay and re-separation of strengthening phases can affect the 
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have a significant impact on structural and phase changes as well as the durability of strengthening 

phases in the area of HAZ and weld. Therefore, the aim of the work was to explain the phenomenas 

occurring in the HAZ and welds, caused by the thermal cycle of the laser beam welding. 

2. Own Research 

The aim of the study was to assess the impact of laser beam welding without additional 

material on the structural and strength properties of S700MC thermo-heat rolled steel with a 

thickness of 10 mm. The actual chemical composition and properties of steel are shown in Table 1. 

  

Figure 1. Free enthalpy of the formation of carbides and nitrides, calculated per one atom of carbon or
nitride [32].

In the process of hardening, a significant role is played by the diffusion coefficient [33,34]. High
diffusion coefficient values favour the fast formation of carbides and nitrides at high temperatures.
The highest values of the diffusion coefficient in solution α are characteristic of interstitial elements
such as carbon, nitrogen, and boron (D = 10−7 cm2/s) and, among substitutional elements, titanium
(D = 10−8 cm2/s). Vanadium is characterised by a lower diffusion coefficient value than that of
interstitial elements (D = 10−12 cm2/s) [35–37]. The microstructure of the tested S700MC steel is
obtained by rolling with a controlled degree of deformation, deformation speed, and the appropriate
sequence of precipitation processes. The welding process (method, linear energy) can naturally disturb
this balance, which results in a significant deterioration of the plastic properties in both the HAZ and
weld area. Different durability of Nb, V, and Ti nitrides and carbides is synonymous with their different
ability to limit the growth of austenite grain in HAZ and a different impact on weld properties. Lack of
control over the decay and re-separation of strengthening phases can affect the deterioration of the
mechanical and plastic properties of the joints. A welding thermal cycle will have a significant impact
on structural and phase changes as well as the durability of strengthening phases in the area of HAZ
and weld. Therefore, the aim of the work was to explain the phenomenas occurring in the HAZ and
welds, caused by the thermal cycle of the laser beam welding.

2. Own Research

The aim of the study was to assess the impact of laser beam welding without additional material
on the structural and strength properties of S700MC thermo-heat rolled steel with a thickness of 10 mm.
The actual chemical composition and properties of steel are shown in Table 1.
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Table 1. Actual chemical composition of S700MC steel.

Chemical Composition, % by Weight

C Mn Si S P Al Nb Ti V N Ce

0.056 1.68 0.16 0.005 0.01 0.027 0.044 0.12 0.006 72 0.33

Mechanical properties

Tensile strength Rm, MPa Yield point Re,
MPa

Elongation A5,
%

Toughness, J/cm2

(−30 ◦C)

820 700 17 50

Ce = C + Mn
6 + Ni + Cu

15 + Cr + Mo + V
5 , (%)

The structure of the test steel was bainitic-ferritic. The thermomechanical treatment of steel
S700MC leads to the refinement and defecting of its structure (Figure 2) and supersaturation of the
structure with hardening components. The thermomechanical rolling process leads to selective plastic
deformation of the grain. The steel was subjected to precipitation hardening, solid solution hardening,
and strain hardening. Structural changes occurring in the welded joint during cooling are described in
the CCT (Continuous Cooling Transformation) diagram (Figure 3).
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2.1. Welding Process

The tests involved 10-mm thick joints made of steel S700MC using a TruDisk 12002 disc laser
(Trumpf, Ditzingen, Germany), being a component element of a robotic welding station. The
identification of welding parameters required the melting of the plates using variable process parameters
(Table 2). Exemplary penetrations are presented in Figure 4.

Table 2. Parameters of the remelting process.

Specimen
Test No.

Beam Power,
W

Melting Rate,
mm/min

Linear Energy,
J/mm

Position of Focus in Relation
to the Plate Surface, mm

1 4000 2000 120 0

2 4000 2000 120 −3

3 4000 1000 240 0

4 4000 1000 240 −3

5 6000 2000 180 0

6 6000 2000 180 −3

7 6000 1000 360 0

8 6000 1000 360 −3

9 8000 2000 240 0

10 8000 2000 240 −3

11 8000 1000 480 0

12 8000 1000 480 −3

13 10,000 2000 300 0

14 10,000 2000 300 −3

15 10,000 1000 600 0

16 10,000 1000 600 −3
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Figure 4. Macrostructures of the remelted specimens.

Based on melting tests and assessments of penetration depths, it was possible to determine the
range of welding parameters (Table 3). The welding process was performed in the flat position (PA)
and horizontal position (PC) with inert shielding gas (helium fed at a flow rate of 20 dm3/min). The
horizontal position made it possible to prevent the outflow of a significant volume of the liquid weld
metal formed during the process, which could take place during welding in the flat position. Before
welding, the edges of the plates were dried by being heated at a temperature of 65 ◦C. The results of
strength tests and changes in structure were referred to the joints made using the MAG method [38].
Additional material used solid wire G Mn4Ni1.5CrMo. Linear welding energy was 8 kJ/cm.
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Table 3. Parameters welding S700MC a thickness of 10 mm with a laser beam.

Preparing Metal Welding The Stacking Order of the Bead
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Figure 5. Laser welding of the joint in the PC position with 5 kJ/cm linear energy: (a) tacked plates fixed
vertically, (b) determination of the weld axis, (c) course of the welding process, and (d) finished joint.
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2.2. The Study of Welded Joints

Obtained welded joints were subjected to non-destructive testing:
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tests of thin films performed using a Titan 80–300 kV high-resolution scanning transmission
electron microscope (HR S/TEM, Thermo Fisher Scientific, Waltham, MA, USA), the diffraction
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X-ray phase analysis performed using an X’Pert PRO diffractometer (PANalytical, Almelo, The
Netherlands) an X’Celerator strip detector (PANalytical, Almelo, The Netherlands), and a lamp
equipped with a cobalt anode.

3. Results and Discussion

3.1. Analysis of the Base Material

The analysis of the chemical composition of tested steel confirmed the compliance of the chemical
composition of steel with standard. The steel was characterised by a carbon content of 0.056% by weight
as well as by the following contents of hardening micro-additions: titanium–0.12%, niobium–0.044%,
and vanadium–0.006%. The nitrogen content was about 70 ppm, which was in accordance with the
material compliance certificate. The above-named steel is characterised by very low carbon content
and relatively high titanium content. Because of the high reactivity of titanium with nitrogen and
carbon, titanium was bonded in stable precipitates of TiN and TiC as well as in complex precipitates of
(Ti,Nb) (C,N) (Figure 6). Taking into consideration the atomic masses of the previously mentioned
chemical elements, it was calculated that titanium and niobium bonded above 0.02% of carbon. As a
result, the content of free carbon involved in phase curing and structural transformations was very low
(approximately 0.03%).



Materials 2020, 13, 1312 9 of 20
Materials 2020, 13, 1312 9 of 20 

 

  

Bright field Dark field 

 

EDX spectrum elongated precipitate 

 
 

Diffraction patterns elongated precipitation Diffraction pattern solution elongated 

precipitation 

Figure 6. Carbonitride precipitate elongated precipitation (Nb,Ti)C with single fine-dispersive 

precipitates responsible for steel hardening (marked with an arrow). 

Microscopic tests performed using optical microscopy revealed that the steel tested contained 

large precipitates (of up to tens of µm) of characteristic sharp shapes, i.e., most likely Ti carbonitride 
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Figure 6. Carbonitride precipitate elongated precipitation (Nb,Ti)C with single fine-dispersive
precipitates responsible for steel hardening (marked with an arrow).

Microscopic tests performed using optical microscopy revealed that the steel tested contained
large precipitates (of up to tens of µm) of characteristic sharp shapes, i.e., most likely Ti carbonitride
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precipitates that crystallised on impurities in the steel (Figures 7 and 8). The static tensile test revealed
that the S700MC steel was characterised by a tensile strength Rm of 820 MPa, a yield point Re of
approximately 700 MPa, and an elongation A5 of 17%. The impact strength test of the base material
performed at a temperature of −30 ◦C revealed a toughness of approximately 50 J/cm2.
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3.2. Analysis of the Welded Joints

The non-destructive tests carried out did not show welding defects. Based on the non-destructive
tests carried out, the welded joints were classified as meeting the quality level B in accordance with
ISO 13919-1 [40]. Additionally, macroscopic metallographic tests did not show the presence of welding
defects in the weld and HAZ areas (Figure 9). Additionally, the MAG joint was free from welding
incompatibilities. However, it has a much larger area of the cross-section (Figure 9). Microscopic
tests revealed the bainitic-ferritic structure in the weld area. The grains in the HAZ area of individual
joints did not differ significantly in size, which can be attributed to the similar linear welding energy
(Figure 10). MAG microscopic tests of joints showed changes in the microstructure of the weld and
HAZ areas compared to the base material. Both the weld and HAZ eliminated the effect of plastic
deformation in the form of grains elongated in the direction of rolling, obtained during the production
of plates. The weld area structure was dendritic and consisted of bainite and ferrite lamellas formed
from retained austenite grains. HAZ contained a fine-grained microstructure clearly dominated by
ferrite (Figure 10).
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The influence of the welding method on the strength and plastic properties of the joint is presented
in Table 4.
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Table 4. Strength and ductility of the S700MC steel laser beam welded joints.

Designation
of the

Welded
Joint

Tensile Strength Bending, Bending
Angle, ◦

Impact Strength KCV, J/cm2

(Test Temperature −30 ◦C)

Rm,
MPa

Place
Breaking

Place of
Rupture

Face of
Weld

Weld FL HAZ

KCV,
J/cm2 Fracture KCV,

J/cm2 Fracture KCV,
J/cm2 Fracture

Joint 1 785 FL 180 180 20 fragile 23 fragile 41 mixed

Joint 2 790 Weld 180 180 25 fragile 22 fragile 38 mixed

Joint 3 792 Weld 180 180 22 fragile 27 fragile 39 mixed

Joint 4 * 810 BM 180 180 94 mixed 82 mixed 86 mixed

* MAG welded joint [38].

Laser welding led to a decrease in tensile strength to approximately 790 MPa in relation to that of
the base material (820 MPa). Similar results were also obtained for MAG welded joints. The rupture
took place in the fusion line area and was accompanied by the formation of a structural notch. The
reduction of tensile strength was connected with the loss of properties obtained by steel S700MC in
the TMCP process. The angle obtained in a bend test amounted to 180◦. The above-named angle was
obtained in relation to the tension affecting the face side as well as the root side. An impact strength
test performed at a temperature of −30 ◦C revealed very low toughness values. The toughness in
the weld area amounted to 23 J/cm2, i.e., significantly below an acceptable level of 27 J/cm2. The
toughness in the fusion area was similar to that of the weld. In the HAZ area, toughness amounted to
40 J/cm2. Fractographic images made after the impact strength test revealed that the material cracked
without any noticeable plastic strain. The fractures of the specimens in the weld area were brittle and
glossy with slightly visible drainage areas and single cavities of material extraction, which indicated
the deterioration of plastic properties in the weld exposed to very low temperatures. The specimens
fractured (using the Charpy pendulum machine) in other areas, i.e., in the fusion line, were also brittle.
However, in the HAZ area, the fracture of the previously mentioned specimens was delaminated and
predominantly matt with only a slight gloss content (Figure 11). The previously presented type and
shape of the fracture may indicate high material anisotropy, which likely results from the significant
plastic strain of the material or from the presence of very small precipitates or impurities. MAG welded
joints have significantly higher impact values, especially in the weld area. This is due to the reduced
concentration of micro-additives as a result of mixing the base material with the filler material.
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Figure 11. Fractures after the impact test of the S700MC steel laser welded joints in the PC position.

The hardness tests of the welded joint revealed that the weld hardness was lower by approximately
40 HV1 in relation to that of the base material (280 HV1). The HAZ hardness was restricted between
the hardness of the weld and that of the base material (Figure 12). In the case of MAG welding,
hardness increases in the weld area, which is related to the introduction of elements increasing the chart
(Ni,Cr,Mo) to the weld. In the HAZ area, there is a decrease in hardness as a result of grain growth
and partial recrystallization. The X-ray phase analysis revealed that the weld made using the laser
beam was entirely composed of the Feα (Figure 13). The weld using a MAG method contained phase
Feα and a slight amount of phase Feγ (Figure 14). The presence of the Feγ phase can be attributed
to the presence of austenitic alloying elements, e.g., Ni or C in the weld bed. During laser welding,
toughness was very low, i.e., below 20 J/cm2. In laser welds made without filler metal, the content of
titanium and niobium was much higher than in welded joints made using an arc (filler metal does not
contain titanium and niobium). The higher content of hardening components was responsible for the
lower toughness of the weld (if compared with that of the base material). The increased content of
hardening components was particularly noticeable near the melting area (which was confirmed by a
detailed analysis of the chemical composition made using a microanalyzer with an electron probe)
(Figures 15 and 16).
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Figure 13. X-ray diffraction of a laser S700MC steel butt joint welded in the PC position with 5 kJ/cm 
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Figure 15. Points of quantitative composition measurements performed using the X-ray microanalyser
and wavelength dispersion spectroscopy (WDS) for a laser welded joint in the PC position with 5 kJ/cm
linear energy.
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Figure 16. Distribution of Ti and Nb in the area of the fusion zone of the S700MC steel laser welded
joint in the PC position with 5kJ/cm linear energy (weld and right side of the joint).

Some areas of the weld, near the fusion area, contained very high contents of Ti and Nb, which
points to the presence of clusters of carbonitrides that did not dissolve completely in the liquid in the
weld pool. The excessive concentration of hardening phases in the fusion area may adversely affect the
plastic properties of the weld.

A significant content of hardening phases in the weld pool triggered intense precipitation
hardening through fine-dispersive precipitates being several nm in size and precipitated next to larger
(Ti,Nb)N and TiC particles with a size of 100 nm (Figures 17 and 18). The result of the previously
mentioned situation was the reduction of plastic properties.
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4. Conclusions

The analysis of reference publications [1,5,7,10,18,22] and individual research [4,9,17,38] revealed
that, in cases of S700MC steel, the analysis of the phase transformations of austenite was affected by
welding thermal cycles and the value of carbon equivalent cannot constitute the only factors taken
into consideration during the assessment of weldability. The tested steel has a low carbon content
(0.056% by mass), limited primarily by hardening elements (titanium and niobium), which reduces its
role in hardening by supersaturation of ferrite and by limiting its action during γ-α transformation.
The short cooling time creates a martensitic phase. Martensite formed after cooling is a low-carbon
variety (does not reduce the plasticity of steel). The properties of welded joints made of the previously
mentioned steel are primarily influenced by their structure and stability of the hardening phases
and changes in their dispersion as well as aging processes. In precipitation-hardened S700MC steels,
the process of manufacturing results in obtaining quasi-equilibrium between mechanical and plastic
properties of such steels. The primary components of these steels include carbon, manganese, and
microadditions of V, Nb, Ti, and N, which, on one hand, reduce weldability, whereas, on the other
hand, provide high mechanical properties. To maintain a desirable balance between the previously
mentioned properties, it is necessary to maintain a compromise between the general content of alloying
components, their quantitative ratio, and good weldability. The welding process can significantly
disturb the mentioned balance, which, in turn, may lead to considerably deteriorated plastic properties
both in the HAZ and in the weld. The varying stability of Nb, V, and Ti nitride precipitates and carbide
precipitates is tantamount to their varying ability to restrict the growth of austenite grains in the HAZ
to a varied effect on weld properties [33–37]. The lack of control over the decomposition and repeated
precipitation of hardening phases may worsen both plastic and mechanical properties of joints. The
welded joints represented quality level B in accordance with the ISO 13919-1 standard. The horizontal
position made it possible to prevent the outflow of a significant volume of the liquid weld metal formed
during the process, which could take place during welding in the flat position. Laser welding led to a
decrease in tensile strength to approximately 790 MPa in relation to that of the base material (820 MPa).
Similar results were also obtained for MAG welded joints. The hardness tests of the welded joint
revealed that the weld hardness was lower by approximately 40 HV1 in relation to that of the base
material (280 HV1). In the case of MAG welding, hardness increases in the weld area, which is related
to the introduction of elements increasing the chart (Ni,Cr,Mo) to the weld. MAG welded joints have
significantly higher impact values, especially in the weld area. This is due to the reduced concentration
of micro-additives as a result of mixing the base material with the filler material. During laser welding
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of the test steel additive material, the increase in dilution is accompanied by a local increase in the
content of micro titanium and niobium alloy, especially near the melting area. A significant amount of
precipitates of hardening elements has a very adverse impact on the plastic properties of the weld. For
welded joints made with a laser beam, despite the very low linear energy (5 kJ/cm) and low carbon
equivalent (0.33%), toughness is unsatisfactory (i.e., below 20 J/cm2). The concentration of microagents
in the weld made using the laser beam without filler material is significantly higher than that in welds
made using arc, which, in turn, leads to a higher amount of dispersive precipitates [38]. The high
content of hardening phases in the joint during cooling leads to intensive precipitation hardening by
fine dispersion deposits (Ti,Nb) (C,N) with a size of several nm, which consequently reduces plastic
properties. In order to increase weld toughness, it seems advisable to use hybrid welding or to perform
the welding process using the filler metal, which reduces the content of titanium and niobium alloying
micro-agents in the weld. This is confirmed by the results of MAG welded joints testing.
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