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Abstract: Architectural concrete has been wildly used nowadays, and those served in an offshore
environment often suffer from chloride penetration and carbonation. To assess the protection and
decoration performances of architectural concrete, this study exposed architectural concrete to
actual marine environments and accelerated carbonation conditions. The chloride and carbonation
resistance of architectural concrete was determined to evaluate the protection performance, and the
corresponding surface-color-consistency was adopted to characterize its decoration performance.
The results show that the total and free chloride of concrete in the marine atmosphere zone and the
tidal zone generally decreases with depth; chloride content arguments significantly with exposure
time, with a chloride maximum peak near the surface. Moreover, the chloride diffusion coefficient
is small throughout the measurements, indicating the superior chloride resistance of architectural
concrete. Furthermore, architectural concrete also possesses excellent carbonation resistance based
on the carbonation depth data obtained from the carbonation experiment. Therefore, architecture
concrete served as protection covers can withstand both the chloride attack and carbonation tested
in this paper. In addition, carbonation was found to have a profound influence on the aesthetics of
architectural concrete. Therefore, carbonation should be carefully handled for better maintaining the
aesthetic appearance of architectural concrete in long-term service.

Keywords: architectural concrete; marine environment; chloride penetration; carbonation; surface
appearance

1. Introduction

Architectural concrete is one way of modernist architecture expression, also christened decoration
concrete for its valuable decorative effect. Architectural concrete, being environment-friendly, economic,
and aesthetical, has been widely used in construction projects recently [1,2]. For instance, more and
more art galleries, cultural corridors, stadiums, and high-speed rail stations in China have incorporated
architectural concrete.

Without the protection of exterior decoration materials, architectural concrete is prone to be
influenced by different factors during service. Indoors, it is subjected to carbonation effect; outdoor, it
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may be vandalized by wind, lower temperature, and cyclic wetting-drying; in coastal areas, it may
suffer from chloride attack. All those adversities mentioned above will not only threaten the durability
of architectural concrete structures but damage its shiny surface and defile its beauty.

Many cities in China are now constructing subways, for example Qingdao City. Metro Line
3 in Qingdao has employed architectural concrete for decoration (see Figure 1). Considering that
Qingdao is a sea city, corrosive ions such as chlorides in the sea can be transported into the subway
(especially the offshore ones) carried by wind and fog, which will not only accelerate the corrosion of
steels in concrete but may damage the appearance of architectural concrete. Moreover, the high CO,
concentration caused by the dense population in the subway probably makes the situation even worse.

Figure 1. Architectural concrete applied in Qingdao subway station.

The chloride penetration resistance and carbonation resistance of concrete have been widely
investigated [3-10], which are not needed to be stated extensively. So far, the studies of architectural
concrete mainly focus on construction techniques [11-15]. Li[11] and Liu [12] reviewed the development,
problems, and countermeasures of architectural concrete, and pointed out its promising applications.
Huangong [13] and Wang [14] introduced the construction techniques of architectural concrete and
proposed methods for improving construction quality. Using Tianjing Museum as the application
background, Chen [15] elaborated a complete set of construction technology of architectural concrete
from material selection, mix design, stirring technology, template selection, vibrating method, and
curing. Moreover, Liu and Li [16,17] designed and optimized the mix proportions of architectural
concrete, evaluated the mechanical property and durability, and successfully applied it in the
construction of Metro Line 3 in Qingdao. Lv [18] explored the durability of architectural concrete based
on experiments and practical engineering, finding that several mix proportions all possessed superior
durability. Catia [19] presented an expert system to support the inspection, diagnosis, and repair of
architectural concrete surfaces, and aims to improve the quality of architectural concrete. Besides, to
improve the modern plasticity in youth buildings, Lim [20] probed into the application and property
of precast architectural concrete panels. However, studies about the durability and surface appearance
evaluation of architectural concrete in marine environments, which helps the acquiring of safety
indicators and the controlling of harmful factors, have rarely been reported, even though the chloride
penetration resistance and carbonation resistance of concrete has been widely investigated [3-10].

Therefore, this study prepared architectural concrete specimens with mix proportions employed
in the subway construction of Qingdao city, and exposed them to the actual marine environments to
evaluate their chloride penetration resistance and explore the impact of chloride attack on their surface
appearance in the chloride attack atmosphere conditions. Furthermore, the anti-carbonation property
and the influence of carbonation on surface appearance were also investigated through accelerated
carbonation experiments.
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2. Experiments

2.1. Raw Materials and Mix Proportions

In this research, Portland Cement P.I. 52.5 was used, and its chemical composition is listed in
Table 1. Grade I fly ash (FA) and Grade S95 granulated blast-furnace slag (SL) were employed as
mineral admixtures, and their chemical compositions are also given in Table 1. Fine aggregates are
medium river sand with fineness modulus of 2.6, and coarse aggregates are continuous grading
gravels with a diameter of 5-25 mm. In addition, polycarboxylate superplasticizer (SP) was adopted to
reduce water.

Table 1. Chemical composition (%) of cement P.I. 52.5, fly ash (FA), and blast-furnace slag (SL).

Binder CaO SiO; Al,O3 MgO Fe;O3 SO;3 KO TiO, NaO MnO Other LOI

P1525 527 19.9 6.4 4.6 2.8 2.6 0.7 0.4 0.2 0.1 9.6 3.5
FA 8.2 48.8 242 1.3 6.5 1.4 2.1 1.3 1.1 / 51 1
SL 36.4 29.1 14.3 8.9 0.3 2.0 0.6 1.6 0.3 0.6 59 0.37

Three strength grades of architectural concrete were adopted in this study, named C40, C50, and
C55 respectively. And the three mix proportions are presented in Table 2.

Table 2. Mix proportions of architectural concrete (kg/m?).

NO w/b Cement SL FA Fine Aggregate Coarse Aggregate Water SP
C40 0.33 173 86 86 780 1169 113 4.50
C50 0.30 217 109 109 738 1108 133 5.70
C55 0.27 237 118 118 721 1081 119 6.20

2.2. Sample Preparation

Architectural concrete has a high demand for surface quality. Therefore, molds need to be cleaned
up and covered with special release agent inside before casting. After blending and stirring, the slump
and dispersion degree of concrete was first tested [21]. Detailedly, fresh concrete was filled in a horn
slump cone of 100 mm top mouth diameter, 200 mm bottom diameter, and 300 mm height. Note
that concrete-filling was operated in steps, accompanied by constant stirring with a steel bar. After
filling, the slump cone was lifted up, and the altitude difference between the slump cone height and
the highest point of the slumped concrete was tested, that is, the slump of the fresh concrete. Then,
the maximum and minimum diameter of the slumped concrete was tested and the average value
calculated was deemed the extended degree of fresh concrete. Then, the rest was filled into molds of
different sizes three times, 1/3 each time until full and vibrating after each filling.

Cubic specimens of size 100 mm x 100 mm X 100 mm were used for compressive strength test,
chloride penetration resistance test, and carbonation resistance test. They were demolded after casting
for 24 h and then placed in the curing room of 20 + 1 °C temperature and >95% relative humidity. The
specimens for compressive strength were cured for 3 days, 28 days, and 56 days, separately. And the
other specimens were cured for 28 days.

Specimens for surface appearance tests were molded in special wooden molds of size 500 mm X
500 mm X 100 mm. They were demolded after casting for 48 h and cured in the curing room for 28 days.
Then, they were cut into four equal-sized pieces of size 250 mm x 250 mm x 100 mm for the following
surface appearance test. The mold specimens after casting and demolding are shown in Figure 2.
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Figure 2. Casting process of specimens for surface appearance test. (a) Wooden mold. (b) Specimens
after casting. (c) Specimens after demolding.

2.3. Compressive Strength

The compressive strength of concrete was tested abiding by the standard for the test method
of mechanical properties on ordinary concrete [22]. After reaching the curing age, the compressive
strength of specimens was tested using a 300 t compressive strength tester (Shijin, Jinan, China) with a
loading of 0.5 MPa/s. Three specimens of each mix were randomly chosen, and the average value of
them was used for analysis.

2.4. Carbonation

Specimens cured for 28 days were dried in the 60 °C drying oven (Baihui, Guangzhou, China) for
48 h, Then, except 2 opposites, the other 4 surfaces of specimens were sealed with epoxy resin, and then
put into a carbonation tank. The carbonation time was 14 days, 28 days, and 56 days separately. The
temperature in the carbonation tank was 20 + 1 °C, humidity 75% + 2%, and carbonation concentration
20% + 1% [23]. After reaching the carbonation time, specimens were split and sprayed with alcohol
phenolphthalein solution to test carbonation depth. The ultimate carbonation depth is the average of
the 3 specimens of each age.

Note that the accelerated carbonation method instead of the natural exposure method was
employed to evaluate the carbonation resistance property of architectural concrete. The accelerated
carbonation method has been widely used in many studies [24-28] in view of its efficiency. Besides,
this method is also quite feasible as has been demonstrated by reported investigations [24,25,29-31].
Moreover, the accelerated carbonation method has been written in a test standard [23] in China, which
also illustrates the feasibility of this method.

2.5. Salt Fog Exposure

Salt fog exposure is to simulate the atmosphere zone of oceans that fosters chloride attack, which
was combined with the experiments conducted in the real oceanic atmosphere, and in such a way,
the influence of chloride attack on the surface appearance of architectural concrete was investigated.
The corrosive solution is a NaCl solution of 5% by mass, and the spraying time is 12 h each day.
After each spraying, specimens were taken out of the salt fog tank and dried in the atmospheric
environment of constant temperature and humidity (20 + 1 °C, 75% + 2%) for 12 h, and then were
sprayed with salt fog again [32]. That cycle was repeated during each exposure time: 14 days, 28 days,
and 56 days, separately.

2.6. Marine Environments Exposure

After being cured for 28 days, five surfaces of each specimen were sealed with epoxy resin, and
the remaining one was the exposure surface. Then, specimens were exposed to the atmosphere zone,
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tidal zone, and splash zone of Wheat Island marine exposure field in Qingdao (see Figure 3) for 1
month, 3 months, and 9 months, separately.

Figure 3. Architectural concrete exposed to actual marine environments.

Specimens were ready to be tested after exposure. The powder samples for testing chloride
content were obtained through grinding the specimen layer by layer. The grinding thickness of each
layer was 1.0 mm in the range of 0-10 mm from the exposed surface, and 2.0 mm beyond a depth
of 10 mm. Then, a silver nitration titration method was employed to test free chloride and total
chloride in compliance with the Testing Code JTJ 270-98 [33]. The detailed operation can be found in
reference [5,34]. In addition, note that the “free” and “total” chloride mentioned in this research is also
referred to as water-soluble and acid-soluble chloride somewhere else, respectively.

2.7. Surface Appearance

In this research, the standard deviation of image gray was introduced to quantitatively characterize
the chromatic change of faired-faced concrete surfaces. The standard deviation of image gray reflects
the physical quantity of color difference of images, which is obtained through calculating the gray
degree of gathered pixels and average gray degree of images [35], as shown in Equation (1).

M N S 2
;1 ;l(Gmy(z, j)— Gmy)
std =\ —=

MxN M
where Std is standard deviation of image gray; M x N is the two-dimensional matrix, representing
the total rows and columns; Gray(i,j) is the gray degree of the gathered pixels in images; Gray is the
average gray degree of images.

The steps of obtaining the standard derivation of image gray are as follows: gather the surface
image of architectural concrete with Canon EOS800D (8 million pixels) digital camera (Suning, Nanjing,
China); covert the original format of the image into the gray image; calculate the average gray degree
with the image processing software Image-Pro Plus (software version6.0, MEDIA CYBERNETICS,
Rockville, MD, USA). The smaller the standard derivation of image gray is, the smaller the color
difference of the image, and the more uniform the surface color [36]. To exclude the influence of
environmental factors, the image gathering of architectural concrete with different mix proportions
were conducted under the same indoor light condition, with the vertical distance between the digital
camera and specimen surface being 1 m.

After preparing specimens of size 250 mm X 250 mm X 100 mm as mentioned in Section 2.2, the
standard derivation of image gray of them was obtained following the steps above. Then, specimens
were exposed to salt fog conditions, actual oceanic atmosphere, and carbonation conditions, separately,
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following the operation described above. After exposure, the standard derivation of architectural
concrete specimens was obtained again for later discussion.

2.8. Capillary Absorption

Cubic specimens were cured for 28 days, and then were dried at constant temperature (20 + 0.5 °C)
and humidity (50% =+ 10%) room for 7 days [32]. Then, they were placed in a plastic chamber contacting
with 5% NaCl solution (by mass). The water level was kept approximately 3 mm above the contact
surface of specimens. The absorbed mass of solution was determined as a function of time by weighing
the specimens after the contact time of 0.5h, 1 h,2h,4 h, 8 h, 12 h, and 24 h. The capillary absorption
coefficient of concretes was decided by Equation (2).

AW = A-AVE )

where AW is the absorbed solution amount per unit cross-sectional area within time ¢, g/mz; tis
absorbed time, h; A is the capillary absorption coefficient, g/ (mz-ho‘5 ).

2.9. Mercury Intrusion Porosimetry (MIP)

Specimens of size 100 mm x 100 mm X 100 mm were cast following Table 2. After curing for
28 days, several sheet pieces with a diameter of less than 2 mm were obtained from the inner part
of specimens. Afterward, those samples were stored in ethyl alcohol for 7 days and then dried at
45 °C in a vacuum oven for another 7 days. Then, MIP was carried out by using equipment DV 2000
Micromeritics, Shanghai, China).

3. Results and Discussion

3.1. Basic Properties

The slump, extended degree, and compressive strength of architectural concrete are listed in
Table 3. It can be seen that the slump and extended degree are large, which guarantees the feasibility
of casting and helps to improve the quality of architectural concrete. In addition, it can be found that
the strength of concrete of all mix proportions at 3 days has reached 70%-80% of designed strength,
and the strength of 28 days has already met the design value.

Table 3. The slump, extended degree, and compressive strength of architectural concrete.

Compressive Strength/MPa

1 E D
NO Slump/mm xtended Degree/mm 3 days 28 days 56 days
C40 185 380 289 53.1 56.6
C50 188 410 37.4 64.2 68.0
C55 220 435 44.7 72.0 74.8

3.2. Capillary Absorption Capacity

Figure 4 shows the relation between the amount of absorbed solution and the square root of time.
It can be observed that the amount of absorbed solution increases with time; within the same exposure
time, the higher the strength grade of concrete is, the smaller the amount of absorbed solution is. That
is because the matrix becomes increasingly denser with the enhancement of strength (see MIP results
shown in Figure 5; the total porosity and the most probable pore size of C55 are both lower than that
of C40 and C50), which makes it harder for external solution to penetrate under the same saturation
degree of concrete. Besides, the capillary absorption coefficients obtained through fitting data in
Figure 4 with Equation (2) also decrease with the increase of strength grade, as shown in Figure 6.
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Figure 6. Capillary absorption coefficients of C40, C50, and C55.
3.3. Carbonation Resistance

Figure 7 presents the carbonation depth of architectural concrete at different exposure times. It
can be seen that carbonation depth increases with the carbonation time, which has also been found by
numerous studies [29-31]. After carbonation for 56 days, the carbonation depth of C40, C50, and C55
are 4.36 mm, 3.83 mm, 2.97 mm, separately, which means that, on the one hand, the carbonation degree
decreases with the increase of strength grade, since pore structure of C55 is denser than that of C40 and
C50 (see Figure 5). On the other hand, the three mixes are all of a good carbonation resistance, inferring
that the carbonation degree will be very low under the atmospheric environment. The results of the
studies [25,37] showed that the carbonation resistance of concrete enhanced with the water-to-binder
ratio reducing. Several studies [24,25,31,38] found that the carbonation property of concrete was closely
related to the compactness of the matrix, and the denser the concrete, the stronger the carbonation
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resistance. It can be observed that the findings of those investigations are consistent with the findings
of this study.

6_
U227} 14days

5| E=128days
£ 7] mmsedays
< 4
o,
3
= 37
.2
g 21
2

0

C40 C50 C55

Mix proportions
Figure 7. Carbonation depth of C40, C50, and C55 at different exposure times.

3.4. Chloride Penetration Resistance

3.4.1. Atmosphere Zone

(1) Chloride distribution

The chloride distribution of architectural concrete C40, C50, and C55 exposed to the marine
atmosphere zone are presented in Figure 8. It can be seen that the chloride content of all the specimens
generally decreases with depth from the exposed surface increasing. While an interesting phenomenon
is observed in Figure 8b,c, chloride peaks appear in the surface part of some chloride profiles, which
has been also found in numerous studies [39-42]. According to the research of Ye [43], Josko [44],
and Chang [37,45], the effects of both capillary suction—moisture evaporation and carbonation during
wetting and drying cycles dominate the formation of chloride peaks. The marine atmosphere zone is
also a cyclic wetting—drying environment (rainwater or high humidity air make specimens wet, and
sunshine or low humidity air makes them dry). Therefore, with the exposure time increasing, chloride
peaks will gradually form in architectural concrete specimens due to the enhancement of capillary the
suction—moisture evaporation and carbonation degree.

Moreover, it can also be found that chloride content increases to the decrease of strength grade.
Obviously, this is closely related to the pore structures of C40, C50, and C55, as shown in Figure 5.
Furthermore, Figure 9 shows the chloride diffusion coefficients (D) of these specimens after exposure
for different times, which are obtained through fitting the total chloride content with the error function
of the basic diffusion equation (see Equation (3)). On the one hand, D decreases with the strength
grade of specimens, consisting of the change law of matrix density with C40, C50, and C55. On the
other hand, all the D are quite low, which indicates that chloride penetration resistance of three kinds
of architectural concretes is high and this concrete can protect steel bars from chloride attack effectively
in the service duration. Besides, the D of nine months is lower than those of one month and three
months. This is probably because the matrix becomes denser due to continuous hydration after nine
months of exposure.

In addition, with the increase of exposure time, both total chloride content and free chloride
content increases significantly, and the former of all specimens are always higher than that of the latter.
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where D is the chloride diffusion coefficient; Cy is the initial chloride content; C; is the surface chloride
content;  is the exposure time, x is the depth from exposed surface; C(, ;) is the chloride content at time
t and depth x.
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Figure 8. Chloride distribution of C40, C50, and C55 exposed to the atmosphere zone after different
times. (a) 1 month. (b) 3 months. (c) 9 months.
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Figure 9. Chloride diffusion coefficient of C40, C50, and C55 exposed to the atmosphere zone after
different times.

(2) Chloride binding

Figure 10 shows the chloride binding isotherms of C40, C50, and C55 after exposure for different
times. It can be found that there is a positive correlation between total chloride and free chloride. The
data distribution of the three mix proportions is relatively concentrated, but it can be observed that,
generally, the data distribution of C40 is the lowest, that of C50 in the middle, and that of C55 the
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highest. The lower the chloride distribution is, the more the free chloride and the fewer the bound
chloride. The parameters obtained through the fitting linear function (Equation (4)) are listed in Table 4.
It can be seen that the correlated coefficients (R?) of all curves are large, indicating that there is a
good linear correlation between total chloride and free chloride. Since both total and free chloride
decrease with depth, it can be inferred the linear correlation between them also develops with depth,
suggesting that the proportion of bound chloride in total chloride at different depths is basically the
same. This also means that the architectural concrete of all three mix proportions can resist the heavy
CO; penetration, considering that with a large CO, intrusion, different carbonation degrees at different
depths of concrete can release bound chloride into the pore solution [46,47], resulting in the increase of
proportion of free chloride to total chloride and thus a nonlinear correlation between total chloride and
free chloride along with depth.

o) 2

3 0.15- © 0.30-

G = C40 . " S m C40

5 ® C50 . S o2al ¢ C50 .

c\% 0.121 A C55 .A - £ . A C55

= Ao c u
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2 5
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Figure 10. Chloride binding isotherms of C40, C50, and C55 exposed to the atmosphere zone after
different times. (a) 1 month. (b) 3 months. (c) 9 months.

Moreover, the proportion of bound chloride in total chloride § was obtained with parameter
a and Equation (5) to reflect the chloride binding capacity of concrete of different mix proportions
more intuitively. The calculated results are presented in Figure 11. It can be seen that the chloride
binding capacity increases with the strength grade of concrete at whatever exposure time. According
to the mix proportions of architectural concrete shown in Table 2, concrete of higher strength contains
more cement, FA, and SL. The increase of those cementitious-based materials boosts the content of
C-S5-H gel and AFm [48,49], which are two main hydration products binding chlorides physically
and chemically, separately [5,46]. Therefore, the proportion of bound chloride in total chloride of
C55 is the highest. The results of Florea, Plusquellec, and Shi et al. [46-51] have also presented that
bound chlorides increase with the increase of C-S-H gel or AFm content. Moreover, according to the
studies [3,46,48,52], C3A is deemed an important mineral composition closely related to the formation
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of bound chlorides in concrete, and the higher the C3A content, the more the bound chlorides. The
C3A content of cement used in this study is about 9.4%, and thus, the chloride binding capacity of C40,
C50, and C55 increases gradually, considering that the cement content of C40, C50, and C55 increases
successively. Therefore, the enhancement of the chloride binding capacity of the matrix can better
protect steel bars inside from corrosion induced by free chloride.

Furthermore, from Figure 11, it can be observed that § decreases gradually with exposure time
increasing. The increase rate of free chloride is faster than that of bound chloride since free chloride
can be immediately formed once external chlorides enter into the pastes, while the formation of
bound chloride takes time. Besides, the content of bound chloride in the matrix cannot increase
infinitely [46,53] because once the hydration products are saturated from binding, no more bound
chlorides can be formed, and the successive penetrated chloride ions can only exist as free chlorides.
In consequence, the relative content of bound chloride decreases with exposure time increasing.

Cr=aCs 4)
where C; is total chloride content; Cris free chloride content; « is the slope.
p=1-1/ua ®)
where f is the proportion of bound chloride content to total chloride content.

Table 4. Slope («) and correlated coefficient (R?) of chloride binding isotherms.

1 Month 3 Months 9 Months
a R? a R? a R?
C40 1.291 0.992 1.112 0.993 1.067 0.995
C50 1.336 0.998 1.222 0.995 1.126 0.997
C55 1.363 0.995 1.329 0.995 1.135 0.995

0.304 2222 1 month
Y 3 months
0.251 E= 9 months 7

0.20+ 7

Chloride binding capacity/%

0.15- §
0.10- \
o \

Figure 11. Chloride binding capacity of C40, C50, and C55 exposed to the atmosphere zone after
different times.

3.4.2. Tidal Zone

(1) Chloride distribution

Figure 12 shows the chloride profiles of C40, C50, and C55 exposed to the marine tidal zone. It can
be found that the chloride distribution of concrete in the tidal zone is similar to that in the atmosphere
zone. The content of total chloride is higher than that of free chloride, and they both generally decrease
with the depth increasing; chloride content drops with the strength grade increasing (the penetration of
chloride into concrete in the tidal zone is mainly driven by capillary suction, and the higher the strength
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grade, the smaller the amount of absorbed solution and capillary absorption coefficient, as shown in
Figures 4 and 6); chloride content increases significantly with exposure time rising; chloride peaks
form in the surface of concrete in the tidal zone, which is a typical cyclic wetting—drying environment.
Moreover, the difference is that chloride content in the tidal zone is significantly higher than that in the
atmosphere zone, which can be attributed to the mass chloride penetration through direct contact with
seawater in the tidal zone. The direct contact with seawater also boosts the capillary suction effect,
leading to larger chloride content and depth of peaks in the tidal zone than that in the atmosphere
zone [43-45].
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Figure 12. Chloride distribution of C40, C50, and C55 exposed to the tidal zone after different times. (a)
1 month. (b) 3 months. (c) 9 months.

(2) Chloride binding

Figure 13 presents the quantitative relationship between total chloride and free chloride of
specimen subject to the marine tidal zone. It can be observed they both also present a good linear
correlation, as suggested by R? listed in Table 5. Meanwhile, the proportion of bound chloride in
total chloride at different depths is basically the same just like that in the atmosphere zone for limited
carbonation effect. Moreover, the f§ obtained through Equations (4) and (5) is presented in Figure 14. It
can be observed that, due to more gel materials contained in concretes of a higher strength grade, the
relative content of bound chloride in C55 is slightly greater than that in C50 and C40. Besides, the
relative content of bound chloride also increases with exposure time.

Furthermore, from Figures 11 and 14, it can be observed that at whatever exposure time and
strength grade, the relative content of bound chloride of concrete exposed to the tidal zone is a little
lower than that of concrete exposed to the atmosphere zone. It is because that concrete in the tidal
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zone can directly contact with seawater, and thus more chloride ions can penetrate into the matrix and
exist as free chloride. Given that the chloride binding capacity of the matrix is limited by the number
of aluminate phases, the  of concrete in the tidal zone is lower.
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Figure 13. Chloride binding isotherms of C40, C50, and C55 exposed to the tidal zone after different
times. (a) 1 month. (b) 3 months. (c) 9 months.

Table 5. Slope (@) and correlated coefficient (R?) of chloride binding isotherms.

1 Month 3 Months 9 Months
a R? @ R? a R?
C40 1.170 0.989 1.074 0.996 1.058 0.995
C50 1.278 0.987 1.208 0.996 1.080 0.996
C55 1.339 0.991 1.310 0.990 1.195 0.994
0.304 2223 1 month
0.25] 3 months

Eom
0.20+

0.15+
0.104
0.05-

Chloride binding capacity/%

0.00-

onths

Figure 14. Chloride binding capacity of C40, C50, and C55 exposed to the tidal zone after different times.
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3.5. Surface Appearance

3.5.1. Carbonation

Figure 15 shows the gray curves of C40, C50, and C55 after different carbonation times. Using
those gray curves and methods introduced in the experiments section, the standard deviation of gray of
architectural concrete can be obtained, presented in Figure 16. It can be seen that the standard deviation
of gray of three mixtures all increases with carbonation time. The greater the standard deviation is,
the worse the surface-color-consistency is, revealing that carbonation is detrimental to the surface
quality of architectural concrete. Since concrete material is a heterogeneous material with unevenly
distributed pores of various sizes, it can cause the inconsistency of the carbonation effect. As a result,
the calcium carbonate crystals generated by carbonation unevenly distribute and accumulate in the
surface of concrete, which may be the major factor for the failure of surface-color-consistency. Therefore,
carbonation should be given great attention to architectural concrete structures in long service.

Furthermore, combining Figures 6 and 16, the relationship between the standard deviation of
gray and carbonation depth is presented in Figure 17. It can be found that the standard deviation
of gray increases linearly with carbonation depth, indicating that enhanced carbonation is harmful
to surface quality. In addition, the slope of the three mixtures decreases with strength grade
increasing, suggesting that the higher the strength grade is, the harder it is for carbonation to damage
the surface-color-consistency of architectural concrete, which is apparently related to the weaker
carbonation effect in concretes of higher strength grade.

300000+

Oday Std:13.52 300000+ Oday Std:12.71
— = 14days Std:14.96 — = 14days Std:13.89
o 250000+. . . 2g4ays Std:15.84, L 250000+. . . 28days Std:14.66 |
g 20000047 56days Std.16.39:l::‘1}| E 2000004 56days Std:15.01
£ 150000 F\i o 150000+
£ 1000001 ! £ 1000001
Z \ Z
50000 ¥ 50000+
0+ 0-
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Gray Level Gray Level
(a) (b)
3000007——oday Std:13.57
— = 14days Std:14.38
® 250000+. . . 28days Std:14.92
-------- 56days Std:15.1
£ 200000- e X
o 150000
(0]
o)
€ 100000
Z
50000
O_
0 50 100 150 200 250 300
Gray Level
(©)

Figure 15. Gray of C40, C50, and C55 exposed to carbonation environment after different exposure
times. (a) C40. (b) C50. (c) C55.
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Figure 16. Standard deviation of gray of C40, C50, and C55 exposed to carbonation environment after
different exposure times.

- 1701w cao
© 1 o cs0
51651 1 ¢
© 16.0- Linear Fit of C40 Std=0.860d+12.6
S Linear Fit of C50 R?=0.989
= 15.54 Linear Fit of C55 ’
= -
3 15.0- Std=0.3450+14.1
> R’=0.909
© 145
° Std=0.544d+12.9
c i
s 14.0 R’=0.960
13-5 T T T T 1
0 1 2 3 4 5

Carbonation depth/mm
Figure 17. Relationship between standard deviation of gray and carbonation depth.

3.5.2. Salt Fog

Figure 18 shows the gray curves of C40, C50, and C55 under salt fog conditions after different
times, and Figure 19 presents the evolution of the standard deviation of gray with exposure time. It
can be found that the standard deviation of gray only changes slightly after different exposure times,
within a 0.5% range compared with the initial standard deviation of gray. It proves that salt fog will
not do severe damage to the surface-color-consistency of architectural concrete.
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Figure 18. Cont.
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Figure 18. Gray of C40, C50, and C55 exposed to salt fog environment after different exposure times.
(a) C40. (b) C50. (c) C55.
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Figure 19. Standard deviation of gray of C40, C50, and C55 exposed to salt fog environment after
different exposure times.

3.5.3. Atmosphere Zone

Figure 20 shows the gray curves of C40, C50, and C55 subject to the atmosphere zone after
exposure for nine months, and Figure 21 presents the corresponding standard deviation of gray. It can
be found that the standard deviation of gray of three mixtures concrete only changes slightly within
the 0.7% range overall, suggesting that chloride in the oceanic atmosphere zone has limited influence
on the surface-color-consistency of architectural concrete.

In summary, chloride penetration through the marine atmosphere zone has a very limited impact
on the surface-color-consistency of architectural concrete. On the contrary, carbonation has a profound
influence on surface-color-consistency. Therefore, the influence of carbonation should be carefully
handled to maintain the aesthetic appearance of architectural concrete in long-term service.
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Figure 20. Gray of C40, C50, and C55 exposed to the atmosphere zone after different exposure times.
(a) C40. (b) C50. (c) C55.
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Figure 21. Standard deviation of C40, C50, and C55 exposed to the atmosphere zone after different
exposure times.

4. Conclusions

)

The chloride distributions of architectural concrete in the marine atmosphere zone and tidal zone
are similar. The total and free chloride content generally decreases with depth; chloride content
augments significantly with exposure time, forming a maximum chloride peak near the surface
of concrete. Besides, the chloride diffusion coefficient is small throughout the measurements,
indicating that architectural concrete possesses superior capacity on resisting chloride penetration.
Moreover, architectural concrete also has great carbonation resistance based on carbonation depth
data obtained from the accelerated carbonation experiment.
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(2) Concrete of higher strength grade has better chloride binding capacity due to a larger quantity
of hydration products and a more densified microstructure, both of which are beneficial for the
chloride penetration resistance of concrete.

(3) The standard deviation of surface gray levels of architectural concrete only changes slightly
after being exposed to salt fog and the marine atmosphere zone for different times, suggesting
that chloride penetration has a very limited impact on the surface-color-consistency. On the
contrary, carbonation has a profound influence on the surface-color-consistency; the higher
the carbonation degree, the worse the surface-color-consistency. Therefore, the influence of
carbonation should be carefully handled to maintain the aesthetic appearance of architectural
concrete in long-term service.
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