

Supporting information

Vanadium-Substituted Phosphomolybdic Acids for the Aerobic Cleavage of Lignin Models—Mechanistic Aspect and Extension to Lignin

Louay Al-Hussaini ^{1,2}, Franck Launay ^{1,*} and Elena Galvez ²

Synthesis of <u>K</u>1нн, <u>A</u>1нн and <u>Est^aA</u>1нн [S1,S2]

2-bromoacetophenone (16.85 g, 84 mmol) and an excess of phenol (9.56 g, 101 mmol) were dissolved in 200 mL of acetone. Added to the solution was 20 g of potassium carbonate, used as a catalyst and as an acid (HBr) trap. The mixture may take a pink coloration due to the formation of phenolate anions that disappears with time. Reflux is needed during 6 h to get <u>K1HH</u>. Initially pale yellow, the coloration became yellow and then orange, meaning that all the brominated reactant is consumed and phenol begins to be oxidized by air. The reaction was monitored by TLC using cyclohexane/diethylether 80/20 as the eluent. After filtration and acetone evaporation, <u>K1HH</u> was recrystallized in a minimum amount of heated (65–70 °C) absolute ethanol. <u>K1HH</u> was then recovered by filtration and dried by pressing. The formation of the ether bond was checked by Fourier-transform–infrared (FT-IR) by the presence of a band at 1240 cm⁻¹. <u>K1HH</u> was characterized more deeply by ¹H nuclear magnetic resonance (NMR) according to Ref S1.

¹H NMR (CD₃CN, 300 MHz): 8.05 (m, 2H), 7.66 (m, 1H), 7.54 (m, 2H), 7.33 (m, 2H), 7.00 (m, 3H), 5.31 (s, 2H).

This above-mentioned procedure was repeated several times at different scales affording yields of $\underline{\mathbf{K1}}_{\text{HH}}$ of c.a. 80%.

To get <u>A</u>1_{HH}, <u>K</u>1_{HH} (4.98 g, 23 mmol) was solubilized in 52 mL of THF and 13 mL of H₂O and reduced by NaBH₄ (1.32 g, 35 mmol) for 5 h. The reaction was monitored by TLC using a binary (80/20) cyclohexane/diethylether mixture. Afterwards, the reaction was quenched by 120 mL of saturated NH₄Cl (added slowly because of H₂ emission) and then diluted by 120 mL of water. Later, <u>A</u>1_{HH} was extracted by diethyl ether (250 + 120 mL). After washing the diethylether fractions by brine (120 mL) and drying by anhydrous MgSO₄, the solvent was evaporated to get <u>A</u>1_{HH} as a white solid with a yield of 90% on average. FT-IR spectroscopy enabled to check the disappearance of the strong signal at 1700 cm⁻¹ due to the carbonyl group reduction. <u>A</u>1_{HH} was deeply characterized by ¹H NMR (according to Ref S1).

¹H NMR (CD₃CN, 300 MHz): 7.39 (m, 7H), 6.97 (m, 3H), 5.04 (dd, 1H), 4.13 (dd, H), 4.05 (dd, 1H).

<u>A</u>**1**_{HH} was esterified by acetic anhydride in pyridine giving rise to <u>Est</u>^α<u>A</u>**1**_{HH}. Hence, 505 mg of <u>A</u>**1**_{HH}, were dissolved in 5 mL of pyridine in a round-bottom flask and 5 mL of acetic anhydride were dropped. The resulting mixture was stirred during 17 h and the total consumption of <u>A</u>**1**_{HH} monitored by TLC with an 80/20 cyclohexane/diethylether eluent. Excess of anhydride was quenched by 20 mL of methanol (Be careful! This quenching reaction is very exothermic and the mixture may boil). After cooling, the solvent was evaporated. Then, the concentrated residue was dissolved again in methanol (≈5 mL) and the mixture was dropped in a 20 mL volumetric flask. The first flask was washed by methanol. The washing fraction was injected by high performance liquid chromatography (HPLC) to check the retention time. Afterwards, the solvent was evaporated then to eliminate the most possible the pyridine. The obtained ester noted <u>Est</u>^α<u>A</u>**1**_{HH} was then purified on a chromatographic column (eluent: pentane/diethylether 1/1). After evaporation of the solvent, 489 mg (yield 97%) of pure <u>Est</u>^α<u>A</u>**1**_{HH} were collected as a colorless oil and characterized according a predicted spectrum.

RMN ¹H (CDCl₃, 300 MHz): 7.37 (m, 7H), 6.96 (m, 3H), 6.18 (dd, 1H), 4.30 (dd, H), 4.18 (dd, 1H), 2.14 (s, 3H).

Figure S1. Typical high performance liquid chormatography (HPLC) profile of <u>A</u>1_{HH} cleavage in presence of V₃ (220 nm).

Figure S2. Calibration curves of the products and reactants in HPLC.

Retention time (min)	Compound	Supplier	Comments	
4.7	<i>p</i> -quinone (99%)	Merck	Identification by a commercial	Product from phenol oxidation
5.7	Mandelic acid (99%)	Aldrich	standard	C-O cleavage
8.0	Phenylglyoxylic acid (97%)	Aldrich	No calibration	product
8.3	Phenol (>99%)	Aldrich	Identification by a commercial	Main products
10.9	Benzaldehyde (>99%)	Aldrich	standard. Calibration at 210 nm	model oxidative cleavage
13.0	2-phenoxyacetic acid	-	The standard was synthesized according to Ref S2 No calibration	Acetolysis product (non- oxidative C-O cleavage)
14.0	Benzoic acid (99%)	Aldrich	Identification by a commercial standard. Calibration at 220 nm.	Main product from dimeric model oxidative cleavage
15.0	Acetophenone (>99%)	Fluka	Identification by a commercial standard No calibration	Acidic C-O cleavage product
29.0	<u>D</u> 1нн (E)-2-phenoxystyrene	-	Identification by NMR of a concentrated reaction media [S3]. Yield calculated at 254 nm.	<u>A</u> 1нн dehydration product.
31.0	<u>К</u> 1нн 2-phenoxyacetophenone	-	Identification by synthesized standard according to Ref S1. Calibration at 220 nm	Ketone substrate. <u>A</u> 1нн oxidation product
34.0	<u>A</u> 1нн 2-phenoxy-1- phenylethanol	-	Identification by synthesized	Alcohol substrate
51.0	<u>Est</u> ª <u>A</u> 1нн Benzenemethanol, <i>а-</i> (phenoxymethyl)-, 1- acetate	-	standard according to Refs S1 (<u>A</u> 1нн) and S2 (<u>Est</u> ª <u>A</u> 1нн). Calibration at 254 nm	Esterification product of <u>A</u> 1нн

Table S1. List of all the products identified by HPLC.

- GC-MS

Table S2a. Gas chromatography–mass spectrometry (GC-MS) identification of products arising from C-O bond cleavage.

рт		Area ratio (/PhOH)		Match		
KI (min)	Compound	<u>К</u> 1нн	<u>А</u> 1нн	(9/)	Comments	
(min)		oxidation	oxidation	(70)		
4.0	0=	1 × 10-1	1 × 10-2	88	Identification by HPLC with a commercial standard. Minor	
	p-quinone				product.	
	ОН				Targeted product. Identification	
4.9		1	1	97	by HPLC with a commercial	
	phenol				standard.	
6.3		-	1 × 10-2	98	Acidic cleavage product.	
	phenylacetaldehyde					
69	CH-		1 v 10-2	01	Acidic cleavage product from	
0.0	acatonhonono	-	1 ^ 10 -	91	inconstruction	
	acetophenone				isomerization.	
11.2	CH3	-	5 × 10 ⁻²	88	Phenol esterified by acetic acid	
	Phenyl acetate					
19.6	CH3	5 × 10-1	2 × 10 ⁻¹	95	Identification by HPLC with a synthesized standard. Acetolysis product.	
	2-acetoxyacetophenone				r	

phenol: product observed after <u>K</u>1нн cleavage, phenylacetaldehyde : not observed after K1нн cleavage

Table S2b. GC-MS identification of products arising from C-C bond cleavage.

RT	Compound	Area ratio (/PhCOOH)		Match	Commonto
(min)	Compound	<u>К</u> 1нн	<u>А</u> 1нн	(%)	Comments
		oxidation	oxidation		
4.7	✓ → ^o _H	4 × 10⁻³	5 × 10 ⁻²	96	Targeted product.IdentificationbyHPLCwithacommercial
	Benzaldehyde				standard.
4.8	орни на	8 × 10 ⁻¹	4 × 10 ⁻²	92	Formic ester of phenol.
	Phenyl formate				

		Area ratio				
RT	Compound	(/ <u>K</u>	1нн)	Match	Commonts	
(min)	Compound	<u>К</u> 1нн	<u>А</u> 1нн	(%)	Comments	
		oxidation	oxidation			
22.0	2-hydroxystilbene	-	3 × 10 ⁻³	88	Oxidative condensation product from $\underline{A1}$ HH oxidation. Detected by ¹ H NMR.	
22.82		-	2 × 10 ⁻³	n. i.	Identified by GC-MS by the injection of a diluted reaction media (X 40) and ¹ H NMR analysis of a concentrated reaction media [S4]. (Molecular peak at m/z = 196)	
25.66	<u>К</u> 1нн	1	1	n. i.	Identified by the injection of a diluted reaction media (Characteristic molecular peak at m/z = 212)	
25.8	Phenyl benzoate	8 × 10 ⁻²	3 × 10 ⁻²	93	Ester of phenol and benzoic acid	
27.0	2-hydroxyphenyl benzoate	1 × 10-2	4 × 10 ⁻²	95–96	Oxidation side product	
27.8	СН ₃ СН3 Est ^a А 1нн	-	2 × 10 ⁻²	n. i.	Peaks at m/z = 43 (COCH ₃ *) and m/z = 196 (molecular peak of $\underline{D1}$ HH).	
27.9	USA MINI UC он W	7 × 10⁻³	-	n. i.		
28.7	W'	5 × 10 ⁻³	-	n. i.		

Table S2c. Products with two aromatic units derived from $\underline{K1}$ H and $\underline{A1}$ H detected by GC-MS.

 $Phenyl \ benzoate: \ product \ observed \ after \ \underline{K1} \ HH \ cleavage, 2-hydroxystilbene: \ not \ observed \ after \ \underline{K1} \ HH \ cleavage$

XRD profiles and Fullprof® refinement

Figure S3. X-ray diffraction (XRD) profile of H₆PV₃ (main characteristic peaks marked by * symbol) vs. starting MoO₃ and V₂O₅ and reference H₃PMo₁₂.

A RIETVIELD analysis of the XRD profiles of H_6PV_3 was carried out on Fullprof[®]. The diffractogram of the catalyst was similar to the JCPDS file 00-043-0317. It corresponds to tridecahydrated phosphomolybdic acid. It has a triclinic crystalline structure (P-1). The main phase of H_6PV_3 has the same crystalline structure. On Figure S4 is given an extract of the H_6PV_3 Fullprof result:

Date: 18/01/2017 Time: 17:08:10.234

=> PCR file code: ______INSTR -> Relative contribution: 1.0000

==> CONDITIONS OF THIS RUN FOR PATTERN No.: 1

- => Global Refinement of X-ray powder diffraction data
- => Global Refinement of X-ray powder diffraction data
 - Bragg-Brentano(X-rays) or Debye-Scherrer geometry(Neutrons)

=> Title:

=> Number of phases: 1

=> Number of excluded regions: 0

=> Number of scattering factors supplied: 0

=> Conventional weights: w=1.0/Variance(yobs)

=> Asymmetry correction as in J.Appl.Cryst. 26,128(1993)

=> Background linearly interpolated between the 10 points given

=> The 5th default profile function was selected

=> Pseudo-Voigt function (ETA variable)

X-parameter correspond to: ETA=ETA0+X*2theta

 $pV(x) = ETA^{*}L(x) + (1-ETA)^{*}G(x)$

==> INPUT/OUTPUT OPTIONS:

=> Generate file *.PRF for plot

=> Output Integrated Intensities

=> Generate new input file *.PCR

=> Data supplied in free format for pattern: 1

=> Plot pattern at each cycle

=> Wavelengths: 1.54056 1.54439

=> Alpha2/Alpha1 ratio: 0.5000

=> Cos(Monochromator angle)= 1.0000

=> Asymmetry correction for angles lower than 0.000 degrees

=> Absorption correction (AC), muR-eff = 0.0000 0.0000

=> Base of peaks: 2.0*HW* 8.00

=> Number of cycles: 30

=> Relaxation factors ==> for coordinates: 1.00

=> for anisotropic temperature factors: 1.00

=> for halfwidth/strain/size parameters: 1.00

=> for lattice constants and propagation vectors: 1.00

=> EPS-value for convergence: 0.1

=> Background ==>

Position	Intensity	
5.10	1991.85	121.00
6.86	1720.11	131.00
7.20	1896.74	141.00

7.49	1625.00	151.00
8.14	1692.94	161.00
8.40	1475.54	171.00
9.00	1557.07	181.00
9.41	1163.04	191.00
9.87	945.65	201.00
10.86	809.78	211.00

=> Number of Least-Squares parameters varied: 21

=>-----> =>----> PATTERN number: 1 =>-----> => Global parameters and codes ==> 0.0000 0.0000 => Zero-point: => Displacement peak-shift parameter and code: 0.00 0.00 => Transparency peak-shift parameter and code: 0.00 0.00 => Reading Intensity data =>> ==> Angular range, step and number of points: 5.000000 2Thmax: 2Thmin: 49.999737 Step: 0.009193 No. of points: 4896 _____ => Phase No. 1 =>----> Pattern# 1 => Profile Matching (fixed scale) => Input data if irf=2: Integrated Intensities => Preferred orientation vector: 0.0000 0.0000 1.0000 =>----> Data for PHASE: 1 => Number of atoms: 0 => Number of distance constraints: 0 => Number of angle 0 constraints: => Symmetry information on space group: P -1 -> The multiplicity of the general position is: 2 -> The space group is Centric (-1 at origin)

-> Reduced set of symmetry operators:

No.	IT	Symmetry symbol	Rotation part	Associated Translation
1:(1)	1>	$(x, y, z) + \{ 0.0000 \}$	0.0000 0.0000}

Information on Space Group:

=> Number of Space group: 2

=> Hermann-Mauguin Symbol: P -1

=> Hall Symbol: -P 1

- => Table Setting Choice:
- => Setting Type: IT (Generated from Hermann-Mauguin symbol)
- => Crystal System: Triclinic
- => Laue Class: -1
- => Point Group: -1
- => Bravais Lattice: P
- => Lattice Symbol: aP
- => Reduced Number of S.O.: 1
- => General multiplicity: 2
- => Centrosymmetry: Centric (-1 at origin)
- => Generators (exc. -1&L): 0

=> Asymmetric unit: 0.000 <= x <= 0.500

0.000 <= y <= 1.000

```
0.000 <= z <= 1.000
```

=> List of S.O. without inversion and lattice centring translations => SYMM(1): x,y,z

=>----> PROFILE PARAMETERS FOR PATTERN: 1

=> Overall scale factor: 0.100000E-02 => ETA (p-Voigt) OR M (Pearson VII): 2.7482 => Overall temperature factor: 0.00000 => Halfwidth U,V,W: 0.43634 -0.00878 -0.00031 => X and Y parameters: -0.0731 0.0000 => Direct cell parameters: 14.2195 14.4086 13.6151 112.5440 110.1295 60.1199 0.0000 0.0000 => Preferred orientation parameters: => Asymmetry parameters 0.00000 0.00000 0.00000 0.00000 : 0.00000 => Strain parameters 0.00000 0.00000 :

=> Size parameters : 0.00000 0.00000

==> CODEWORDS FOR PROFILE PARAMETERS of PATTERN# 1

```
=> Overall scale factor:
                         0.000
=> ETA (p-Voigt) OR M (Pearson VII):
                                       81.000
=> Overall temperature factor:
                                 0.000
=> Halfwidth U,V,W: 101.000 111.000 91.000
\Rightarrow X and Y parameters: 71.000
                                 0.000
=> Direct cell parameters: 11.000 21.000 31.000 41.000 51.000 61.000
=> Preferred orientation parameters:
                                       0.000
                                              0.000
=> Asymmetry parameters
                                                          0.000
                              :
                                   0.000
                                           0.000
                                                   0.000
=> Strain parameters
                                0.000
                                        0.000
                                               0.000
                           :
=> Size
                                        0.000
         parameters
                            :
                                0.000
```

=> Cell constraints according to Laue symmetry: -1

Metric information:

=> Direct cell parameters:

 $a = 14.2195 \quad b = 14.4086 \quad c = 13.6151$ alpha = 112.544 beta = 110.129 gamma = 60.120 Direct Cell Volume = 2192.6455

=> Reciprocal cell parameters:

a*= 0.082633 b*= 0.082902 c*= 0.081020 alpha*= 74.910 beta*= 78.975 gamma*= 114.983 Reciprocal Cell Volume = 0.00045607

=> Direct and Reciprocal Metric Tensors:

	GD			GR	
202.1929	102.0698	-66.6259	0.006828	-0.002893	0.001280
102.0698	207.6088	-75.2121	-0.002893	0.006873	0.001749
-66.6259	-75.2121	185.3713	0.001280	0.001749	0.006564

=> Cartesian frame: x // a; y is in the ab-plane; z is x ^ y

Crystal_to_Orthonormal_Matrix	Orthonormal_to_Crystal Matrix
Cr_Orth_cel	Orth_Cr_cel

7.1782	-4.6855	0.070326	-0.040407	0.015802
12.4933	-3.3281	0.000000	0.080043	0.021583
0.0000	12.3426	0.000000	0.000000	0.081020
evy B-matrix	: Hc=B.H	Inverse c	of the Busing-	Levy B-matrix
BL_M			BL_Minv	
-0.035013	0.015494	12.1017	5.6387	-4.8935
0.075145	0.030489	0.0000	13.3076	-5.5242
0.000000	0 073448	0 0000	0.0000	13 6151
	7.1782 12.4933 0.0000 evy B-matrix BL_M -0.035013 0.075145	7.1782 -4.6855 12.4933 -3.3281 0.0000 12.3426 evy B-matrix: Hc=B.H BL_M -0.035013 0.015494 0.075145 0.030489 0.000000 0.073448	7.1782 -4.6855 0.070326 12.4933 -3.3281 0.000000 0.0000 12.3426 0.000000 evy B-matrix: Hc=B.H Inverse c BL_M -0.035013 0.015494 -0.075145 0.030489 0.0000 0.00000 0.073448 0.0000	7.1782 -4.6855 0.070326 -0.040407 12.4933 -3.3281 0.00000 0.080043 0.0000 12.3426 0.000000 0.000000 evy B-matrix: Hc=B.H Inverse of the Busing-BL_M BL_M BL_Minv -0.035013 0.015494 12.1017 5.6387 0.075145 0.030489 0.0000 13.3076

=> Given Laue symmetry -1 Indices are read from file

=> The Number of Reflections read for phase 1 and pattern# 1 is: ***

SYMBOLIC NAMES AND INITIAL VALUES OF PARAMETERS TO BE VARIED:

	->	Parameter number	1	-> Symbolic Name:	Cell_A_ph1_pat1	14.219456
	->	Parameter number	2	-> Symbolic Name:	Cell_B_ph1_pat1	14.408635
	->	Parameter number	3	-> Symbolic Name:	Cell_C_ph1_pat1	13.615112
	->	Parameter number	4	-> Symbolic Name:	Cell_D_ph1_pat1	112.54399
	->	Parameter number	5	-> Symbolic Name:	Cell_E_ph1_pat1	110.12949
	->	Parameter number	6	-> Symbolic Name:	Cell_F_ph1_pat1	60.119942
	->	Parameter number	7	-> Symbolic Name:	X-tan_ph1_pat1	-0.73063999E-
01						
	->	Parameter number	8	-> Symbolic Name:	EtaPV_ph1_pat1	2.7481799
	->	Parameter number	9	-> Symbolic Name:	W-Cagl_ph1_pat1	-
0.313	0000	00E-03				
	->	Parameter number	10	-> Symbolic Name:	U-Cagl_ph1_pat1	0.43633699
	->	Parameter number	11	-> Symbolic Name:	V-Cagl_ph1_pat1	-
0.877	8999	96E-02				
	->	Parameter number	12	-> Symbolic Name:	Bck_0_pat1	1991.8485
	->	Parameter number	13	-> Symbolic Name:	Bck_1_pat1	1720.1090
	->	Parameter number	14	-> Symbolic Name:	Bck_2_pat1	1896.7396
	->	Parameter number	15	-> Symbolic Name:	Bck_3_pat1	1625.0002
	->	Parameter number	16	-> Symbolic Name:	Bck_4_pat1	1692.9353
	->	Parameter number	17	-> Symbolic Name:	Bck_5_pat1	1475.5442
	->	Parameter number	18	-> Symbolic Name:	Bck_6_pat1	1557.0653
	->	Parameter number	19	-> Symbolic Name:	Bck_7_pat1	1163.0439
	->	Parameter number	20	-> Symbolic Name:	Bck_8_pat1	945.65222
	->	Parameter number	21	-> Symbolic Name:	Bck_9_pat1	809.78278

=> Zero counts at step no. 4896 at 2theta/TOF/E(KeV): 49.9997 Intensity fixed to 1.0 and variance to 1E6

=> No optimization for routine tasks

=> CYCLE No.: 18

=> Phase 1 Name:

==> PROFILE PARAMETERS FOR PATTERN# 1

=> Overall scale factor: 0.001000000 0.000000000 0.00000000 => Eta(p-Voigt) or m(Pearson VII): 2.669654 -0.005033 0.038337 => Overall tem. factor: 0.000000 0.000000 0.000000 => Halfwidth parameters: 0.132842 -0.011595 0.059931 0.103881 0.004534 0.021719 -0.005739 -0.000208 0.001335 => Cell parameters: 14.218796 -0.000013 0.001226 14.409559 0.000032 0.001222 13.615664 0.000043 0.000928 112.542053 -0.000053 0.006520 110.133392 0.000702 0.007337 60.126492 0.000214 0.007890 => Preferred orientation: 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 => Asymmetry parameters: $0.000000 \quad 0.000000 \quad 0.000000$ 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 => X and Y parameters: -0.070814 0.000005 0.001786 0.000000 0.000000 0.000000 => Strain parameters: 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 => Size parameters (G,L):

0.0000000.0000000.0000000.0000000.0000000.000000

==> GLOBAL PARAMETERS FOR PATTERN# 1

=> Zero-point:	0.0000	0.0000	0.0000	
=> Background Pa	rameters (l	inear int	erpolation)	==>
1969.03	0.5534	68E-03	20.0892	
1713.08	-0.1328	89E-02	19.4847	
2178.31	0.1441	82E-01	35.3255	
1727.10	-0.58019	91E-01	28.0544	
2527.98	0.5472	34	31.9704	
1351.88	-2.7903	57	27.7499	
835.487	-27.805	55	28.9633	
1050.55	-6.775	94	24.3305	
974.937	0.8973	18	15.7357	
779.968	-1.4022	25	2.98687	

=> Cos(theta)-shift parameter :	0.0000	0.0000	0.0000
=> Sin(2theta)-shift parameter :	0.0000	0.0000	0.0000

==> RELIABILITY FACTORS WITH ALL NON-EXCLUDED POINTS FOR PATTERN: 1

=> R-Factors: 5.50 9.92 Chi2: 12.0 DW-Stat.: 0.1993 Patt#: 1
=> Expected : 2.86 1.9199
=> Deviance : 0.797E+05 Dev*: 16.35
=> GoF-index: 3.5 Sqrt(Residual/N)
=> N-P+C: 4875

=> SumYdif SumYobs SumYcal SumwYobsSQ Residual Condition 0.3282E+06 0.5963E+07 0.5918E+07 0.5963E+07 0.5863E+05 0.1054E+17

=> Conventional Rietveld Rp,Rwp,Re and Chi2: 19.7 27.7 7.98 12.03 => (Values obtained using Ynet, but true sigma(y))

=> SumYnet, Sum(w Ynet**2): 0.1662E+07 0.7652E+06

==> RELIABILITY FACTORS FOR POINTS WITH BRAGG CONTRIBUTIONS FOR PATTERN: 1

=> R-Factors: 4.65 6.83 Chi2: 5.48 DW-Stat.: 0.4763 Patt#:

Materials 2020, 13, x FOR PEER REVIEW => Expected : 2.92 1.9168 => Deviance : 0.274E+05 Dev*: 6.119 \Rightarrow GoF-index: 2.3 Sqrt(Residual/N) => N-P+C: 4480 SumYdif SumYobs SumYcal SumwYobsSQ Residual => 0.2449E+06 0.5264E+07 0.5255E+07 0.5264E+07 0.2453E+05 0.1054E+17 => Conventional Rietveld Rp,Rwp,Re and Chi2: 18.3 5.475 15.1 7.83 => (Values obtained using Ynet, but true sigma(y)) => SumYnet, Sum(w Ynet**2): 0.1626E+07 0.7311E+06 => Global user-weigthed Chi2 (Bragg contrib.): 13.1 => ----> Pattern# 1 => Phase: 1 => Bragg R-factor: 1.35 RF-factor : 0.630 => Standard deviations have to be multiplied by: 3.2459 (correlated residuals) See references: -J.F.Berar & P.Lelann, J. Appl. Cryst. 24, 1-5 (1991) -J.F.Berar, Acc. in Pow. Diff. II,NIST Sp.Pub. 846, 63(1992) => CYCLE No.: 18 => Convergence reached at this CYCLE !!!! => Parameter shifts set to zero ------=> Phase 1 Name:

==> PROFILE PARAMETERS FOR PATTERN# 1

=> Overall scale factor: 0.001000000 0.000000000 0.00000000

=> Eta(p-Voigt) or m(Pearson VII): 2.669654 0.000000 0.038337

=> Overall tem. factor: 0.000000 0.000000 0.000000

=> Halfwidth parameters:

0.132842 0.000000 0.059931

Condition

0.103881	0.000000	0.021719
-0.005739	0.000000	0.001335
=> Cell paramet	ters:	
14.218796	0.000000	0.001226
14.409559	0.000000	0.001222
13.615664	0.000000	0.000928
112.542053	0.000000	0.006520
110.133392	0.000000	0.007337
60.126492	0.000000	0.007890
=> Preferred ori	entation:	
0.000000	0.000000	0.000000
0.000000	0.000000	0.000000
=> Asymmetry	parameters	:
0.000000	0.000000	0.000000
0.000000	0.000000	0.000000
0.000000	0.000000	0.000000
0.000000	0.000000	0.000000
=> X and Y para	ameters:	
-0.070814	0.000000	0.001786
0.000000	0.000000	0.000000
=> Strain param	eters:	
0.000000	0.000000	0.000000
0.000000	0.000000	0.000000
0.000000	0.000000	0.000000
=> Size param	neters (G,L)):
0.000000	0.000000	0.000000
0.000000	0.000000	0.000000

=> GLOBAL PARAMETERS FOR PATTERN# 1

=> Zero-point:	0.0000	0.0000	0.0000		
=> Background Pa	rameters (li	inear inf	terpolation) ==>	
1969.03	0.0000	00	20.0892		
1713.08	0.0000	00	19.4847		
2178.31	0.0000	00	35.3255		
1727.10	0.0000	00	28.0544		
2527.98	0.0000	00	31.9704		
1351.88	0.0000	00	27.7499		
835.487	0.0000	00	28.9633		
1050.55	0.0000	00	24.3305		
974.937	0.0000	00	15.7357		
779.968	0.0000	00	2.98687		

=> Cos(theta)-shift parameter : 0.0000 0.0000 0.0000 => Sin(2theta)-shift parameter : 0.0000 0.0000 0.0000 => RELIABILITY FACTORS WITH ALL NON-EXCLUDED POINTS FOR PATTERN: 1 => R-Factors: 5.50 9.92 Chi2: 12.0 DW-Stat.: 0.1993 Patt#: 1 => Expected : 2.86 1.9199 => Deviance : 0.797E+05 Dev*: 16.35 => GoF-index: 3.5 Sqrt(Residual/N) => N-P+C: 4875 => SumYdif SumYobs SumYcal SumwYobsSQ Residual Condition 0.3282E+06 0.5963E+07 0.5918E+07 0.5963E+07 0.5863E+05 0.1054E+17 => Conventional Rietveld Rp,Rwp,Re and Chi2: 19.7 27.7 7.98 12.03 => (Values obtained using Ynet, but true sigma(y)) => SumYnet, Sum(w Ynet**2): 0.1662E+07 0.7652E+06 => N-sigma of the GoF: 544.410 => RELIABILITY FACTORS FOR POINTS WITH BRAGG CONTRIBUTIONS FOR PATTERN: 1 => R-Factors: 4.65 6.83 Chi2: 5.48 DW-Stat.: 0.4763 Patt#: => Expected : 2.92 1.9168 => Deviance : 0.274E+05 Dev*: 6.119 => GoF-index: 2.3 Sqrt(Residual/N) => N-P+C: 4480 SumYdif SumYobs SumYcal SumwYobsSQ Residual Condition => 0.2449E+06 0.5264E+07 0.5255E+07 0.5264E+07 0.2453E+05 0.1054E+17 => Conventional Rietveld Rp,Rwp,Re and Chi2: 18.3 7.83 5.475 15.1 => (Values obtained using Ynet, but true sigma(y)) => SumYnet, Sum(w Ynet**2): 0.1626E+07 0.7311E+06 => N-sigma of the GoF: 211.819 => Global user-weigthed Chi2 (Bragg contrib.): 13.1 => ----> Pattern# 1

=> Phase: 1

)

=> Bragg R-factor: 1.36 RF-factor : 0.636 => BRAGG R-Factors and weight fractions for Pattern # 1 _____ => Phase: 1 => Bragg R-factor: 1.37 Vol: 2192.891(0.304) Fract(%): 0.00(0.00) => Rf-factor= 0.642 ATZ: Brindley: 1.0000 0.000 SYMBOLIC NAMES AND FINAL VALUES AND SIGMA OF REFINED PARAMETERS: _____ Cell_A_ph1_pat1 -> Parameter number 1: 14.218796 (+/-0.12258012E-02) -> Parameter number 2 : Cell_B_ph1_pat1 14.409559 (+/-0.12220141E-02) -> Parameter number 3: Cell_C_ph1_pat1 13.615664 (+/-0.92841446E-03) Cell_D_ph1_pat1 -> Parameter number 4:112.54205 (+/-0.65201637E-02) -> Parameter number 5: Cell_E_ph1_pat1 110.13339 (+/-0.73373793E-02) Cell_F_ph1_pat1 -> Parameter number 6: 60.126492 (+/-0.78895539E-02) -> Parameter number 7: X-tan_ph1_pat1 -0.70813768E-01(+/-0.17862907E-02) -> Parameter number 8: EtaPV_ph1_pat1 2.6696539 (+/-0.38336717E-01) -> Parameter number 9: W-Cagl_ph1_pat1 -0.57393722E-02(+/-0.13351092E-02) -> Parameter number 10: U-Cagl_ph1_pat1 0.13284162 (+/-0.59930515E-01) -> Parameter number 11: V-Cagl_ph1_pat1 0.10388075 (+/-0.21718623E-01) Bck_0_pat1 -> Parameter number 12: 1969.0270 (+/-20.089241) Bck_1_pat1 -> Parameter number 13: 1713.0764 (+/-19.484655) Bck_2_pat1 -> Parameter number 14 : 2178.3132 (+/-35.325504

)	->	Parameter number	15 :	Bck_3_pat1	1727.0988	(+/-	28.054407
)	->	Parameter number	16 :	Bck_4_pat1	2527.9788	(+/-	31.970407
)	->	Parameter number	17:	Bck_5_pat1	1351.8751	(+/-	27.749874
)	->	Parameter number	18 :	Bck_6_pat1	835.48700	(+/-	28.963268
)	->	Parameter number	19 :	Bck_7_pat1	1050.5460	(+/-	24.330479
)	->	Parameter number	20 :	Bck_8_pat1	974.93671	(+/-	15.735664
)	->	Parameter number	21 :	Bck_9_pat1	779.96844	(+/-	2.9868696
)							

=> Number of bytes for floating point variables: 4

=> Dimensions of dynamic allocated arrays in this run of FullProf:

=> Total approximate array memory (dynamic + static): 92103993 bytes

MaxPOINT=	60000 Max.num. of points(+int. Inten.)/diffraction pattern
MaxREFLT=	20000 Max.num. of reflections/diffraction pattern
MaxPARAM=	300 Max.num. of refinable parameters
MaxOVERL=	2096 Max.num. of overlapping reflections

=> Number of bytes for floating point arrays: 4

=> Dimensions of fixed arrays in this release of FullProf:

NPATT	=	80 Max.num. of powder diffraction patterns
NATS	=	830 Max.num. of atoms (all kind) in asymmetric unit
MPAR	=	800 Max.num. of non atomic parameters/phase
IEXCL	=	30 Max.num. of excluded regions
IBACP	=	277 Max.num. of background points for interpolation
NPHT	=	16 Max.num. of phases
NMAGN	/1 =	8 Max.num. of rotation-matrices sets for magnetic structure
NBASIS	=	12 Max.num. of basis functions associated to a single atom
NIREPS	=	9 Max.num. of irreducible representations to be combined
N_EQ	=	384 Max.num. of user-supplied symmetry operators/propagation vectors
NGL	=	300 Max.num. of global parameters/diffraction pattern

-

N_LINC =	30 Max.num. of global linear restraints
NAT_P =	64 Max.num. of atomic parameters per atom
NCONST =	500 Max.num. of slack constraints per phase
N_SPE =	16 Max.num. of different chemical species
N_FORM =	60 Max.num. of scattering factor values in a table
NPR =	150 Max.num. of points defining a numerical profile
INPR =	25 Max.num. of different numerical peak shapes
NPRC =	150 Max.num. of terms in the table for correcting intensities
NSOL =	10 Max.num. of solutions to be stored in Montecarlo searchs

Figure S4. Extract of Fullprof result of H₆PV₃ catalyst.

Choice of the ³¹P NMR relaxation delay for P quantification in H₆PV₃

Figure S5. Spectrum of H₆PV₃.

NB: The pH is more acidic as 300 mg of H_6PV_3 was used instead of 30 mg. Since the position of the peaks depends on the pH, the phosphorous center in H_6PV_3 [S5] in those conditions was more deshielded (vs Figure 4).

The peak at 0 ppm corresponds to H₃PO₄. The peak n 6 corresponds to H[PMo₉V₃O₄₀]⁵⁻ and the peaks 2–5 correspond to [PMo₉V₃O₄₀]⁶⁻ and other H_{3+x}PV_x (x < 3) [S5]. The order of the peaks is unchanged compared to typical ³¹P NMR analysis (30 mg H_{3+x}PV_x). The longest relaxation delay is 1.02 s. Thus, the minimal relaxation time should be 6.1 s. So, as the relaxation time in typical ³¹P NMR analysis was 32 s, the integration is quantitative.

Figure S6. Graphical relaxation time calculation.

Kinetics

Figure S7. Graphical calculation of the kinetic order to K1HH (qK = 1.25, T = 80 °C) and A1HH (qA = 1.7, T = 80 °C).

Figure S8. Calibration curves of the targeted silvlated phenolic aldehydes and acids.

Impact of acetic acid on dioxygen solubility

In the case of a mixture of acetonitrile (MeCN) and acetic acid (AcOH), intuitively, a raise of the volumic fraction of acetic acid noted v should enhance the dioxygen solubility since dioxygen is more soluble in AcOH. The starting equation (Equation S1) [S6] is:

$$R_{mix}^{2}(v) = 4(\delta_{d,mix}(v) - \delta_{d,O_{2}})^{2} + (\delta_{p,mix}(v) - \delta_{p,O_{2}})^{2} + (\delta_{h,mix}(v) - \delta_{h,O_{2}})^{2} = \sum_{i} a_{i}R_{i,i}(v)^{2}.$$
(1)

The δ_d , δ_p and δ_h terms stand for the dispersion forces, the dipole interaction and hydrogen bonding between the solvent j and dioxygen dissolved, $R_{j,i} = (\delta_{j,i} - \delta_{j,O_2})$ denotes the difference of solubility parameters (solvent *vs* dioxygen) and a_i is the multiplying factor of R_j .

For a mixture of two solvents s_1 (volumic fraction v_1) and s_2 (volumic fraction v_2):

$$\forall i, \forall (s_1, s_2), \delta_{i, mix (s_1, s_2)} = v_1 \delta_{i, s_1} + v_2 \delta_{i, s_2} = v_1 (\delta_{i, s_1} - \delta_{i, s_2}) + \delta_{i, s_2}.$$
(2)

Therefore, the equation (Equation S3) is obtained from the application of (Equation S2) to the binary acetonitrile (MeCN) – acetic acid (AcOH):

$$\forall v \in [0; 1] \, \delta_{i,mix\,(MeCN,AcOH)} = v \delta_{i,AcOH} + (1 - v) \delta_{i,MeCN} = v_1 \big(\delta_{i,s_1} - \delta_{i,s_2} \big) + \delta_{i,s_2}. \tag{3}$$

As acetonitrile and acetic acid are miscible at each proportion, it can be supposed that:

$$\forall v \in [0;1] \sum_{i} a_i (\delta_{i,ACOH} - \delta_{i,MeCN})^2 \ll \sum_{i} a_i (v \delta_{i,ACOH} - (1-v) \delta_{i,MeCN} - \delta_{i,O_2})^2$$
(4)

$$\forall v \in [0; 1] R_{mix}^2(v) \approx v R_{ACOH}^2 + (1 - v) R_{MeCN}^2 .$$
(5)

So, The solubility can be estimated using this equation from Reference S4:

 $\forall v \in [0; 1] \log(x_G) = -0.0889 R_{mix}(v) - 1.10$ (Equation S6), where x_G is the molar fraction of dioxygen at the maximum of solubility.

The predicted evolution of O₂ solubility determined from (Equation S5) and (Equation S6) in function of the volumic fraction of acetic acid is plotted on Figure S6.

Figure S9. Evolution of O₂ solubility in function of the acetic acid content.

Lignin aerobic cleavage

Table S3. List of H₆PV₃ catalyzed lignin aerobic oxidative cleavage detected by GC-MS.

RT		GC-MS		
(min)	Compound (Match%)	area	Structure	Comments
(1111)		(/vanillin)		
4.0	<i>p</i> -quinone (83%)	0.03		From C(Ar)-C cleavage
11.3	methoxy-p-quinone	0.36	O O O O Me	Supposed from MS data
	<i>p</i> -hydroxybenzaldeyde		H O	From C^{α} - C^{β} cleavage.
14.2	(H)	0.28		Identified by the injection of a
	(97%)		ОН	commercial sample.
				Calibrated by GC-MS.
14.6	Silylated H	-	O O O O O O O O O O O O O O O O O O O	Identified by the injection of a
			н́ 🖵	silylated commercial sample
			н	From C^{α} - C^{β} cleavage.
15.3	Vanillin (V) (97%)	1		Identified by the injection of a
			MeO OH	commercial sample.

Materials	2020,	13, x	FOR	PEER	REVIEW
-----------	-------	-------	-----	------	--------

			H ₃ C	Calibrated by GC-MS.
18.8	Silylated V	-		Identified by the injection of a
			one	silylated commercial sample
	Vanillia acid (VA)		но	From C^{α} - C^{β} cleavage.
19.5	(05%)	0.05		Identified by the injection of a
	(95%)		мео Г ОН	commercial sample.
	2,6-			
10.7	dimethoxybenzoquinon	1 2		$\mathbf{From } C(\mathbf{A}\mathbf{r}) \subset \mathbf{choward}$
19.7	e	1.5	MeO OMe	rioin C(Ar)-C cleavage.
	(2,6-DMBQ) (92%)			
			H ₃ C	
20.1	Acetovanillone (84%)	0.3	MeO	From C^{β} -O cleavage.
			ОН	
	Silylated HA (p-		CH ₃ H₂C、/CH ₃	
21.0	hydroxybenzoic acid)	-	H ₃ C-Si-O I CH ₃	
	(97%)		0 —	
	Silylated S		OMe C CH3	Calibrated by GC-MS
22.8	(syringaldehyde)	-	H CH3	Identified by the injection of a
	(97%)		OMe	silvlated commercial sample
24.2	Silvlated VA	-	H_3C	shy lated confinerent sumple
	,		O'' CHe	
27.1	Silylated SA (syringic	-		
	acid)		ONE CH3	

Lignin 0.854 g, H₆PV₃ (Mo + V 15 mol%), O₂ 5 bar, 120°C, 6 h (Table 4, entry 3)

Mechanistic studies

As mentioned in Table S2c, the structure proposed by the NIST Library (X') was not satisfying. Further investigations had to be done by comparing in particular the masses of the different fragments of X with those of $\underline{K1}_{HH}$ (Table 4).

	Table S4. Mass table of the compound X and $\underline{K1}_{HH.}$
Compound	105 (100); 94 (43.9); 43 (42.8); 77 (33.8); 51 (9.7); 227 (8.6); 106 (7.9); 136 (5.3);
Х	95 (4.5); 66 (3.2)
V1	105 (100); 77 (63.3); 212 (43.0); 106 (17.3); 51 (15.6); 65 (7.7); 91 (7.2); 213 (6.8);
<u>К</u> 1нн	78 (4.7); 39 (4.7)
• //	105 (100); 77 (37.3); 51 (10.0); 106 (6.1); 43 (4.6); 50 (2.9); 78 (2.5); 240 (2.1);
<u>A</u>	39 (209); 76 (2.0)
<u>W</u>	121 (100); 39 (23.9); 65 (22.8); 77 (21.6); 51 (12.0); 228 (10.5); 93 (10.3); 122 (7.3);
	63 (6.0); 53 (4.8)
147/	105 (100); 77 (34.3); 106 (7.9); 51 (5.1); 78 (2.1); 50 (1.3); 76 (1.3); 214 (1.1); 52
<u>w'</u>	(0.6); 107 (0.6)

Indeed, the molecular peak (m/z = 240) of the reference compound X' proposed by the NIST Library was absent in the mass spectrum of the compound X whereas the peaks at m/z = 94 (PhOH.+)

and m/z = 136 (PhCOCHO⁺, may be obtained from the cleavage of O-Ac and C-OPh bonds) were only observed for X and not X'. Besides, the peak at m/z = 227 may correspond to an oxyradical from hydroxylated <u>K1</u>_{HH}. The peak at m/z = 121 (HOPhCHO⁺) was not observed for X unlike the compound W whereas the peak at 94 was observed unlike the compound W'. Moreover, the peak at m/z = 136(PhCH₂OH⁺) is observed only for X only. As an intense peak is observed at m/z = 43 is present, it is probable the hydroxyl group is acetylated.

Figure S10. Hypothetic structure of the intermediate X.

Lignin phosphorylation

The phosphorylation was carried out according to the method of GRANATA and ARGYROPOULOS with slight modifications [S7,S8] using pyridine-CDCl₃ 1.6-1 as the solvent.

30 mg of lignin were dissolved in 500 μ L of pyridine-CDCl₃ 1.6-1. Then, 100 μ L of chromium acetylacetonate (III) 0.014 M and 100 μ L of N-hydroxy-6-norbornene-2,3-dicarboximide 0.1 M (internal standard, 151.9 ppm) both in pyridine-CDCl₃ 1.6-1 were added followed by 150 μ L of 2-chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholane to start the phosphorylation reaction. The mixture was stirred overnight. The involved reaction is described in Figure S6.

Figure S11. Equation of lignin phosphorylation.

Before the reaction starts, the purified lignin sample is not totally soluble in the solvent but usually the reaction leads to the dissolution of the solid. An example of the obtained ³¹P NMR spectra is given on Fig. S7. This was not observed for oxidized lignin samples. So, the total content of OH functions could not be determined in these conditions.

Figure S12a. ³¹P NMR spectrum of phosphorylated non-oxidized lignin.

Figure S12b. Division of the interesting region of the 31P NMR spectrum of phosphorylated lignin for the quantification of the different types of OH groups (The internal standard was N-hydroxy-6-norbornene-2,3-dicarboximide (151.9 ppm)).

Chemical shift	011.4	
(ppm)	OH type	
144.5–151	Aliphatic	
141–144.5	Phenolic (S + condensed G units)	
138.5–140.5	Phenolic (uncondensed G units)	
137–138.5	Phenolic (H units)	
100 107	Carboxylic acid (unconjugated 134.5 ppm and conjugated 134	
155-137	ppm)	

Table S5. Attribution of OH functions.

References

- Nichols, J. M.; Bishop, L. M.; Bergman, R. G.; Ellman J. A. Catalytic C-O Bond Cleavage of 2-Aryloxy-1arylethanols and Its Application to the Depolymerization of Lignin-Related Polymers, *J. Am. Chem. Soc.* 2010, 132, 12554–12555, doi: 10.1021/ja106101f.
- S2. Delmas, G-H.; Benjelloun-Mlayah, B.; Le Bigot, Y.; Delmas, M. Functionality of wheat straw lignin extracted in organic acid media, *J. Appl. Polym. Sci.* **2011**, *121*, 491–501. doi: 10.1002/app.33592.
- S3. Zhang, C.; Lu, J.; Zhang, X.; MacArthur, K.; Heggen, M.; Li, H.; Wang, F.; Zhang, C.; Lu, J.; Zhang, X.; MacArthur, K.; Heggen, M.; Li, H.; Wang, F. Cleavage of the lignin β-O-4 ether bond via a dehydroxylation– hydrogenation strategy over a NiMo sulfide catalyst. *Green Chem.* 2016, 18, 6545–6555, doi: 10.1039/C6GC01456A
- S4. Lion, C.J.; Matthews, C.S.; Stevens, M.F.G.; Westwell, A.D. Identification of a terphenyl derivative that blocks the cell cycle in the G0-G1 phase and induces differentiation in leukemia cells. *J. Med. Chem.* **2005**, *48*, 1292–1295.
- S5. Pettersson L. Equilibria of Polyoxometalates in Aqueous Solution, *Mol. Eng.* **1993**, *3*, 29–42, doi:10.1007/BF00999622.
- S6. Sato, T.; Hamada, Y.; Sumikawa, M.; Araki, S.; Yamamoto, H. Solubility of oxygen in organic solvents and calculation of the Hansen solubility parameters of oxygen. *Ind. Eng. Chem. Res.* 2014, *53*, 19331–19337, doi: 10.1021/ie502386t.
- Granata, A.; Argyropoulos, D.S. 2-Chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholane, a Reagent for the Accurate Determination of the Uncondensed and Condensed Phenolic Moieties in Lignins. *J. Agric. Food. Chem.* 1995, 43, 1538–1544, doi: 10.1021/jf00054a023.
- Mbotchak, L.; Le Morvan, C.; Linh Duong, K.; Rousseau, B.; Tessier, M.; Fradet, A. Purification, Structural Characterization, and Modification of Organosolv Wheat Straw Lignin, *J. Agric. Food Chem.* 2015, 63, 5178–5188, doi: 10.1021/acs.jafc.5b02071.

© 2020 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).