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Abstract: In this paper, rate-dependent cohesive zone model was established to numerical simulate
the fracture process of soda-lime glass under impact loading. Soda-lime glass is widely used in
architecture and automobile industry due to its transparency. To improve the accuracy of fracture
simulation of soda-lime glass under impact loading, strain rate effect was taken into consideration
and a rate-dependent cohesive zone model was established. Tensile-shear mixed mode fracture was
also taken account. The rate-dependent cohesive zone model was implemented in the commercial
finite element code ABAQUS/Explicit with the user subroutine VUMAT. The fracture behavior of
a monolithic glass plate impacted by a hemispherical impactor was simulated. The simulation
results demonstrated that the rate-dependent cohesive zone model is more suitable to describe the
impact failure characteristics of a monolithic glass plate, compared to cohesive zone model without
consideration of strain rate. Moreover, the effect of the strain rate sensitivity coefficient C, the mesh
size of glass plate and the impact velocity on the fracture characteristics were studied.
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1. Introduction

Because of its good transparency, soda-lime glass is often used in window panes and curtain wall
systems in modern buildings. However, soda lime glass is threatened by extreme loads such as impact
loading and blast loading. Under these extreme conditions, due to brittleness, soda-lime glass may
suddenly crack, fragment, or even shatter. For example, statistics shows that windborne debris as a
major contributor to glass damage when encountering typhoon weather [1]. The study of soda-lime
glass materials under impact loading is vital. For this reason, it is necessary to investigate the cracking
mechanism of glass window panes.

In recent years, a large number of experimental [2–11], analytic [12–16], and numerical [17–44]
studies have been devoted to the fracture of soda lime glass. Nie and Chen [2–5] conducted SHPB
experiments to study the effect of the shear stress, mechanical confinement, and temperature on the
strength of glass under dynamic loading. Daryadel et al. [6] investigate the influence of the surface
flaw on the strength. Johnson et al. [7] and Zhang et al. [9–11] reveals that the compressive strength
of soda-lime glass is rate-dependent. Further research shows that not only the compressive strength
but also the tensile strength could increase with the increase of strain rate [8,11]. Ji and Dharani [15]
developed analytic approaches to simulate the damage probability in laminated glass subjected to
low velocity small missile impacts. Dharani et al. [14] proposed a two-parameter Weibull distribution
to characterize the cumulative probability of inner glass ply breakage. Zhou et al. [13] proposed an
empirical formula to calculate the average fragment size. Overend et al. [12] delivered a general crack
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growth model based on established statistical failure theory and linear elastic fracture mechanics.
Nurhuda et al. [16] put forward a model to estimation of strengths in large annealed glass panels
which contain widely spaced flaws. A large amount of numerical method is proposed to simulate
the cracking process of soda-lime glass. For example, André et al. [39] and Braun et al. [40] adopt the
discrete element method (DEM) to conduct the simulation. However, finite element method (FEM)
is the most commonly used method. The discontinuity modeling is the most important part when
FEM is adopted to the fracture simulation of the soda-lime glass. Element delete method (EDM) is the
most common way to model the discontinuity. For instance, Bois et al. [41] simulate an impact of a
sphere into a glass plate using an element delete method. Liu et al. [22] adopted EDM to investigate
the energy absorption process of windshield under different impact speeds and angles. Extended finite
element method (XFEM) [23–26] is also applied to the fracture simulation of soda-lime glass.

Cohesive zone model (CZM) has been found widely used in the cracking process
simulation [27–38,44]. Barenblatt [31] and Dugdale [32] were the first to proposed the CZM. After
that, application of CZM in the simulation of cracking of glass is more and more widespread.
Repetto et al. [28] simulated the dynamic fracture and fragmentation of glass rod under impact loading
with CZM. A mixed-mode formula is proposed to combined the tensile and shear cracking mode [29].
Intrinsic and extrinsic [30,34–37] cohesive zone models were used to simulate the cracking process of
laminated glass.

So far, however, there has been little discussion about the rate-dependent cohesive zone model
applied to the failure process of soda-lime glass. However, as the experimental results [8–11] showed
that the strength of soda-lime glass could increase with the increase of strain rate. As a result, to
ensure the accuracy, a rate-dependent CZM in fracture simulation of soda-lime glass is important
and necessary.

The aim of this study is to improve the accuracy of fracture simulation of glass by employing a
rate-dependent CZM. The overall structure of the study takes the form of five sections, including this
introductory chapter. Section 2 begins by laying out the theoretical methodology of the rate-dependent
cohesive zone model. In Section 3, simulation results are presented, including a successful validation
against experimental results of a drop-weight test with monolithic glass plate. Besides, the effects of the
strain rate sensitivity coefficient C, mesh size and impact velocity are investigated in Sections 4.1–4.3,
respectively. Finally, the conclusions are drawn in Section 5.

2. Rate-Dependent Cohesive Zone Model

2.1. Traction–separation Law

To study the cracking process of soda-lime glass plate under impact loading, the rate-dependent
cohesive zone model is employed to simulate the discontinuity in the finite element model. Cohesive
zone model assumes that there is a small cohesive zone behind the crack tip, as shown in Figure 1
In the cohesive zone model, there is a mathematical relationship between the separation δ and traction
t, as shown in Equation (1). This mathematical relationship is called traction–separation law (TSL).

t = f (δ) (1)

A rate-dependent traction–separation law is employed in this research, and its normal law is
showed in the Figure 2. The tensile stiffness of the cohesive zone will be degraded when the normal
separation δn exceeds to a critical value, δ0

n under quasi-static or δ0
n,dyna under dynamic for example.

As the separation continues to increase to the maximum normal separation (δf
n under quasi-static and

δf
n,dyna under dynamic), the tensile stiffness decreases to 0 completely, which indicates the formation

of macro cracks. The energy required to form a new crack is called fracture energy. The dissipated
energy (G) due to failure is equal to the integration of f (δn) and δn. Therefore, the normal fracture
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energy release rate in Figure 2 is equal to the area enclosed by the traction–separation curve and δn

axis. The normal penalty stiffness Kn is the slope of the curve in the undamaged stage.
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Figure 3. Rate-dependent TSL for shear direction. 

Figure 2. Rate-dependent traction–separation law in normal direction.

Similar to the normal traction–separation law, the shear traction–separation law is defined by a
linear relationship between shear traction (τs) and the shear separation (δs), as shown in Figure 3. The
shear stiffness of the cohesive zone will be degraded when the shear separation δs exceeds to a critical
value, δ0

s under quasi-static or δ0
s,dyna under dynamic for example. As the separation continues to

increase to the maximum shear separation δf
s (under quasi-static and δf

s,dyna under dynamic), the shear
stiffness decreases to 0 completely, which indicates the formation of macro cracks. The dissipated
energy (G) due to failure is equal to the integration of f (δs) and δs. Therefore, the shear fracture energy
release rate in Figure 2 is equal to the area enclosed by the traction–separation curve and δs axis.
The shear penalty stiffness Ks is the slope of the curve in the undamaged stage.

Under dynamic loading, the soda-lime glass is rate dependent [8,10,11]. In JH-2 constitutive
model, Holmquist et al. [7] suggested the DIF (dynamic increment factor) should be formulated in
Equation (2).

DIF = 1.0 + C ln(
.
ε) (2)

where the C is the strain rate sensitivity coefficient.
Therefore, the dynamic strength could be expressed by the Equations (3) and (4).

σdyna = DIFσstatic (3)

τdyna = DIFτstatic (4)
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The maximum normal separation δf
n and the maximum shear separation δf

s under quasi-static
could be calculated by the critical energy divided by stress. By multiplying DIF, we could obtain the
dynamic maximum separation δf

n,dyna and δf
s,dyna, respectively, as shown in Equations (5) and (6).

δf
n,dyna =

2Gc
n

σstatic
DIF (5)

δf
s,dyna =

2Gc
s

τstatic
DIF (6)

The dynamic critical energy could be calculated by Equations (7) and (8), according to its definition.

Gc
n,dyna= 2σdynaδ

f
n,dyna (7)

Gc
s,dyna= 2τdynaδ

f
s,dyna (8)

Materials 2020, 12, x FOR PEER REVIEW 3 of 14 

A rate-dependent traction–separation law is employed in this research, and its normal law is 
showed in the Figure 2. The tensile stiffness of the cohesive zone will be degraded when the normal 
separation δn exceeds to a critical value, 𝛿  under quasi-static or 𝛿 ,  under dynamic for example. 
As the separation continues to increase to the maximum normal separation (𝛿  under quasi-static 
and 𝛿 ,  under dynamic), the tensile stiffness decreases to 0 completely, which indicates the 
formation of macro cracks. The energy required to form a new crack is called fracture energy. The 
dissipated energy (G) due to failure is equal to the integration of f(δn) and δn. Therefore, the normal 
fracture energy release rate in Figure 2 is equal to the area enclosed by the traction–separation curve 
and δn axis. The normal penalty stiffness Kn is the slope of the curve in the undamaged stage. 

Gc
n

σdyna

σstatic

δf
n δf

n,dyna
δo

n0

T n

δn

Kn

δo
n,dyna

Gc
n,dyna

 

Figure 2. Rate-dependent traction–separation law in normal direction. 

Similar to the normal traction–separation law, the shear traction–separation law is defined by a 
linear relationship between shear traction (τs) and the shear separation (δs), as shown in Figure 3. The 
shear stiffness of the cohesive zone will be degraded when the shear separation δs exceeds to a critical 
value, 𝛿  under quasi-static or 𝛿 ,  under dynamic for example. As the separation continues to 
increase to the maximum shear separation 𝛿  (under quasi-static and 𝛿 ,  under dynamic), the 
shear stiffness decreases to 0 completely, which indicates the formation of macro cracks. The 
dissipated energy (G) due to failure is equal to the integration of f(δs) and δs. Therefore, the shear 
fracture energy release rate in Figure 2 is equal to the area enclosed by the traction–separation curve 
and δs axis. The shear penalty stiffness Ks is the slope of the curve in the undamaged stage. 

Gc
s δs

Gc
s

τdyna

τstatic

δf
s,dyna

δf
sδo

s

Ks

τs

0
δo

s,dyna

Gc
s,dyna

Ks

δo
s,dynaδf

s
δf

s,dyna

Gc
s,dyna

δo
s

τdyna

τstatic

 
Figure 3. Rate-dependent TSL for shear direction. Figure 3. Rate-dependent TSL for shear direction.

2.2. Mixed-Mode Failure

The mode mix of the deformation fields in the cohesive zone quantify the relative proportions
of normal and shear deformation. Under impact loading, mixed-mode cracking is very common. In
mixed-mode failure, the maximum separation until failure δf

m is expressed by Equation (9).

δf
m =

2Gc
m

σ0
m

(9)

where the Gc
m is mixed-mode critical failure energy, calculated by the Benzeggagh–Kenane fracture

criterion [45]. The Gc
m could be calculated by Equation (10). In Equation (9), the σ0

m is the mixed-mode
separation corresponding the damage initiation, which could be calculated by Equation (11) [29].

Gc
m= Gc

n,dyna + (Gc
s,dyna −Gc

n,dyna)(
β2

1 + β2 )

η

(10)

σ0
m = Knδ

0
s,dynaδ

0
n,dyna

√√√√√ 1 + β2(
δ0

s,dyna

)2
+

(
β2δ0

n,dyna

)2 (11)
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where β = δs
δn

. δ0
n,dyna and δ0

s,dyna are initial damage separations under single failure mode, which could
be calculated by Equations (12) and (13).

δ0
n,dyna =

σdyna

Kn
(12)

δ0
s,dyna =

τdyna

Ks
(13)

where Kn and Ks are the penalty stiffness of normal and shear mode, respectively.
Under mixed-mode failure, the damage is defined as

D =
δf

m

(
δmax

m − δ0
m

)
δmax

m

(
δf

m − δ
0
m

) (14)

where the δmax
m refers to the maximum value of the effective separation δm attained during the loading

history. δm could be expressed by

δm =

√〈
δn

〉2 + (δs)
2 (15)

where δn and δs are the immediate normal and shear separation, respectively, and <x> is the Macauley
operator, which could be defined as

〈x〉 =
{

0, x < 0
x, x > 0

(16)

3. Simulation Results and Experimental Validation

3.1. Set Up of Experimental Test

Pauw [46] conducted drop-weight test with a monolithic glass specimen, which is a circular
soda-lime glass plate with a radius of 50 mm and a thickness of 4 mm. The impactor is a steel cylinder
with a 10 mm radius ending in a spherical tip [46]. If the boundary of the fixed plate is too rigid,
it is easy to lead to stress concentration, which causes the plate to failure prematurely. Therefore,
soft cushions are placed around the upper and lower parts of the plate. The cushions are annular,
with a thickness of 3 mm, an inner radius of 46 mm and an outer radius of 54 mm. The schematic
diagram of the experimental device is shown in Figure 4. Due to the symmetry, only one-quarter
model is showed, and the model is symmetrical about the plane of x0y and y0z.
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Figure 4. Schematic diagram of basic test device.

During the test, the acceleration time history curve of the punch is recorded by the sensor. The
drop height of weight is 200 mm, and the velocity of contact plate is 1.98 m/s. The punch mass is 6.84 kg.
The theoretical impact kinetic energy can be calculated as 13407.7 mJ by the equation Ek =

1
2 mv2.
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3.2. Finite Element Model

Eight solid node elements are employed to discrete the soda-lime glass plate. The element size
of glass plate is 0.7 mm × 0.7 mm. The mesh model is showed in the Figure 5. Due to the symmetry,
only one-quarter model is showed. Because the location of cracks cannot be predicted, zero thickness
cohesive elements are inserted between every two solid elements.
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The frictionless hard contact is defined between the impactor and plate, and between the plate and
the soft cushion, and between the soft cushion and the rigid clamper. The rigid clamper is fully fitted
in translational and rotational degrees of freedom of x-, y-, and z-axis. The boundary conditions of the
glass plate and the soft cushion are free. The initial velocity of impactor is 1.98 m/s, which is consistent
with the experimental test. Symmetric boundary conditions are set on all symmetric surfaces.

Due to their stiffness is a lot larger than other parts, rigid bodies are employed to model impactor
and the clamper. The material of soft cushion is polypropylene and a linear elastic constitutive model
is adopted in simulation. Wedge element is used to mesh the impactor. If the size of wedge element is
too large, there would be a loss of mass, which could result in the loss of kinetic energy. Table 1 depicts
the errors corresponding to different mesh size of impactor. As could be seen in Table 1, the error will
become larger when the mesh size of impactor increase. In order to ensure the accuracy, the wedge
element size should be controlled lower than 2 mm. In this study, the element size of impactor near the
impact area is set to 0.7 mm × 0.7 mm × 0.7 mm, whereas the other area is 2 mm × 2 mm × 2 mm.

Table 1. Relationship between the mesh size of impactor and the kinetic energy

Mesh Size of Impactor (mm) Kinetic Energy (mJ) Error (%)

1 13382.3 0.19
2 13277.1 0.97
3 12922.2 3.62
4 12864.9 4.05

3.3. Result Analysis

3.3.1. Elastic Result

To verify the accuracy of the FE model, including boundary conditions and so on, a simulation
with elastic model is conducted. The constants of elastic model are shown in Table 2. Figure 6 shows
the acceleration time curves of impactor. Compared to the experimental test results, the simulation
result is a bit higher but keep the similar pattern. The reflection of stress wave on the boundary
leads to the fluctuation of the curve, which could be found both in the experimental result and the
simulation result.
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Table 2. Constants of the linear elastic model for glass and polypropylene

Material Density (kg/m3) Young’s Modulus (GPa) Poisson’s Ratio

Soda-lime glass 2530 73 0.3
Polypropylene 1000 2 0.3
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3.3.2. Rate-Dependent CZM Results

Table 3 depicts the constants of rate-dependent cohesive zone model adopted in this study. In
this section, numerical simulations are carried out with the rate-dependent CZM. In the simulation,
cohesive element will be removed if damage is equal to 1. The rate-dependent cohesive zone model was
implemented in the commercial finite element code ABAQUS/Explicit with the user subroutine VUMAT.

Table 3. Constants of rate-dependent cohesive zone model.

Properties Reference Parameters

σstatic 60 MPa [25,37]
τstatic 250 MPa [25,37]

Gc
n 0.01 mJ/mm2 [25]

Gc
s 0.05 mJ/mm2 [25]

Kn 1.8 × 106 MPa/mm [37]
Ks 6.25 × 106 MPa/mm [37]
C 0.03

Figure 7 shows the simulation result conducted with rate-dependent cohesive zone model.
The fracture mode of the simulation result agrees well with the experimental result. In the simulation
result, the impact area of the plate is found obvious smash. Circle crack is found near the impact area,
which thoroughly penetrated the thickness of the plate. Therefore, lots of fragments are formed. In the
experimental test results, circle of cracks is also could be found, which results in a large area of vacancy.
This phenomenon has also been well simulated in numerical test. In addition, in the experimental test,
radial cracks appeared in the plate, which penetrated the whole plate and extended to the edge of
the plate. The numerical results have the same crack pattern. To sum up, it can be concluded that the
rate-dependent cohesive zone model can accurately simulate the fracture mode of the impact failure of
the soda-lime glass plate.

After treated by the image processing method, we could obtain the front view of Figure 7, as shown
in Figure 8. The numerical test results are symmetrical. However, due to the irregular microcracks on
the surface of the glass plate in the laboratory test, the results of the laboratory test are not symmetrical.
In Figure 8a, because of the symmetry, the cracks are regular. The fragments in Figure 8a in the middle
are approximately triangular, and the maximum size of the fragment is 25.0 mm. The maximum size
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of the fragment obtained in the experimental test is about 25.2 mm. Therefore, we could conclude that
the rate-dependent cohesive zone model could accurately calculate the size of the fragments under
impact loading.Materials 2020, 12, x FOR PEER REVIEW 8 of 14 

  

(a) (b) 

Figure 7. Comparison of the numerical test result and laboratory test result. (a) Numerical result; (b) 
experimental result [46]. 

After treated by the image processing method, we could obtain the front view of Figure 7, as 
shown in Figure 8. The numerical test results are symmetrical. However, due to the irregular 
microcracks on the surface of the glass plate in the laboratory test, the results of the laboratory test 
are not symmetrical. In Figure 8a, because of the symmetry, the cracks are regular. The fragments in 
Figure 8a in the middle are approximately triangular, and the maximum size of the fragment is 25.0 
mm. The maximum size of the fragment obtained in the experimental test is about 25.2 mm. Therefore, 
we could conclude that the rate-dependent cohesive zone model could accurately calculate the size 
of the fragments under impact loading. 

 
 

(a) (b) 

Figure 8. Comparison of the size of fragments. (a) Numerical result; (b) experimental result [46]. 

Figure 9 depicts the velocity-time curves of impactor. Between 0.0 ms and 0.2 ms, the curve of 
experimental test, simulation result with rate-dependent CZM and simulation result with CZM agree 
well. However, after 0.2 ms, the velocity obtained by CZM is obvious lower than the experimental 
results. The simulation result conducted with rate-dependent CZM is able to predict the velocity well 
as shown in Figure 9. 

Figure 7. Comparison of the numerical test result and laboratory test result. (a) Numerical result; (b)
experimental result [46].

Materials 2020, 12, x FOR PEER REVIEW 8 of 14 

  

(a) (b) 

Figure 7. Comparison of the numerical test result and laboratory test result. (a) Numerical result; (b) 
experimental result [46]. 

After treated by the image processing method, we could obtain the front view of Figure 7, as 
shown in Figure 8. The numerical test results are symmetrical. However, due to the irregular 
microcracks on the surface of the glass plate in the laboratory test, the results of the laboratory test 
are not symmetrical. In Figure 8a, because of the symmetry, the cracks are regular. The fragments in 
Figure 8a in the middle are approximately triangular, and the maximum size of the fragment is 25.0 
mm. The maximum size of the fragment obtained in the experimental test is about 25.2 mm. Therefore, 
we could conclude that the rate-dependent cohesive zone model could accurately calculate the size 
of the fragments under impact loading. 

 
 

(a) (b) 

Figure 8. Comparison of the size of fragments. (a) Numerical result; (b) experimental result [46]. 

Figure 9 depicts the velocity-time curves of impactor. Between 0.0 ms and 0.2 ms, the curve of 
experimental test, simulation result with rate-dependent CZM and simulation result with CZM agree 
well. However, after 0.2 ms, the velocity obtained by CZM is obvious lower than the experimental 
results. The simulation result conducted with rate-dependent CZM is able to predict the velocity well 
as shown in Figure 9. 

Figure 8. Comparison of the size of fragments. (a) Numerical result; (b) experimental result [46].

Figure 9 depicts the velocity-time curves of impactor. Between 0.0 ms and 0.2 ms, the curve of
experimental test, simulation result with rate-dependent CZM and simulation result with CZM agree
well. However, after 0.2 ms, the velocity obtained by CZM is obvious lower than the experimental
results. The simulation result conducted with rate-dependent CZM is able to predict the velocity well
as shown in Figure 9.

Figure 10 shows the fracture process of the glass plate. As could be seen in the Figure 10a,
the radial cracks are the first to appear. After that, inner circle cracks could be found in the impact
area, as shown in Figure 10c. Outer circle cracks are found at around 2.0 ms. At this moment, all the
cracks are formed basically. We could infer that the formation of radial cracks is mainly because of the
discontinuity of angular velocity. The formation of inner circle cracks is because of the punch shear,
whereas the formation of outer circle cracks is because of the bending.
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4. Parametric Studies

4.1. Strain Rate Sensitivity Coefficient C

In Equation (2), we employed a strain rate sensitivity coefficient C to consider the effect of strain
rate on the fracture strength. Five numerical tests are carried out in this section, in order to study
the effect of C on the cracking pattern. The numerical results are shown in Figure 11. In Figure 11a,
the coefficient C is 0, which indicates that the strength of glass is rate independent. It could be found in
Figure 11a that the fracture gathers near the impact area, which is inconsistent with the actual situation
shown in Figure 7b. In Figure 11b, most of the energy dissipation is gather near the impact point as
well even though the strain rate effect is put into consideration. When the coefficient C is 0.02, we
could see that the outer circle crack is obvious. The crack pattern when C = 0.03 is the most consistent
with the experimental result. The strain rate effect forms a shielding zone in the region with high strain
rate, which makes the energy propagate outward. However, when C = 0.04, the strength of soda-lime
glass becomes too high making the fracture area too small compared with Figure 11d. We could also
find that the number of small fragments when C = 0.04 is obviously less than that in Figure 11d. This
can also be attributed to the strength of the glass is too high when C = 0.04.
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4.2. Mesh Size

Two different mesh is conducted in this section, including a fine mesh with element size of 0.7 mm
and a coarse mesh with element size of 2 mm. The results are shown in Figure 12. The crack pattern of
glass plate is similar. Radial cracks and circle crack can be found in both of numerical result. Fewer
small fragments are found in the coarse mesh result. However, the large fragments of both the two
results show agreement. We could conclude that the rate-dependent cohesive zone model has little
dependence on the mesh size.
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4.3. Impact Velocity

Figure 13 depicts the numerical results conducted with 5 different impact velocity. When the
velocity is 0.50 m/s and 1.00 m/s, no outer circle cracks could be found in the result, as the Figure 13a,b
shown. As the velocity increase, the outer circle cracks appear when velocity is 1.98 m/s, 3.00 m/s and
4.00 m/s. Thus, we can conclude that more kinetic energy is needed to form a circular crack compared
with a radial crack.
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5. Conclusions

In this paper, we have established a rate-dependent cohesive zone model for the fracture simulation
of soda-lime glass plate. A monolithic glass plate is simulated in this paper conducted with the
rate-dependent CZM and the simulation has been validated by the experimental results. Finally,
parametric studies are carried out. The main conclusions found of this research are as follows:

(1) Soda-lime glass is a rate dependent material. It is necessary to consider the rate dependence of
glass when simulating fracture under impact loading. The numerical simulation results show
that the rate-dependent CZM considering the strain rate is more accurate.

(2) The rate-dependent CZM is applied to the finite element simulation by VUMAT. In the
rate-dependent CZM, the maximum traction and the maximum separation are rate dependent,
which results in that the cohesive element dissipate more energy when it is damaged. The strain
rate effect forms a shielding zone in the region with high strain rate, which makes the energy
propagate outward.

(3) The rate-dependent cohesive zone model has little dependence on the mesh size. Furthermore,
more kinetic energy is needed to form a circular crack compared with a radial crack.
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23. Jaśkowiec, J. Numerical Modeling Mechanical Delamination in Laminated Glass by XFEM. Procedia Eng.
2015, 108, 293–300. [CrossRef]

24. Xu, J.; Li, Y.; Chen, X.; Yan, Y.; Ge, D.; Zhu, M.; Liu, B. Characteristics of windshield cracking upon low-speed
impact: Numerical simulation based on the extended finite element method. Comp. Mater. Sci. 2010, 48,
582–588. [CrossRef]

25. Xu, X.; Xu, J.; Chen, J.; Li, P.; Liu, B.; Li, Y. Investigation of dynamic multi-cracking behavior in PVB laminated
glass plates. Int. J. Impact Eng. 2017, 100, 62–74. [CrossRef]

26. Ghaffari, D.; Rash Ahmadi, S.; Shabani, F. XFEM simulation of a quenched cracked glass plate with moving
convective boundaries. C. R. Mécanique 2016, 344, 78–94. [CrossRef]

http://dx.doi.org/10.1007/s11340-012-9635-z
http://dx.doi.org/10.1007/s11340-011-9549-1
http://dx.doi.org/10.1016/j.ijimpeng.2008.01.014
http://dx.doi.org/10.1016/j.jnoncrysol.2015.10.043
http://dx.doi.org/10.4028/www.scientific.net/AMM.82.63
http://dx.doi.org/10.1260/2041-4196.3.4.407
http://dx.doi.org/10.1016/j.ijimpeng.2014.11.016
http://dx.doi.org/10.1016/j.ijimpeng.2013.01.002
http://dx.doi.org/10.1061/(ASCE)0733-9445(2007)133:8(1146)
http://dx.doi.org/10.1063/1.2216892
http://dx.doi.org/10.1061/(ASCE)1076-0431(2004)10:4(126)
http://dx.doi.org/10.1023/A:1004457624817
http://dx.doi.org/10.1016/j.ijsolstr.2010.05.015
http://dx.doi.org/10.1016/j.ijimpeng.2010.10.035
http://dx.doi.org/10.1088/1742-6596/451/1/012016
http://dx.doi.org/10.1016/j.engstruct.2013.08.007
http://dx.doi.org/10.1016/j.ijimpeng.2013.01.010
http://dx.doi.org/10.1016/j.engfailanal.2014.06.013
http://dx.doi.org/10.1016/j.ijimpeng.2015.11.010
http://dx.doi.org/10.1016/j.proeng.2015.06.150
http://dx.doi.org/10.1016/j.commatsci.2010.02.026
http://dx.doi.org/10.1016/j.ijimpeng.2016.10.013
http://dx.doi.org/10.1016/j.crme.2015.09.007


Materials 2020, 13, 749 13 of 13

27. Xu, X.P.; Needleman, A. Void nucleation by inclusion debonding in a crystal matrix. Model. Simul. Mater.
Sci. Eng. 1993, 1, 111–132. [CrossRef]

28. Repetto, E.A.; Radovitzky, R.; Ortiz, M. Finite element simulation of dynamic fracture and fragmentation of
glass rods. Comput. Methods Appl Mech. Eng. 2000, 183, 3–14. [CrossRef]

29. Camanho, P.P.; Davila, C.G.; de Moura, M.F. Numerical Simulation of Mixed-Mode Progressive Delamination
in Composite Materials. J. Compos. Mater. 2003, 37, 1415–1438. [CrossRef]

30. Gao, W.; Xiang, J.; Chen, S.; Yin, S.; Zang, M.; Zheng, X. Intrinsic cohesive modeling of impact fracture
behavior of laminated glass. Mater. Design 2017, 127, 321–335. [CrossRef]

31. Barenblatt, G.I. The Mathematical Theory of Equilibrium Cracks in Brittle Fracture. Adv. Appl. Mech. 1962, 7,
32. [CrossRef]

32. Dugdale, D.S. Yielding of steel sheets containing slits. J. Mech. Phys. Solids 1960, 8, 100–104. [CrossRef]
33. Celes, W.; Paulino, G.H.; Espinha, R. A compact adjacency-based topological data structure for finite element

mesh representation. Int. J. Numer. Meth. Eng. 2005, 64, 1529–1556. [CrossRef]
34. Zhang, Z.J.; Paulino, G.H.; Celes, W. Extrinsic cohesive modelling of dynamic fracture and microbranching

instability in brittle materials. Int. J. Numer. Meth. Eng. 2007, 72, 893–923. [CrossRef]
35. Chen, S.; Zang, M.; Xu, W. A three-dimensional computational framework for impact fracture analysis of

automotive laminated glass. Comput. Methods Appl. Mech. Eng. 2015, 294, 72–99. [CrossRef]
36. Chen, S.; Zang, M.; Wang, D.; Zheng, Z.; Zhao, C. Finite element modelling of impact damage in polyvinyl

butyral laminated glass. Compos. Struct. 2016, 138, 1–11. [CrossRef]
37. Lin, D.; Wang, D.; Chen, S.; Zang, M. Numerical simulations of impact fracture behavior of an automotive

windshield glazing: An intrinsic cohesive approach. Compos. Struct. 2018, 186, 79–93. [CrossRef]
38. Musto, M.; Alfano, G. A fractional rate-dependent cohesive-zone model. Int. J. Numer. Meth. Eng. 2015, 103,

313–341. [CrossRef]
39. André, D.; Jebahi, M.; Iordanoff, I.; Charles, J.; Néauport, J. Using the discrete element method to simulate

brittle fracture in the indentation of a silica glass with a blunt indenter. Comput. Methods Appl. Mech. Eng.
2013, 265, 136–147. [CrossRef]

40. Braun, M.; Fernández-Sáez, J. A new 2D discrete model applied to dynamic crack propagation in brittle
materials. Int. J. Solids Struct. 2014, 51, 3787–3797. [CrossRef]

41. Du Bois, P.A.; Kolling, S.; Fassnacht, W. Modelling of safety glass for crash simulation. Comp. Mater. Sci.
2003, 28, 675–683. [CrossRef]

42. Timmel, M.; Kolling, S.; Osterrieder, P.; Du Bois, P.A. A finite element model for impact simulation with
laminated glass. Int. J. Impact Eng. 2007, 34, 1465–1478. [CrossRef]

43. Yao, J.; Yang, J.; Otte, D. Investigation of head injuries by reconstructions of real-world
vehicle-versus-adult-pedestrian accidents. Safety Sci. 2008, 46, 1103–1114. [CrossRef]

44. Xu, X.P.; Needleman, A. Numerical simulations of fast crack growth in brittle solids. J. Mech. Phys. Solids
1994, 42, 1397–1434. [CrossRef]

45. Benzeggagh, M.L.; Kenane, M. Measurement of mixed-mode delamination fracture toughness of
unidirectional glass/epoxy composites with mixed-mode bending apparatus. Compos. Sci. Technol. 1996, 56,
439–449. [CrossRef]

46. De Pauw, S. Experimental and Numerical Study of Impact on Window Glass Fitted with Safety Window
Film. Ph.D. Thesis, Ghent University, Ghent, Belgium, 2010.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1088/0965-0393/1/2/001
http://dx.doi.org/10.1016/S0045-7825(99)00208-X
http://dx.doi.org/10.1177/0021998303034505
http://dx.doi.org/10.1016/j.matdes.2017.04.059
http://dx.doi.org/10.1016/S0065-2156(08)70121-2
http://dx.doi.org/10.1016/0022-5096(60)90013-2
http://dx.doi.org/10.1002/nme.1440
http://dx.doi.org/10.1002/nme.2030
http://dx.doi.org/10.1016/j.cma.2015.06.005
http://dx.doi.org/10.1016/j.compstruct.2015.11.042
http://dx.doi.org/10.1016/j.compstruct.2017.11.070
http://dx.doi.org/10.1002/nme.4885
http://dx.doi.org/10.1016/j.cma.2013.06.008
http://dx.doi.org/10.1016/j.ijsolstr.2014.07.014
http://dx.doi.org/10.1016/j.commatsci.2003.08.023
http://dx.doi.org/10.1016/j.ijimpeng.2006.07.008
http://dx.doi.org/10.1016/j.ssci.2007.06.021
http://dx.doi.org/10.1016/0022-5096(94)90003-5
http://dx.doi.org/10.1016/0266-3538(96)00005-X
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Rate-Dependent Cohesive Zone Model 
	Traction–separation Law 
	Mixed-Mode Failure 

	Simulation Results and Experimental Validation 
	Set Up of Experimental Test 
	Finite Element Model 
	Result Analysis 
	Elastic Result 
	Rate-Dependent CZM Results 


	Parametric Studies 
	Strain Rate Sensitivity Coefficient C 
	Mesh Size 
	Impact Velocity 

	Conclusions 
	References

