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Abstract: Compared with normal strength concrete (NSC), ultra-high-performance steel
fiber-reinforced concrete (UHPFRC) shows superior performance. The concrete damage plasticity
(CDP) model in ABAQUS can predict the mechanical properties of UHPFRC components well
after calibration. However, the simulation of the whole structure is seriously restricted by the
computational capability. In this study, a novel multi-scale modeling strategy for UHPFRC structure
was proposed, which used a calibrated CDP model. A novel combined multi-point constraint (CMPC)
was established by the simultaneous equations of displacement coordination and energy balance in
different degrees of freedom of interface nodes. The advantage is to eliminate the problem of the
tangential over-constraint of displacement coordination equation at the interface and to avoid stress
iteration of the energy balance equation in the plastic stage. The expressions of CMPC equations of
typical multi-scale interface connection were derived. The multi-scale models of UHPFRC components
under several load cases were established. The results show that the proposed strategy can well predict
the strain distribution and damage distribution of UHPFRC while significantly reducing the number
of model elements and improving the computational efficiency. This study provides an accurate and
efficient finite element modeling strategy for the design and analysis of UHPFRC structures.

Keywords: ultra-high-performance steel fiber-reinforced concrete; multiscale finite element modeling;
multi-point constraint; multi-scale interface connection; concrete damage plasticity model; ABAQUS

1. Introduction

Concrete is currently the most widely used building material. Although many structures are
built with concrete, the use of normal strength concrete (NSC) still has some limitations, such as
low tensile strength and low ductility. Improving the mechanical properties of concrete to obtain
higher strength and higher ductility has been widely of concern. Ultra-high-performance steel fiber
concrete (UHPFRC) is a new type of fiber concrete, with high strength, fracture toughness, and ductility.
Its compressive strength and tensile strength are generally over 150 MPa and 7 MPa, respectively [1–5],
and even the tensile strength can reach 15 MPa [6]. Ultra-high-performance concrete has been
applied and investigated in many kinds of engineering structures, such as concrete structures [7–9],
seismic design [10,11], etc. For the material level, numbers of studies have been conducted on
the influence of fiber types, fiber orientations, geometric shapes, dosages, and other factors on the
mechanical properties of ultra-high-performance concrete [12–19]. Numerous experimental studies
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have been carried out on high-performance concrete components, which include full-size prestressed
beams [20–22], reinforced beams [23–26], columns [27], slabs [28], etc.

Extensive tests are required at the material and structural levels in order to develop standard
analytical procedures and design specifications for UHPFRC, which will take a lot of time and cost.
Therefore, verifying the concrete material models in the existing finite element software by conducting
a limited number of well-formulated tests on the material and structure levels is a way to save time
and cost. The verified concrete material model and finite element modeling method can be used to
establish extended analysis of various design parameters. In addition, the influences of changes in
geometry, load cases, and reinforcement on mechanical properties of UHPFRC can be investigated.
The finite element software ABAQUS is equipped with the concrete damage plasticity (CDP) model
developed for NSC, which is a mature and reliable tool for predicting the mechanical behavior of
NSC [29–31]. Compared with NSC, the material properties of UHPFRC have higher tensile strength
and ductility, which makes the shape of a material constitutive curve substantially different from NSC.
In order for CDP model to be used to simulate UHPFRC, the parameters of CDP model need to be
calibrated. Tysmans et al. [32] used CDP model to simulate the behavior of high-performance fiber
concrete composites under biaxial tension. Mahmud et al. [33] and Singh et al. [34] calibrated the CDP
model through the UHPFRC material test and used the calibrated model to simulate the test results of
the UHPFRC beam [24]. It was reported that the calibrated CDP model can accurately and effectively
predict the load-displacement curves and plastic damage distributions of UHPFRC components.

Similar to the investigations of NSC, the investigations of UHPFRC need to be developed to the
structural level as well as the material and component level. However, it is very expensive to establish
a full-scale structural test, which is seriously restricted by the test conditions. When the calibrated
CDP model is used to simulate a single UHPFRC component, the reduction of mesh size and the
increase of number of elements will significantly increase the calculation time, while larger mesh size
will lead to convergence problems [34]. Therefore, it is difficult to use solid elements to simulate all of
the UHPFRC of the whole structure. Fortunately, the multi-scale finite element simulation strategy
can solve this problem. The simulation strategy uses solid elements to simulate the key parts of the
structure that need to be paid attention to, and adopts the macro-scale elements such as truss or
beam elements for the other parts. Its advantage is to use limited computing resources to ensure the
requirements for simulation accuracy and to improve computational efficiency. So the simulation
strategy has been well applied in structural failure analysis, seismic design, optimization of structural
system, etc. [35–39]. The key problem of the multi-scale finite element simulation strategy is to establish
an accurate interface-coupling constraint relationship, so as to ensure the scientific and reasonable
coordination between different scale elements. The multi-point constraint method is based on the
relations of displacement coordination [40] or energy balance [41] between macro-scale and micro-scale
elements at the interface, and the constraint equations containing the degrees of freedom of nodes of
different scale elements are established at the interface [42,43]. However, a single multi-point constraint
relation has the limitation that the stress state and deformation of the connection interface appear
distorted after the material enters the plastic stage [44].

In order to promote the development of finite element simulation of UHPFRC structure, a novel
multi-scale finite element modeling strategy was proposed in this study. A novel combined multi-point
constraint (CMPC) based on displacement coordination and energy balance was established, aiming at
the problems of the tangential over-constraint and the requirements for nonlinear stress iteration
existing in the single multi-point constraint method. The nonlinear constitutive relationship of
UHPFRC is considered. The multi-scale models of UHPFRC components under various load cases
were established in the finite element software ABAQUS. The comparative analysis results show
that the proposed multi-scale modeling strategy can well predict the strain distribution and damage
distribution of UHPFRC components while significantly reducing the number of model elements and
improving the computational efficiency. This study provides an accurate and efficient finite element
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modeling strategy for the design and analysis of UHPFRC structure, which can promote the application
and development of UHPFRC in the construction industry.

2. Multi-Scale Modeling Strategy—Material Models

2.1. Calibrated Concrete Damage Plasticity (CDP) Model

The concrete damage plasticity (CDP) model is a concrete material model for NSC in the finite
element software ABAQUS. It is a mature and reliable tool for predicting the mechanical behavior of
NSC [29–31]. In order for CDP model to be used to simulate UHPFRC, the CDP model needs to be
calibrated. Some studies have shown that the calibrated CDP model can accurately and effectively
predict the mechanics characteristic of UHPFRC. In this study, the stress-strain curve for UHPFRC
in compression proposed by Singh et al. [34], modified from Lu et al. [45], is used to calculate the
data of compressive behavior in the CDP model. The stress-strain curve of UHPFRC specimen of
the uniaxial tension test [34] is used to define the tensile behavior in the CDP model. The curves of
compression damage and tension damage in the CDP model are defined according to the studies
in [33,46], respectively. The parameters of the CDP model adopted in this study are shown in Table 1.

Table 1. Parameters of the concrete damage plasticity (CDP) model of ultra-high-performance
fiber-reinforced concrete (UHPFRC).

Model Name Young’s Modulus Compressive
Strength

Tension Yield
Stress Tension Peak Stress

CDP 36.3 GPa 140 MPa 4.6 MPa 5.8 MPa

Dilation angle Eccentricity f b0/f c0 kc Viscosity Parameter

30 0.1 1.05 2/3 0.005

2.2. Validation of the Model

2.2.1. Test Specimens

In this study, the UHPFRC beams named as B25-1 and B25-2 [34] are chosen for the validation
analysis. The cross section, spans, loading configuration details and reinforcement detail of the all
the beams are given in Table 2, where the tensile reinforcement consisted of 20 mm diameter rebar
with a yield strength and ultimate strength of 525 and 625 MPa, respectively. The four point bending
test applies the same concentrated load symmetrically at a distance of 250 mm from the middle of the
beams, resulting in pure bending stresses between the load points.

Table 2. Specimens details. [34].

Specimen Name Cross Section
(mm)

Effective Span
(mm)

Loading
Condition

Length of the Midspan
without Stirrup (mm)

B25-1 & B25-2 250 × 250 3250 Four point bending 500

Top rebar diameter (mm) Top rebar number Bottom rebar
diameter (mm)

Bottom rebar
number

Stirrup diameter and
spacing (mm)

10 2 20 3 D10@90

2.2.2. Finite Element Analysis (FEA) Model

According to the design diagram of UHPFRC beam specimen and the design of loading device,
the corresponding finite element model of the test was established in ABAQUS with mesh size of
25 mm. The details of the reinforcement, mesh and load boundary condition of the finite element
(FE) model are shown in Figure 1. The parameters of the CDP model adopted for the UHPFRC solid
elements are shown in Table 1.
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Figure 1. FE model of ultra-high-performance fiber-reinforced concrete (UHPFRC) beam test. (a) 
Reinforcement detail; (b) Mesh details; (c) Load boundary condition. 

2.2.3. Results of FEA Simulation and Test 

The test results and simulation results of the four point bending test of the two UHPFRC 
specimens are shown in Figure 2, where (a) is the relation curve between the mid-span displacement 
of the beam and the external load, (b) is the failure pattern of the specimen B25-1, and (c) is the tension 
damage distribution of UHPFRC in the finite element model. It can be seen that the finite element 
model can simulate the whole entire load-displacement curve, including the descending section after 
yielding. The finite element simulation results are in good agreement with the experimental results. 
The test results and the finite element results of peak load and corresponding displacement of 
UHPFRC specimens are shown in Table 3. The ultimate load capacity of specimens B25-1 and B25-2 
predicted by the finite element model is 3% and 6% higher than the test results, respectively. It can 
be seen from Figure 2a,b, the damage distribution simulated by the finite element model is similar to 
the crack distribution of the specimen. Meanwhile, the validity of the parameters selected of the FEA 
model in this paper is proved so the FEA model with the same parameters can be taken as the 
standard for the extended study. 

Figure 1. FE model of ultra-high-performance fiber-reinforced concrete (UHPFRC) beam test.
(a) Reinforcement detail; (b) Mesh details; (c) Load boundary condition.

2.2.3. Results of FEA Simulation and Test

The test results and simulation results of the four point bending test of the two UHPFRC specimens
are shown in Figure 2, where (a) is the relation curve between the mid-span displacement of the
beam and the external load, (b) is the failure pattern of the specimen B25-1, and (c) is the tension
damage distribution of UHPFRC in the finite element model. It can be seen that the finite element
model can simulate the whole entire load-displacement curve, including the descending section after
yielding. The finite element simulation results are in good agreement with the experimental results.
The test results and the finite element results of peak load and corresponding displacement of UHPFRC
specimens are shown in Table 3. The ultimate load capacity of specimens B25-1 and B25-2 predicted by
the finite element model is 3% and 6% higher than the test results, respectively. It can be seen from
Figure 2a,b, the damage distribution simulated by the finite element model is similar to the crack
distribution of the specimen. Meanwhile, the validity of the parameters selected of the FEA model in
this paper is proved so the FEA model with the same parameters can be taken as the standard for the
extended study.

Table 3. Comparison of the FE model results with test results.

Specimen
Name

Peak Load (kN) Relative
Error

Peak Displacement (mm) Relative
ErrorFE Model Test FE Model Test

B25-1 174 172 1.16% 40 59 −32%

B25-2 174 167 4.19% 40 39 2.56%
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Figure 2. Test results and simulation results of beam test. (a) Load-displacement curve; (b) failure 
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Table 3. Comparison of the FE model results with test results. 

Specimen 
Name 

Peak Load (kN) Relative 
Error 

Peak Displacement (mm) Relative 
Error FE Model Test FE Model Test 

B25-1 174 172 1.16% 40 59 −32% 
B25-2 174 167 4.19% 40 39 2.56% 

  

Figure 2. Test results and simulation results of beam test. (a) Load-displacement curve; (b) failure
pattern of the specimen B25-1; (c) Tension damage distribution of UHPFRC in the FE model.

3. Multi-Scale Modeling Strategy—Interface Connection

3.1. Combined Multi-Point Constraint (CMPC) of Multi-Scale Model

3.1.1. Combine Multi-Point Constraint Relations

In the multi-scale model, the interface connection of different scale elements can be established
by the constraint equations according to the degrees of freedom of interface nodes. The sketch of
the interface connection of multi-scale model shown in Figure 3, where Si (i = 1, 2, 3 . . . .) signifies
micro element nodes with 3 degrees of freedom and B signifies macro element node with 6 degrees
of freedom.
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displacements of the node i of the micro element; 1Bu  is the axial displacement of the macro element 

Figure 3. Sketch of the interface connection.

According to the coupling relation of degrees of freedom of nodes, the unified form of the
constraint equations of the multi-scale interface connection is as follows:

c(uB, uSi ) = uB − CuSi = 0 (1)

where uB is the displacement vector of macro elements at the interface; uSi is the displacement vector
of micro elements at the interface; C is the coefficient matrix of interface constraint equations.

The accuracy of multi-scale simulation depends on the rationality of coefficient matrix C. If the
constraint equations can effectively simulate the actual deformation coordination, a better effect of the
coupling can be obtained.

The solution of multi-point constraint equations is usually based on the single constraint relation
such as displacement coordination [40] or energy balance [41]. For the multi-scale simulation of
UHPFRC structure, due to the nonlinear characteristics of the interface stress and deformation relation
in the plastic stage, a single multi-point constraint method will lead to the over-constraint in tangential
direction and the requirement of stress iteration in plastic stage. Therefore, the combined multi-point
constraint (CMPC) is established in this study through the simultaneous equations of displacement
coordination and energy balance. The equations form are as follows:

u1Si − f1i(u1B, u5B, u6B, bi, hi) = 0
F2u2B =

∫
A
σ2i,F2u2SidA

F3u3B =
∫
A
σ3i,F3u3SidA

F4u4B =
∫
A
(σ2i,F4u2Si + σ3i,F4u3Si)dA

(2)

where u1Si is the axial displacement of the node i of the micro element; u2Si, u3Si are the tangential
displacements of the node i of the micro element; u1B is the axial displacement of the macro element
node; u2B, u3B are the tangential displacements of the macro element node; u4B, u5B, u6B are the angular
displacements of macro element node; F j is the nodal force of macro element in the direction j; bi, hi are
the distances from the node i of the micro element to the macro element node; σi2,Fj, σi3,Fj are the nodal
tangential stress of the node i of the micro element caused by F j.

In the Equation set (2), the first equation is the axial and rotational constraint equation, which is
established by displacement coordination. The last three equations are tangential constraint equations,
which are established by energy balance. The aim is to eliminate the limitation of the single constraint
relation in the plastic stage and improve the simulation accuracy of the multi-scale model.
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3.1.2. Constraint of the Interface in Tangential Direction

Based on the multi-point constraint relation of displacement coordination, the tangential
deformations of all micro element node at the interface are assumed to be consistent, and the
displacement constraint relation of each node is established one by one. The deformation diagrams
of displacement coordination are shown in Figure 4, and the constraint equations can be obtained
as follows:

u2Si − f2i(u2B, u4B, bi, hi) = 0
u3Si − f3i(u3B, u4B, bi, hi) = 0

(3)

In the equations, tangential displacements (u2Si, u3Si) of the micro element node are calculated from
u2B, u3B and u4B. There is no coupling relation between the degrees of freedom of different nodes of
micro elements. Under this condition, when there is no nonzero tangential displacement or rotational
displacement of macro element node, the tangential displacement of each node of micro elements
along the interface is zero. It leads to the problem of over-constraint in tangential direction at the
interface under the axial compression load.
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Figure 4. Deformation diagram of displacement coordination. (a) Tangential direction;
(b) Rotational direction.

In the CMPC equation set, the displacement constraint equation in the tangential direction of the
interface nodes can be obtained after the stress is eliminated by substituting the formula for the shear
stress distribution:

uB = f2(uS1, uS2 · · · uSn) (4)

where, the tangential displacements of each micro element node have a coupling relation with each
other. When the tangential displacement of macro element node is zero, it can generate the relative
displacements among micro element nodes and satisfy the constraint equation. The tangential
deformation diagram of CMPC under the axial compression is shown in Figure 5.
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The normal stress distribution of UHPFRC section under bending moment is shown in Figure 7. 
As in other studies [33,47], the stress distribution of UHPFRC section has underwent different stages. 

Figure 5. Tangential deformation diagram of CMPC under the axial compression.

The interface deformation under axial compression at the plasticity stage of the multi-scale model
is shown in Figure 6. According to the Poisson ratio of UHPFRC, the uniform longitudinal stress
causes the transverse strain of the section. And there is obvious transverse expansion deformation
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in the middle of the micro element model. The micro element nodes at the interface of displacement
coordination model only produce vertical displacement with the macro element node with no tangential
displacement, which is over-constraint compared with the micro model. The CMPC equation eliminates
the over-constraint in tangential direction at the interface and conforms to the deformation relation of
the interface nodes under the actual stress state.
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3.1.3. Constraint of the Interface in Rotational Direction

The multi-point constraint relation based on energy balance is established by the virtual work
principle. It is assumed that the nodal force of the macro element and the nodal forces of the micro
elements do equal work at the interface in the rotational direction. The equation is as follows:

F5u5B =
∫
A
σ1i,F5u1SidA

F6u6B =
∫
A
σ1i,F6u1SidA

(5)

By substituting the formula for stress distribution under bending moment, the displacement constraint
equation in rotational direction of the interface nodes can be obtained. Its precision depends on the
rationality of the stress distribution of the stress formula.

The normal stress distribution of UHPFRC section under bending moment is shown in Figure 7.
As in other studies [33,47], the stress distribution of UHPFRC section has underwent different stages.
The first stage is the linear-elastic stage, in which the fiber and matrix show elasticity and the stress
distribution is linear. With the increase of load, due to the strong bond between the high strength steel
fiber and the matrix, the macro crack begins to expand slowly. The strain hardening phenomenon
occurred is different from that of NSC, and the tensile stress is nonlinear distributed. This stage is
called strain hardening stage and the formula for stress distribution in linear-elastic stage is no longer
applicable. If the formula is not updated iteratively, the multi-point constraint equation at the interface
based on energy balance will be distorted in the rotational direction in strain hardening stage.
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The CMPC method establishes the multi-point constraint equation of the interface in rotational
direction based on the displacement coordination. The axial displacement of each node of the micro
elements can be obtained through the s constraint equation (see the first equation in Equation set (2)).
After entering the strain-hardening stage, this multi-point constraint equation avoids the problem
that the formula for stress distribution needs to be updated iteratively. Therefore, the CMPC method
proposed in this paper combines the advantages of displacement coordination method and energy
balance method. The multi-point constraint equations conform to the transfer relations of displacement
and stress between the interface nodes. It can achieve good constraint effect in axial, tangential, and
rotational directions. It is applicable to the analysis of UHPFRC components under complex loads.

3.2. CMPC Equations of Multi-Scale Connection of Beam-Solid Element

According to Equation set (2), displacement vector [uB vB wB θx θy θz ] of beam element

and displacement vector
[

uSi vSi wSi
]

of solid element are substituted, and the multi-point
constraint equations can be expressed as:

wSi − fi
(
wB,θx,θy, Rxi, Ryi

)
= 0

FxuB =
∫
A
τxiuSidA

FyvB =
∫
A
τyivSidA

Tθz =
∫
A
(τxiuSi + τyivSi)dA

(6)

where Rxi, Ryi are the distances between the node i of the solid element and the beam element node
at the interface in the x and y direction, respectively; Fx, Fy are the shear forces acting on the beam
element node in the x and y direction, respectively; T is the torque acting on the beam element node;
τxi, τyi are the shear stresses of the node i of the solid element in the x and y direction, respectively.
The multi-scale connection of beam - solid element is shown in Figure 8.
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In the Equation set (6), the first equation is the constraint equation of axial and rotational
displacement, which can be solved according to the displacement coordination. The last three
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equations are the constraint equations of tangential displacements, which need to be solved by
substituting the formula for stress distribution. For example, the formula for shear stress distribution
of the rectangular section in the y direction is as follows:

τyi =
3Fy

2bh

1−
4Ryi

2

h2

 (7)

where b and h are the width and height of the rectangular section, respectively.
After solving the Equation set (6), the following can be obtained:

wSi = wB + Rxi sinθy + Ryi sinθx

uB = Cu1u1 + Cu2u2 + · · ·+ Cunun

vB = Cv1v1 + Cv2v2 + · · ·+ Cvnvn

θZ = (u1Ry1 + · · ·+ unRyn) − (v1Rx1 + · · ·+ v2Rx2)

(8)

where Cui, Cvi are the influence coefficients of the tangential displacements related to the section size
and node position. An example of the Equation set (8) is given in Appendix A.

4. Multi-Scale Models of Ultra-High-Performance Steel Fiber-Reinforced Concrete

4.1. Multi-Scale Models Built-Up

The CMPC multi-scale modeling strategy with the same parameters selected above is adopted to
establish the multi-scale models of reinforced UHPFRC components, as shown in Figures 9 and 10.
Where (a) is the solid element model taken as the standard for comparison without experimental results,
and (b), (c) and (d) are the multi-scale models of beam-solid element, whose interface connections
are established by the displacement coordination method, the energy balance method and the CMPC
method (Section 3.2. for the expressions) respectively. The height of the component is 3m, and the
section size is 0.4 m × 0.4 m. The multi-scale interface is located at 1/3 height of the component with
the height of 3 m. The parameters of the CDP model adopted for the UHPFRC solid elements are
shown in Table 1.
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Figure 10. Reinforcement parts of the models. (a) Solid element model; (b) Displacement coordination
model; (c) Energy balance model; (d) CMPC model.

In the micro element model, C3D8R elements are used to model UHPFRC with the calibrated CDP
model which is the same as that in the second section. The reinforcement is simulated by T3D2 element.
In the macro element model, B31 elements are used to simulate UHPFRC and the reinforcement net.
The uniaxial stress-strain relationship of the material subroutine (UMAT) of UHPFRC is the same
as that of the calibrated CDP model. The section size of the B31 element of the reinforcement net is
calculated equivalent to total reinforcement area. The material model parameters of reinforcement
are the same as those in Section 2. With a yield strength and ultimate strength of 525 and 625 MPa,
respectively. The mesh size of the models is 0.05m. A fixed constraint is set at the bottom of the
component and a loading point is set at the top. The number of model elements of the solid element
model and the multi-scale model is shown in Table 4. It can be seen that the number of model elements
in the multi-scale model is reduced by nearly 2/3 compared with that in the solid element model,
which significantly improves the computational efficiency.

Table 4. Number of model elements.

Model
Element Type

Total
C3D8R T3D2 B31

Solid element model 3840 616 0 4456
Multi-scale model 1280 220 80 1580

4.2. Unidirectional Load Cases

4.2.1. Axial Compression Load Case

Under the axial compression load, the stress distributions of UHPFRC of the multi-scale models
and the connection interface are shown in Figure 11. By comparison, it can be seen that there is the
phenomenon of stress concentration at the connection interface of the displacement coordination model
whose stress distribution is different from that of the solid model. The overall stress distribution of the
energy balance model is also different from that of the solid model, and the stress distribution at the
interface connection is not uniform. The stress distribution obtained by the CMPC method is highly
consistent with the solid element model. The constraint effect of the CMPC method is obviously better
than that of the single multi-point constraint method.



Materials 2020, 13, 5320 12 of 19

Materials 2020, 13, x FOR PEER REVIEW 12 of 20 

 

Table 4. Number of model elements. 

Model 
Element Type 

Total 
C3D8R T3D2 B31 

Solid element model 3840 616 0 4456 
Multi-scale model 1280 220 80 1580 

4.2. Unidirectional Load Cases 

4.2.1. Axial Compression Load Case 

Under the axial compression load, the stress distributions of UHPFRC of the multi-scale models 
and the connection interface are shown in Figure 11. By comparison, it can be seen that there is the 
phenomenon of stress concentration at the connection interface of the displacement coordination 
model whose stress distribution is different from that of the solid model. The overall stress 
distribution of the energy balance model is also different from that of the solid model, and the stress 
distribution at the interface connection is not uniform. The stress distribution obtained by the CMPC 
method is highly consistent with the solid element model. The constraint effect of the CMPC method 
is obviously better than that of the single multi-point constraint method. 

 

   (a) (b) (c) (d)    

Figure 11. Stress distributions under the axial compression load (unit: Pa). (a) Solid element model; 
(b) Displacement coordination model; (c) Energy balance model; (d) CMPC model. 

4.2.2. Bending Load Case 

Unidirectional concentrated moment loads is applied to the loading point at the top of the 
models under the bending load case. The stress distribution and tensile damage distribution of 
UHPFRC of the models are shown in Figure 12 and Figure 13. By comparison, it can be seen that the 
stress distribution at the connection interface in the plastic stage is nonlinear. The UHPFRC on the 
tensile side enters the strain hardening stage with tensile damage. Compared with the solid element 
model, the results of the displacement coordination model and the energy balance model show 
obvious stress distortion at the connection interface. As UHPFRC on the tension side enters the strain 
hardening stage, the formula for stress distribution of the energy balance method is no longer 
applicable. The original constraint equation needs to be balanced by over increasing the strain on the 
tension side, resulting in the distortion of the damage distribution at the connection interface. Due to 
the over-constraint in tangential direction mentioned above, the results of the displacement 
coordination model at the connection interface look distorted. The simulation results of CMPC model 
are highly consistent with that of the solid element model, and the stress and damage distribution of 
UHPFRC at the connection interface are simulated accurately. 

-5.22× 107 
-5.47× 107 
-5.72× 107 
-5.97× 107 
-6.21× 107 
-6.46× 107 
-6.71× 107 
-6.96× 107 
-7.21× 107 
-7.46× 107 
-7.71× 107 
-7.95× 107 
-8.20× 107 

-5.22× 107 
-5.47× 107 
-5.72× 107 
-5.97× 107 
-6.21× 107 
-6.46× 107 
-6.71× 107 
-6.96× 107 
-7.21× 107 
-7.46× 107 
-7.71× 107 
-7.95× 107 
-8.20× 107 

Figure 11. Stress distributions under the axial compression load (unit: Pa). (a) Solid element model;
(b) Displacement coordination model; (c) Energy balance model; (d) CMPC model.

4.2.2. Bending Load Case

Unidirectional concentrated moment loads is applied to the loading point at the top of the
models under the bending load case. The stress distribution and tensile damage distribution of
UHPFRC of the models are shown in Figures 12 and 13. By comparison, it can be seen that the stress
distribution at the connection interface in the plastic stage is nonlinear. The UHPFRC on the tensile
side enters the strain hardening stage with tensile damage. Compared with the solid element model,
the results of the displacement coordination model and the energy balance model show obvious stress
distortion at the connection interface. As UHPFRC on the tension side enters the strain hardening stage,
the formula for stress distribution of the energy balance method is no longer applicable. The original
constraint equation needs to be balanced by over increasing the strain on the tension side, resulting
in the distortion of the damage distribution at the connection interface. Due to the over-constraint
in tangential direction mentioned above, the results of the displacement coordination model at the
connection interface look distorted. The simulation results of CMPC model are highly consistent with
that of the solid element model, and the stress and damage distribution of UHPFRC at the connection
interface are simulated accurately.
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Figure 12. Stress distributions under the bending load (unit: Pa). (a) Solid element model;
(b) Displacement coordination model; (c) Energy balance model; (d) CMPC model.
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Figure 13. Tensile damage distributions under the bending load (unit: Pa). (a) Solid element model;
(b) Displacement coordination model; (c) Energy balance model; (d) CMPC model.

4.2.3. Shear Load Case

In shear load case, a concentrated horizontal force is applied to the loading point at the top of the
models. The stress distribution and tensile damage distribution of UHPFRC of the models are shown
in Figures 14 and 15. It can be seen that after entering the strain hardening stage of UHPFRC, the stress
distribution at the connection interface presents nonlinear. The multi-point constraint equation derived
from the formula for elastic stress distribution is no longer applicable, and the simulation results of the
stress distribution and damage distribution at the connection interface of the energy balance model are
inaccurate. At the same time, due to the tangential over-constraint, the stress concentration occurs at
the connection interface of the displacement coordination model. The damage distribution is distorted.
However, the simulation results of the CMPC model still have good accuracy. The stress and damage
distribution of UHPFRC at the connection interface are simulated accurately.
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Figure 14. Stress distributions under the shear compression load (unit: Pa). (a) Solid element model;
(b) Displacement coordination model; (c) Energy balance model; (d) CMPC model.
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Figure 15. Stress distributions under the shear compression load (unit: Pa). (a) Solid element model;
(b) Displacement coordination model; (c) Energy balance model; (d) CMPC model.

4.3. Multidirectional Composite Load Case

Under unidirectional load cases, the multi-scale model of UHPFRC component established
according to the proposed multi-scale modeling strategy achieved good accuracy. The performance of
this multi-scale model under multidirectional composite load case will be studied below.

In this load case, the axial compression force, the bidirectional moments and the bidirectional
horizontal forces are applied composited at the loading point at the top of the models. The diagram of
multidirectional composite load is shown in Figure 16. Where, the red arrow represents the bidirectional
horizontal forces, the yellow arrow represents the axial compression force, and the purple double
arrow represents the bidirectional moments.
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Figure 16. The diagram of multidirectional composite load.

Under the multidirectional composite load case, the stress distributions of UHPFRC of the
multi-scale models and the connection interface are shown in Figure 17.

Through comparison, it can be seen that the CPMC equations established based on the proposed
multi-scale modeling strategy achieve good connection effect under the multidirectional composite
load case. The calculation accuracy of the CMPC model for UHPFRC is consistent with that of the
solid element model, which is better than the displacement coordination model and the energy balance
model. The multi-scale modeling strategy proposed in this study can be effectively applied to the
multi-scale finite element analysis of UHPFRC structures with accuracy and efficiency.
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Figure 17. Stress distributions under the multidirectional composite loads case (unit: Pa). (a) Solid
element model; (b) Displacement coordination model; (c) Energy balance model; (d) CMPC model;
(e) Interface location of the solid element model; (f) Interface of the displacement coordination model;
(g) Interface of the energy balance model; (h) Interface of CMPC model.

5. Conclusions

This study proposed a novel multi-scale modeling strategy for ultra-high-performance steel
fiber-reinforced concrete (UHPFRC) structures. The main work and conclusions are summarized
as follows:

1. The applicability of concrete damage plasticity (CDP) model in finite element software ABAQUS
to UHPFRC was verified according to the four-point bending test results of reinforced UHPFRC
beams. The simulation results show that the calibrated CDP model used in the multi-scale
modeling strategy in this study can accurately and effectively predict the load-displacement curve
and plastic damage distribution of UHPFRC components.

2. A novel combined multi-point constraint method was established by the simultaneous equations
of the displacement coordination equation and energy balance equation in different directions
of the interface. The CMPC method eliminates the problem of the tangential over-constraint
of displacement coordination equation at the interface and avoids stress iteration of energy
balance equation in the plastic stage. The multi-point constraint equations conform to the transfer
relations of displacement and stress between the interface nodes.

3. The expression of the constraint equations of the multi-scale connection of beam-solid element
by CMPC method was derived. The multi-scale model of the reinforced UHPFRC component
was established in ABAQUS with this expression and the calibrated CDP model. The axial
compression load case, bending load case, shear load case, and multidirectional composite load
case are analyzed.
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4. The simulation results of the multi-scale model under each load case show that the multi-scale
model established by the CMPC method can significantly reduce the number of model elements
and improve the calculation efficiency. The CMPC models have good simulation accuracy in the
analysis of each load case compared with the displacement coordination model and the energy
balance model. In the strain-hardening stage of UHPFRC, the CMPC method can still accurately
simulate the stress distribution and damage distribution of the connection interface. It can be
applied to multi-scale finite element analysis of UHPFRC structures with accuracy and efficiency.
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Appendix A

An example of the multi-scale connection interface is established with section size 0.4 m × 0.4 m
and mesh size 0.1 m shown in Figure A1, where the solid element node number on the connection
interface is 1–25, and the beam element node number is 26.
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Figure A1. An example of the multi-scale connection interface.

The Equation set (8) of the multi-scale connection interface shown in Figure A1 can be obtained as
follow. The multi-scale connection of CMPC model can be established by coding the ‘*EQUATION’
keyword commands to input the constrained Equation set (8) into the ‘*.inp’ file of ABAQUS.
Similarly, this strategy can be implemented in the other FEA software by setting the multi-point
constraint equations.
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wSi = wB + Rxi sinθy + Ryi sinθx

1024u26 = [7(u25 + u1 + u5 + u21) + 14(u20 + u15 + u10 + u16 + u11 + u6) + 34(u24 + u22 + u4 + u2)+

68(u19 + u14 + u9 + u17 + u12 + u7) + 46(u23 + u3) + 92(u8 + u13 + u18)]

1024v26 = [7(v25 + v1 + v5 + v21) + 14(v24 + v22 + v4 + v2 + v23 + v3) + 34(v20 + v16 + v10 + v6)+

68(v19 + v17 + v9 + v7 + v18 + v8) + 46(v15 + v11) + 92(v14 + v12 + v13)]

10θz26 = 2(u1 + u2 + u3 + u4 + u5 + v5 + v10 + v15 + v20 + v25)+

2(−u21 − u22 − u23 − u24 − u25 − v1 − v6 − v11 − v16 − v21)+

(u6 + u7 + u8 + u9 + u10 + v4 + v9 + v14 + v19 + v24)+

(−u16 − u17 − u18 − u19 − u20 − v2 − v7 − v12 − v17 − v22)

w1 = w26 − 0.2 sinθx26 + 0.2 sinθy26

w2 = w26 − 0.2 sinθx26 + 0.1 sinθy26

w3 = w26 − 0.2 sinθx26

w4 = w26 − 0.2 sinθx26 − 0.1 sinθy26

w5 = w26 − 0.2 sinθx26 − 0.2 sinθy26

w6 = w26 − 0.1 sinθx26 + 0.2 sinθy26

w7 = w26 − 0.1 sinθx26 + 0.1 sinθy26

w8 = w26 − 0.1 sinθx26

w4 = w26 − 0.1 sinθx26 − 0.1 sinθy26

w10 = w26 − 0.1 sinθx26 − 0.2 sinθy26

w11 = w26 + 0.2 sinθy26

w12 = w26 + 0.1 sinθy26

w13 = w26

w14 = w26 − 0.1 sinθy26

w15 = w26 − 0.2 sinθy26

w16 = w26 + 0.1 sinθx26 + 0.2 sinθy26

w17 = w26 + 0.1 sinθx26 + 0.1 sinθy26

w18 = w26 + 0.1 sinθx26

w19 = w26 + 0.1 sinθx26 − 0.1 sinθy26

w20 = w26 + 0.1 sinθx26 − 0.2 sinθy26

w21 = w26 + 0.2 sinθx26 + 0.2 sinθy26

w22 = w26 + 0.2 sinθx26 + 0.1 sinθy26

w23 = w26 + 0.2 sinθx26

w24 = w26 + 0.2 sinθx26 − 0.1 sinθy26

w25 = w26 + 0.2 sinθx26 − 0.2 sinθy26

(A1)
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