

Surface-Initiated Photoinduced Iron-Catalyzed Atom Transfer Radical Polymerization with ppm Concentration of FeBr₃ under Visible Light

Monika Słowikowska ¹, Kamila Chajec ¹, Adam Michalski ^{1,2}, Szczepan Zapotoczny ¹ and Karol Wolski ^{1,*}

- ¹ Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland; slowikowska@chemia.uj.edu.pl (M.S.); kamila.chajec@spoko.pl (K.C.); michadam@cbmm.lodz.pl (A.M.); zapotocz@chemia.uj.edu.pl (S.Z.)
- ² Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
- * Correspondence: wolski@chemia.uj.edu.pl

Received: 27 October 2020; Accepted: 12 November 2020; Published: 14 November 2020

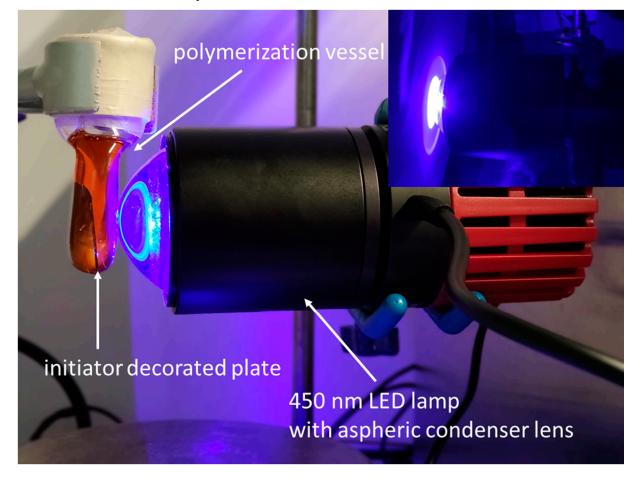


Figure S1. Photo of the reaction system.

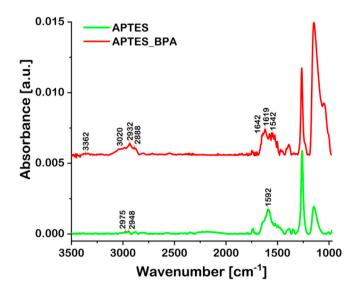
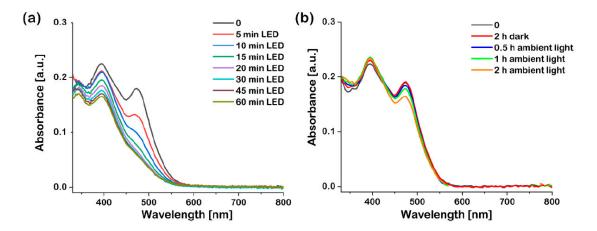



Figure S2. FTIR spectra of APTES and APTES-BPA modified ITO plate.

Figure S3. UV-VIS spectra of the polymerization mixture ([MMA]/[FeBr₃]/[TBABr] = 100/0.02/0.02): (a) after various irradiation times with 450 nm LED light, and (b) exposed to ambient light and kept in darkness. The polymerization mixture was diluted 30 times before the measurements ([FeBr₃] = 0.03 mM).