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Abstract: The HfV2–HfV2O7 composite is proposed as a material with potentially temperature
-independent thermophysical properties due to the combination of anomalously increasing
thermoelastic constants of HfV2 with the negative thermal expansion of HfV2O7. Based on literature
data, the coexistence of both a near-zero temperature coefficient of elasticity and a coefficient of thermal
expansion is suggested for a composite with a phase fraction of approximately 30 vol.% HfV2 and
70 vol.% HfV2O7. To produce HfV2–HfV2O7 composites, two synthesis pathways were investigated:
(1) annealing of sputtered HfV2 films in air to form HfV2O7 oxide on the surface and (2) sputtering of
HfV2O7/HfV2 bilayers. The high oxygen mobility in HfV2 is suggested to inhibit the formation of
crystalline HfV2–HfV2O7 composites by annealing HfV2 in air due to oxygen-incorporation-induced
amorphization of HfV2. Reducing the formation temperature of crystalline HfV2O7 from 550 ◦C,
as obtained upon annealing, to 300 ◦C using reactive sputtering enables the synthesis of crystalline
bilayered HfV2–HfV2O7.

Keywords: thermoelasticity; negative thermal expansion; composites; magnetron sputtering

1. Introduction

Volume expansion upon heating is probably the most prominent example of the influence of
temperature on the physical properties of materials. However, for electronic, optical, and other
high-precision devices, whose performances are critically affected by slight variations in volume,
near-zero thermal expansion materials are desired [1–5]. Moreover, for mechanical components
of precision instruments, temperature-independent volumes and elastic moduli are required [6–8].
A combination of both properties has only been obtained in gum metals [9,10] and Fe-Ni alloys [11]
after intense deformation, thereby promoting the development of materials with intrinsic near-zero
expansion and temperature-invariant elastic behavior irrespective of the plastic deformation route.

To compensate for thermally-induced volume changes, implementation of materials with negative
thermal expansion (NTE) in a composite is a widely propagated approach [4,5,12]. Here, we propose
to join a material with NTE properties with another exhibiting anomalously increasing thermoelastic
constants in an attempt to obtain a combination of temperature-invariant elastic behavior and
volume. This is a pioneering approach for the design of materials with temperature-independent
thermophysical properties.
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However, elastic constants commonly decrease monotonically with rising temperatures due to the
anharmonicity of lattice vibrations [13,14]. Materials that deviate from this trend, thereby exhibiting
anomalous thermoelastic behavior, constitute promising candidates for the design of composites with
temperature-independent thermoelastic properties. While nowadays NTE has been observed in a
wide variety of material families, e.g., zirconium tungstates and vanadates, zeolites, metal cyanides,
metal-organic framework materials, perovskites, and anti-perovskites [12,15–18], reports of materials
with anomalous thermoelastic behavior are scarce. The cubic transition metals V, Nb, Ta, Pd, and
Pt each exhibit a thermoelastic anomaly in their shear elastic constants c44 [19–23]. Furthermore,
binary Nb–Zr, Nb–Mo, Pd–Ag, and Pd–Rh solid solutions behave anomalously within well-defined
concentration ranges [24–26]. Experimental and theoretical studies revealed the combination of a high
density of states and electronic reallocation upon lattice distortion in the vicinity of the Fermi level
to be the physical origin of the anomalous thermoelastic behavior [27–31]. However, the anomaly
in these systems is mostly limited to the shear elastic constant c44, whereas the remaining elastic
constants (there are three independent elastic constants for cubic symmetries, i.e., c11, c12, and c44)
behave normally. Consequently, their thermoelastic anomaly is highly directionally dependent, but
an isotropic temperature-independent behavior is desired for the proposed composite. Intermetallic
cubic HfV2 (space group: Fm-3m), which is stable from around 112 K up to the melting point of
1820 K [32,33], exhibits increasing thermoelastic constants in all probed directions [32] so that an increase
in the macroscopic elastic modulus (E) upon heating was measured in polycrystalline samples [34,35].
Thus, HfV2 is an ideal constituent to aim for a temperature-invariant elastic behavior in a composite.
The second component, consequently, serves then for the compensation of the thermoelastic increase
and for the positive thermal expansion (PTE) of HfV2. The linear coefficient of thermal expansion of
HfV2 has been measured to be 9.9 × 10−6 K−1 around room temperature [36].

Multiple mechanisms may give rise to NTE [5,17], e.g., the magnetovolume effect, phase transitions,
atomic radius contraction, and flexible network structures, whereas the latter is the prevalent physical
origin in most NTE materials. In general, the expansion effect due to longitudinal vibrations in these
flexible network structures is over-compensated by the contraction owing to transverse vibrations [5,37].
In regard to the search for suitable NTE materials, anisotropic contraction restricts their practical
usability, so cubic phases, which exhibit inherently isotropic contraction, are particularly promising.
In the group of flexible network materials, ZrW2O8 and isostructural HfW2O8 have an unprecedented
isotropic NTE range of 0.3 to 1050 K [38,39]. Besides, the only ternary oxide within the Hf-V–O system,
HfV2O7, exhibits isotropic NTE above approximately 370 K with a negative coefficient of thermal
expansion of −7.2 × 10−6 K−1 [40]. With decreasing temperature, phase transformations first into an
incommensurate structure, stable between around 369 and 340 K, and finally into a cubic 3 × 3 × 3
superstructure, are obtained [41]. Hence, forming a composite of HfV2 with the corresponding ternary
oxide, HfV2O7, appears promising for tailoring the physical properties of the composite material
towards thermal invariance.

Physical vapor deposition techniques have proven to be successful in synthesizing and refining
materials with NTE properties [42–45]. Consequently, after assessing that a combination of both
temperature-invariant elastic behavior and volume is achieved simultaneously for a certain phase
fraction ratio, two synthesis pathways for HfV2–HfV2O7 composites were studied: (1) annealing of
magnetron sputtered HfV2 thin films in air to form a HfV2O7 oxide scale on the thin film surface
and (2) magnetron sputtering of HfV2O7 on HfV2. Furthermore, the NTE properties of HfV2O7 were
verified for single-layered HfV2O7 thin films using temperature-dependent in situ X-ray diffraction.

2. Materials and Methods

2.1. Experimental Methods

Depositions were carried out by direct current magnetron sputtering at a target-to-substrate
distance of 10 cm using elemental Hf and V (both 99.9% purity, 50 mm diameter) targets while the
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substrate remained at floating potential. For the synthesis of stoichiometric HfV2, the employed target
power densities were 2.0 and 10.2 W cm−2 for Hf and V, respectively. Ar (99.9999%) was used as
sputtering gas to achieve a working pressure of 0.4 Pa. The base pressure (at deposition temperature)
was below 1 × 10−6 Pa. HfV2 films were deposited without intentional heating and at substrate
temperatures of 500 and 700 ◦C. To ensure high purity of deposited HfV2, the following measures were
taken: The backsides of the single-crystalline sapphire (0001) substrates were deposited beforehand
with approximately 250 nm of Nb to overcome their partial transmissivity to radiation during heating.
This consequently reduced the heat impact on the chamber walls, and thus, a considerable decrease in
base pressure at elevated deposition temperatures was achieved. Second, prior to each deposition,
all targets were sputtered for 5 min with closed shutters (positioned approximately 2 cm opposite
of the target) to make the surfaces free from condensed impurities and to getter residual gases.
Third, elemental Zr was additionally sputtered at 20 W against a shutter during all depositions to
exploit its pronounced affinity for oxygen [46,47] as a getter pump to further reduce residual gas
incorporation [48] into the growing HfV2 thin film. The Zr concentration in the as-deposited films was
below 0.7 at.% based on energy-dispersive X-ray spectroscopy (EDX). Subsequently, selected films
were capped after cooling to room temperature with an approximately 10 nm thick Nb layer to prevent
impurity incorporation into the as-deposited thin film during air exposure.

HfV2O7 thin films were deposited at a substrate temperature of 450 ◦C in a reactive Ar/O2

(99.999%) atmosphere at a constant working pressure of 0.86 Pa while varying the O2 partial pressure
between 0.05 and 0.13 Pa. Further information can be found elsewhere [49]. For the HfV2–HfV2O7

bilayer deposition, the synthesis procedure was the following: First, HfV2 was deposited at 700 ◦C for
75 min. Afterwards, the system was cooled down in vacuum to the synthesis substrate temperatures
for HfV2O7, which were 250, 300, and 350 ◦C. Pure Ar was used for plasma ignition before O2

(pO2 = 0.09 Pa) was introduced to reactively sputter HfV2O7 for 100 min.
Annealing experiments were performed in a GERO F 40-200/13 air furnace (Carbolite Gero,

Neuhausen, Germany). The Hf-V ratio in the synthesized films was measured by EDX carried out
in a JEOL JFM-6480 SEM (JEOL Ltd., Tokyo, Japan) equipped with an EDAX Genesis 2000 device
(EDAX Inc., Mahwah, NJ, USA) at an acceleration voltage of 20 kV. Chemical composition depth
profiling of HfV2 was done by time-of-flight elastic recoil detection analysis (ToF-ERDA) at the Tandem
Accelerator Laboratory of Uppsala University. 36 MeV 127|8+ primary ions and a time-of-flight telescope
in combination with a Si solid-state detector for energy discrimination were used. Further details on
the detector telescope can be found elsewhere [50]. The time and energy coincidence spectra were
evaluated using the CONTES software package [51]. O and H depth profiles were characterized by
ToF-ERDA, while the Hf-V ratio was obtained from EDX spectra. It should be noticed that Nb-capped
und uncapped HfV2 were measured by ToF-ERDA under identical conditions, hence, systematic
uncertainties do not affect this comparison. The structure of the synthesized films was studied using
X-ray diffraction (XRD) carried out with a Bruker AXS D8 Discover General Area Detector Diffraction
System (Bruker Corporation, Billerica, MA, USA). A Cu Kα source (current 40 mA, voltage of 40 kV)
was used with a 0.5 mm pinhole collimator. Scans were performed at a fixed incidence angle of
15◦. Selected samples were measured between room temperature and 475 ◦C using a DHS 1100 Hot
Stage (Anton Paar, Ostfildern-Scharnhausen, Germany) equipped with a NI-NiCr thermocouple to
measure the surface temperature. Peak fitting was conducted using TOPAS software (version 3) with
a pseudo-Voigt II function. Lattice parameters of the cubic structures were consequently calculated
employing Bragg’s law [52]. The lattice parameters of HfV2 were determined by averaging the data
from (220), (311), (222), (331), (422), (333), and (044) reflections. Based on the obtained changes in
lattice parameters with temperature, the linear coefficient of thermal expansion for cubic HfV2O7

was calculated by averaging the data from (200), (210), (211), (211), (220), (311), and (222) reflections.
Standard deviations are added to evaluate the fitting quality. Morphology of bilayered HfV2–HfV2O7

was studied using scanning transmission electron microscopy (STEM) carried out in an FEI Helios
Nanolab 660 dual-beam microscope (Thermo Fisher Scientific, Waltham, MA, USA). Cross-sectional
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sample preparation was conducted by focused ion beam techniques with a Ga+ source following a
standard lift-out procedure [53].

2.2. Theoretical Methods

Ground state equilibrium lattice parameters for cubic HfO2 (Fm-3m, 12 atoms), VO2 (Fm-3m,
12 atoms), VO (Fm-3m, 8 atoms), and HfO (Fm-3m, 8 atoms) were calculated within the framework of
density functional theory (DFT) [54] employing the Vienna ab initio simulation package (VASP) [55,56]
with projector augmented wave potentials. The generalized gradient approximation, as introduced
by Perdew, Burke, and Ernzerhof [57], was used for all calculations. Integration in the Brillouin zone
was performed on a 20 × 20 × 20 k-point grid according to Monkhorst and Pack [58]. The total energy
convergence criterion was 0.01 meV within a 500 eV cut-off. The equilibrium lattice parameters were
determined by a Birch–Murnaghan equation of state [59,60] fit.

3. Results and Discussion

3.1. Composite Assessment

First, the suitability of HfV2–HfV2O7 as a composite with temperature-independent physical
properties is evaluated, which relies on the coexistence of a near-zero coefficient of thermal expansion
and a near-zero temperature coefficient of elasticity (TCE) for a certain phase fraction ratio. The TCE is
defined by

TCE =
1
E

dE
dT

(1)

and is estimated for HfV2–HfV2O7 composite using a rule-of-mixture approach (weighted average based
on the volume fractions). While the temperature dependence of the elastic modulus of HfV2 is taken from
the literature [35], no thermoelasticity data for HfV2O7 have been reported. The temperature-dependent
elastic modulus has consequently been estimated from the experimentally obtained elastic modulus of
HfV2O7 [49] assuming the same relative decline with temperature, as reported for the NTE material
ZrW2O8 [61]. ZrW2O8 and HfV2O7 exhibit comparable negative coefficients of thermal expansion of
−9.1 × 10−6 [62] and −7.2 × 10−6 K−1 [40], respectively, and share common structural features, both
forming an openly-packed network structure of octahedral (Zr/Hf)O6 and polyhedral (W/V)O4 units
connected by corner-sharing oxygen atoms [63]. The TCE of the composite was averaged over a
temperature range from 120 (onset of NTE behavior in HfV2O7 [40,41,64]) to 300 ◦C.

On the other hand, the coefficient of thermal expansion of a composite usually does not follow a
simple rule-of-mixture behavior [65]. NTE materials are generally less stiff (lower E) than expected based
on the bond strengths [66], and thus normally constitute the more compliant component in the composite.
As a result, the elastic deformation during expansion and contraction is predominantly concentrated on
the NTE component reducing its impact on the overall expansion coefficient. Consequently, theoretical
models to describe the expansion coefficient of a composite typically also take the elastic properties of
the individual components into account [66]. In the Turner model the overall coefficient of thermal
expansion of the composite αc is described by

αc =

∑
i Biαiφi∑

i Biφi
, (2)

where Bi, αi, and φi denote the bulk modulus, coefficient of thermal expansion, and volume fraction,
respectively, of component i [65]. The bulk modulus and the coefficient of thermal expansion of HfV2

(HfV2O7) of 117 GPa [32] (56 GPa [49]) and 9.9 × 10−6 K−1 [36] (−7.2 × 10−6 K−1 [40]), respectively,
were used for the calculation of αc. The resulting volume fraction dependent expansion coefficient αc

and averaged TCE of HfV2–HfV2O7 composite are plotted in Figure 1.
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Figure 1. Variation of the temperature coefficient of elasticity TCE (black dashed line) and linear
coefficient of thermal expansion αc (blue solid line) of composite material HfV2–HfV2O7 depending on
the volume fractions of the individual constituents. The region of interest is highlighted in green.

The coefficient of thermal expansion of the composite was calculated to reach temperature
invariance (αc = 0) at a volume fraction of HfV2 of around 0.25 (φHfV2O7 = 0.75). A TCE of zero
was achieved for φH f V2 of around 0.35 (φH f V2O7 = 0.65) with a corresponding αc of 1.9 × 10−6 K−1,
which complies with the class of very low thermal expansion materials [1]. These results not only
suggest that αc and TCE of this composite can individually be adjusted to thermal invariance but
also that a near-zero αc and TCE may be achieved simultaneously. Based on the applied data and
the assumptions outlined above, we predict that the corresponding volume phase fractions of HfV2

(HfV2O7) are between 20 and 40 (80–60) vol.% depending on the optimization criterion. After assessing
the capability of composite HfV2–HfV2O7 to exhibit temperature-independent properties, its synthesis
is studied in the following.

3.2. Composite Formation by Oxidation of HfV2

A potential synthesis pathway for a composite has been demonstrated by oxidizing TiN thin films,
where the time- and temperature-dependent formation of a TiO2 scale on top of TiN was observed with
varying thickness, and hence phase fraction ratios [67,68]. Consequently, the first synthesis strategy to
form HfV2–HfV2O7 composites comprises synthesis of HfV2 and subsequent heat treatment in air to
partly oxidize HfV2 in an attempt to form a HfV2O7 oxide scale on top.

3.2.1. Phase Formation of HfV2

First, the phase formation for co-sputtered Hf-V thin films using magnetron sputtering is
described. No previous reports on the synthesis of HfV2 thin films by magnetron sputtering are
currently available. However, the synthesis of isoelectronic and isostructural ZrV2 thin films is
discussed in the literature [69–71]. EDX analysis of the as-deposited thin films shows deviations from
the desired 1Hf:2V stoichiometry below ±1 at.%. The results of the structural analysis to study the
influence of the deposition temperature on the phase formation are depicted in Figure 2.
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Figure 2. X-ray diffractograms of stoichiometric (V/Hf = 2.0) Hf-V samples synthesized without
intentional heating (RT) and at synthesis temperatures of 500 and 700 ◦C.

A broad hump around 40◦ was obtained for HfV2 deposited without intentional heating (RT),
indicating an amorphous structure, as reported for magnetron sputtered Zr–V thin films deposited
without heating [71] and at 400 ◦C [70]. In this temperature regime, in which the adatom mobility is
low, the formation of amorphous solid solution in Zr–V can be understood based on its higher stability
compared to a random bcc solid solution, as demonstrated by DFT calculations [71]. It is reasonable to
assume that this may also apply to Hf-V.

For Zr–V, a phase formation sequence from amorphous (400 ◦C) to a phase mixture of bcc V and hcp
Zr (500 ◦C) to intermetallic ZrV2 (600 ◦C) was obtained with increasing deposition temperatures [70].
The same sequence was obtained by annealing amorphous films [70]. The intermediate formation of
bcc V and hcp Zr is contradictive to the accepted equilibrium phase diagram and is mostly discussed
with respect to difficult nucleation kinetics of the Laves phase structure [69,70]. However, it may also
be explained by the thermodynamic instability of cubic ZrV2, as predicted by DFT in the ground
state [71–73], exhibiting an energy of formation of 150 meV atom−1 [71], which persists at elevated
temperatures. In comparison, several theoretical studies also predict cubic HfV2 to be energetically
unstable in the ground state, reporting energies of formation between 20 and 35 meV per atom [29,74,75].
Furthermore, experiments show a transformation of cubic HfV2 upon cooling into an orthorhombic
structure at around −160 ◦C [76,77] possibly due to kinetically limited decomposition into elemental
V and Hf, since orthorhombic HfV2 also exhibits positive energy of formation [29,75]. However, for
sputtered HfV2 at 500 ◦C (see Figure 2), the change in shape of the main peak at around 38◦ suggests
the first formation of nanocrystals, and the emerging hump around 20◦ points towards intermetallic
HfV2 nanocrystals, since their presence cannot be explained by hcp Hf or bcc V.

A further increase in deposition temperature to 700 ◦C resulted in the formation of sharp diffraction
peaks which all can be assigned to cubic HfV2 [78]. Thus, no phase mixture of hcp Hf and bcc V,
unlike for Zr–V, was observed, but a sequence from amorphous to crystalline HfV2 with increasing
deposition temperature was obtained. Consequently, the high temperature of 700 ◦C required to form
crystalline HfV2 is attributed to the kinetically limited formation of the Laves phase structure and not
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to an energetic instability of the cubic structure up to these temperatures. This notion is supported by
theoretical predictions suggesting the energetic stabilization of cubic HfV2 at temperatures as low as
−120 ◦C due to lattice vibrations [29]. For ZrV2, due to the considerably higher energy of formation in the
ground state [71], its energetic stabilization is expected at higher temperatures, potentially explaining
the discussed phase formation differences between Hf-V and Zr–V thin films. For comparison, bulk
synthesis of HfV2 includes heat treatments at temperatures above 1200 ◦C [34,77,79]. The reduction in
synthesis temperature to 700 ◦C is enabled by surface diffusion of adatoms during sputtering [80].

No indications for impurity phases based on the presented XRD results were obtained in these
samples, which is ascribed to the measures outlined above. However, thin films synthesized at higher
base pressures or without additional co-sputtering of Zr contained traces of Hf3V3O and HfO2 (not
shown). This is in agreement with the observation of ZrV3O3 as an impurity phase in sputtered Zr–V
thin films [70].

3.2.2. Stability of HfV2

As a next step, the stability of the synthesized HfV2 films upon air exposure is examined. For this
purpose, the structure of uncapped HfV2 was studied as a function of the cumulated air-exposure time
after removing it from the high-vacuum deposition system. The results are summarized in Figure 3.
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Figure 3. X-ray diffractograms of uncapped HfV2 (black) and Nb-capped HfV2 (red) for varying storage
times in air.

In the as-deposited state, referring to a minimized air-exposure time of approximately 15 min, the
peak positions coincide well with literature data for cubic HfV2 [78]. With increasing air-exposure time,
a continuous peak shift to lower 2θ values is obtained, indicating an increase in the lattice parameter of
the cubic structure from 7.38 to 7.51 Å (+1.8%) after four and to 7.54 Å (+2.2%) after ten weeks in air
(standard deviations ≤ 0.01 Å). The obtained increase in lattice parameter may suggest continuous
interstitial incorporation of impurities into the HfV2 lattice, which consequently also explains reported
property changes in (Hf,Zr)V2 bulk samples after a one-year storage period [81]. HfV2 has been
reported to act as a strong (weak) getter for hydrogen (oxygen) by dissociation of water [82].



Materials 2020, 13, 5021 8 of 17

Thin metal capping layers were shown to serve as effective oxidation barriers during air exposure
at room temperature [83]. Hence, as-deposited HfV2 was capped with approximately 10 nm Nb due to
its passivating properties [84]. The functionality of this capping layer was investigated systematically
by comparing the stabilities of capped and uncapped HfV2 using XRD (see Figure 3). Other than a
small additional peak around 38◦, measured for the Nb-capped film, which is attributed to bcc Nb,
no difference in phase composition between both HfV2 films in the as-deposited state was observed.
However, in contrast to the uncapped HfV2 film, no peak shift with increasing air-exposure time
was obtained, demonstrating that the Nb capping ensures protection of synthesized HfV2 against the
incorporation of impurities from the ambient at room temperature.

To identify the incorporated impurities, the chemical compositions of both samples, uncapped
and Nb-capped, were analyzed four weeks after deposition using ToF-ERDA. The measured oxygen
concentration as a function of the film thicknesses is presented in Figure 4. The depth scale was
calculated with the atomic masses of Hf and V under the assumption of stoichiometric HfV2 with a
density of 9.3 g cm−3 [32].
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Figure 4. ToF-ERDA depth profile of the oxygen concentration for uncapped (black circle) and
Nb-capped (red square) HfV2 after four weeks of air-exposure.

Uncapped HfV2 exhibited an averaged oxygen concentration of 4.3 ± 0.7 at.% in the bulk part
of the film (neglecting the top surface oxidation) and a minor amount of hydrogen (<0.3 at.%, not
shown) while the average oxygen concentration in the Nb-capped film was 0.5 ± 0.3 at.% and hydrogen
was below the detection limit. Thus, the increasing lattice parameter for uncapped HfV2 is primarily
attributed to a continuous interstitial uptake of oxygen into the cubic structure upon exposure to air.
It has been shown theoretically that interstitially incorporated oxygen contributes to the energetic and
mechanical stabilization of the cubic structure [29]. The oxygen concentration was measured to be
constant throughout the analyzed film thickness of approximately 400 nm, suggesting high mobility of
oxygen in cubic HfV2 already at room temperature. This may also have implications for the oxidation
behavior of these films at elevated temperatures, which is discussed in the following.

3.2.3. Oxidation of HfV2

One sample of uncapped HfV2 was cyclically annealed in air for approximately 30 min at
temperatures between 150 and 650 ◦C in 100 ◦C intervals. After each annealing step, the structure of
the sample was studied by XRD. The resulting diffractograms are shown in Figure 5.
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Figure 5. X-ray diffractograms of an uncapped HfV2 thin film (9 weeks after deposition) annealed at the
indicated temperatures for approximately 30 min. For comparison, the diffractogram of a Nb-capped
film was added (red).

In the initial state, the sample was already exposed to air for 9 weeks. As a consequence, peak
positions were already shifted towards smaller 2θ values compared to the as-deposited (see Figure 3)
and Nb-capped films (see Figure 5). For all annealing steps up to 350 ◦C, the structural development is
characterized by a continuous peak shift and broadening suggesting the successive incorporation of
oxygen into the cubic structure finally yielding amorphization. as observed at 450 ◦C. Complementary
annealing experiments with additional samples at fixed temperatures of 300 and 400 ◦C indicate that
this process is determined by kinetics and may occur already at lower temperatures (not shown).

After annealing at 550 ◦C, small peaks emerged which may already indicate the formation of
HfV2O7 nanocrystals [41], while the two main peaks at 32◦ and 37◦ cannot be attributed to any reported
equilibrium phase in the Hf-V–O materials system. The peak positions of the unknown phase fit
reasonably well to a cubic (fcc-based) structure exhibiting a lattice parameter of 4.9 Å. The reported
cubic structures in the Hf-V–O systems, VO (Fm3m) [85] and HfO2 (Fm3m) [86], can be excluded due
to the difference in the lattice parameters. Furthermore, the formation of a hypothetic cubic Hf1−xVxO
monoxide appears unlikely based on conducted DFT studies, predicting a lattice parameter between
4.19 and 4.58 Å for x = 0 and x = 1, respectively. Nevertheless, the experimentally obtained lattice
parameter lies within the predicted lattice parameter range of a previously unreported Hf1-xVxO2

dioxide (Fm3m) which is between 5.08 and 4.74 Å for x = 0 and x = 1, respectively. Hence, the formation
of a metastable ternary (Hf,V)O2 phase is assumed henceforth. A high V solubility in cubic HfO2 has
also been reported elsewhere [87]. At 650 ◦C, the formation of XRD phase pure HfV2O7 is evident [41].

The observation that the first crystallites of HfV2O7 may form at temperatures of 550 ◦C
while oxygen is highly mobile in HfV2 already at room temperature suggests that the formation of
HfV2–HfV2O7 composites is not feasible using conventional annealing experiments in air. The oxygen
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mobility in HfV2 at the formation temperature of crystalline HfV2O7 appears to be critical for the
endeavor of HfV2–HfV2O7 composite formation. However, lowering of the synthesis temperature of
crystalline HfV2O7 by using non-equilibrium-based synthesis approaches appears promising and is
discussed in the following.

3.3. Composite Formation by Sputtering of Bilayered HfV2–HfV2O7

3.3.1. Phase Formation of HfV2O7

The formation of crystalline HfV2O7 at a substrate temperature of 350 ◦C using reactive magnetron
sputtering has been demonstrated previously [49], but the effect of the O2 partial pressure has not been
investigated yet. However, for the synthesis of bilayered HfV2–HfV2O7 by magnetron sputtering, the
O2 partial pressure during the synthesis of HfV2O7 is expected to be decisive for the purity of the
underlying HfV2 film, due to its high oxygen affinity. Hence, the influence of the O2 partial pressure
on the phase formation of HfV2O7 was studied systematically for a synthesis temperature of 450 ◦C.
The results of the structural analysis of synthesized thin films, exhibiting a V–Hf ratio of 2.0 based on
EDX, are shown in Figure 6.
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Figure 6. X-ray diffractograms of reactively sputtered Hf-V–O (V/Hf = 2) thin films deposited at 450 ◦C
with varying O2 partial pressure.

The thin film sputtered at an O2 partial pressure of 0.05 Pa exhibits broad peaks at around 32◦, 37◦,
53◦, and 63◦. The peak positions coincide well with the ones of the cubic (Hf,V)O2 structure observed
during annealing of HfV2 at 550 ◦C (see Figure 5). Cubic HfO2 usually constitutes the high-temperature
polymorph, which is stable above 2600 ◦C at ambient pressure [86] but can be stabilized down to room
temperature by V doping in specific atmospheres (oxidation state ≤ V4+) [88]. Furthermore, cubic HfO2

thin films form by ion beam assisted deposition under oxygen deficiency and substrate cooling [89].
Thus, it is assumed that the formation of cubic (Hf,V)O2 obtained for the lowest O2 partial pressure is
triggered by oxygen deficiency. This notion is supported by the fact that the increase in the O2 partial
pressure from 0.05 to 0.09 Pa resulted in a sixfold decrease in deposition rate (with respect to the mass
gain), which indicates a more pronounced poisoning of the target racetrack. For O2 partial pressures
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of 0.09 and 0.13 Pa, all obtained peaks can be assigned to the HfV2O7 structure [41], indicating the
formation of phase pure HfV2O7 based on XRD.

3.3.2. Thermal Expansion of Sputtered HfV2O7

While numerous NTE materials have intensively been studied in bulk, studies on thin films are
scarce [42–45]. To verify the NTE behavior of the synthesized HfV2O7 thin films, temperature-dependent
in situ XRD measurements were performed to measure the change in the lattice parameter upon
heating. The results are shown in Figure 7.
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Figure 7. Lattice parameter of synthesized cubic HfV2O7 as a function of annealing temperature
obtained by X-ray diffraction. A linear fit within the positive and negative thermal expansion range,
respectively, was added (red).

A continuous increase in the lattice parameter between 20 and 120 ◦C was measured, whereas
between 155 and 475 ◦C the lattice parameter decreased, indicating NTE. The obtained transition
from PTE to NTE is in agreement with reported transition temperatures of HfV2O7 being around
120–130 ◦C produced by solid-state reaction synthesis approaches [40,41,64]. Additional wafer
curvature measurements confirm this transition, as indicated by a change from increasing compressive
to increasing tensile stress upon heating (not shown). The NTE properties of HfV2O7 originate from its
openly-packed network structure consisting of octahedral HfO6 and tetrahedral VO4 units, constituting
quasi-rigid building blocks that are interconnected by corner-sharing oxygen atoms [4,90,91]. Three of
four oxygen atoms of the VO4 tetrahedron are shared with neighboring HfO6 octahedra, while one
is shared with another VO4 tetrahedron, thereby forming a V2O7 group [92]. The lattice symmetry
(space group: Pa3) restricts these O3V–O–VO3 bonds to retain an angle of 180◦, allowing for transverse
vibrations that may give rise to NTE [4,93]. The loss of the NTE properties at lower temperatures is
related to structural transitions. HfV2O7 transforms upon cooling via an intermediate incommensurate
structure to a 3 × 3 × 3 superstructure [41,64]. It has been shown for isostructural ZrV2O7 that the
majority of the O3V–O–VO3 linkages bend away from 180◦ in the 3 × 3 × 3 superstructure [94–96].
However, the additional weak reflections of the HfV2O7 superstructure [97] could not be resolved
by XRD in this work. Based on the presented data, the linear coefficients of thermal expansion were
determined to be (2.8 ± 0.5) × 10−5 K−1 (20 ◦C ≤ T ≤ 120 ◦C) and (−9.9 ± 0.9) × 10−6 K−1 (155 ◦C ≤
T ≤ 475 ◦C), respectively, agreeing reasonably well with the reported linear coefficients of thermal
expansion of 2.5 × 10−5 K−1 [64] and −7.2 × 10−6 K−1 [40]. After establishing a synthesis recipe for
NTE material HfV2O7 that is characterized by a low required O2 partial pressure, the way is paved for
the synthesis of bilayered HfV2–HfV2O7 composites using a two-staged sputtering process.
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3.3.3. Phase Formation of HfV2–HfV2O7 Bilayers

Besides a low O2 partial pressure during reactive sputtering of HfV2O7, the synthesis temperature
for HfV2O7 is decisive for avoiding substantial oxygen incorporation into HfV2. Hence, the influence
of synthesis temperature of HfV2O7, which was varied between 250 and 350 ◦C, on the phase formation
of HfV2–HfV2O7 composite was investigated by maintaining a low O2 partial pressure of 0.09 Pa (see
Figure 6). While a Nb passivation layer ensures protection of HfV2 in air at room temperature (see
Figure 3), additional bilayer depositions revealed that the deposition of a Nb interlayer, separating the
two layers in the composite, does not prevent oxygen incorporation in HfV2 during reactive sputtering
of HfV2O7 (not shown) and is therefore not discussed further. The results of the structural analysis are
shown in Figure 8.
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Figure 8. (a) Diffractograms of magnetron sputtered HfV2–HfV2O7 bilayers. The synthesis temperature
T for HfV2O7 on HfV2 has been varied between 250 and 350 ◦C. (b) Scanning transmission electron
microscopy bright-field with inset high-angle annular dark-field image of HfV2–HfV2O7 cross-section
with HfV2O7 having been synthesized at 300 ◦C.

For a synthesis temperature of 250 ◦C, peaks that are attributed to HfV2 are barely shifted [78]
indicating a low concentration of interstitially incorporated oxygen into the structure during the
reactive sputtering process of HfV2O7. However, no distinct HfV2O7 peaks were obtained indicating
an amorphous or nanocrystalline structure. It is expected that amorphous HfV2O7 does not exhibit
NTE. While crystalline ZrW2O8 exhibits NTE in its entire stability range [38,39], PTE was obtained for
amorphous ZrW2O8 films synthesized by reactive sputtering [42].

An increase in synthesis temperature to 300 ◦C results in more pronounced oxygen incorporation
in HfV2, as indicated by the increasing peak shift, which corresponds to the shift obtained for a
10-weeks exposure time of uncapped HfV2 to air (see Figure 3). Besides, peaks of crystalline HfV2O7

emerge, demonstrating the first synthesis of a crystalline HfV2–HfV2O7 composite. The effect of minute
concentrations of interstitially solved oxygen on the thermoelastic anomaly of HfV2 has not been
studied yet and is hence proposed for future investigations. Figure 8b shows the corresponding film
cross-section studied by STEM. The image suggests the formation of a bilayered structure with a defined
interface separating the HfV2 bottom layer (1.7 µm) from HfV2O7 (0.5 µm) top layer. Based on the
atomic number (z) contrast using high-angle annular dark-field imaging, the distinct formation of HfV2

(high z) and HfV2O7 (low z) is supported. The deposition rates for HfV2 and HfV2O7 were determined
to be approximately 22 and 5 nm min−1, respectively. Thus, tuning the volume phase fractions to be in
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line with the proposed ones (see Figure 1) can simply be achieved by adjusting the deposition times for
the individual layer. However, further investigations are required to evaluate whether these bilayered
composite films allow for accurate determination of their integral temperature coefficient of elasticity
and coefficient of thermal expansion. A further increase in the synthesis temperature of HfV2O7 to
350 ◦C reveals the onset of amorphization of HfV2 due to oxygen incorporation, as indicated by the
pronounced peak shifting and broadening.

4. Conclusions

The HfV2–HfV2O7 composite has been proposed as a material with temperature-independent
thermophysical properties due to the combination of the anomalously increasing thermoelastic
constants of HfV2 and the negative thermal expansion of HfV2O7. Both the temperature coefficient of
elasticity and the coefficient of thermal expansion were predicted to be near zero for a phase fraction of
approximately 30 vol.% HfV2 and 70 vol.% HfV2O7.

Two synthesis pathways for HfV2–HfV2O7 composites were studied: (1) annealing of magnetron
sputtered HfV2 thin films in air to form a HfV2O7 oxide scale on the thin film surface and (2)
magnetron sputtering of HfV2O7/HfV2 bilayers. The onset of the oxidation behavior of HfV2 thin
films is characterized by continuous interstitial incorporation of oxygen, occurring already at room
temperature, finally yielding amorphization. Crystalline HfV2O7 forms at 550 ◦C. The high oxygen
mobility in HfV2 is suggested to inhibit the formation of crystalline HfV2–HfV2O7 composites by
annealing HfV2 in air. Reducing the formation temperature of crystalline HfV2O7 down to 300 ◦C
using reactive magnetron sputtering enables the synthesis of a crystalline bilayered HfV2–HfV2O7

composite. The NTE properties of HfV2O7 were verified for monolithic magnetron sputtered HfV2O7

thin films using temperature-dependent in situ X-ray diffraction.
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