

Supplementary Materials: Structural, Electronic, and Optical Properties of CsPb(Br_{1-x}Cl_x)₃ Perovskite: First-Principles Study with PBE–GGA and mBJ–GGA Methods

Hamid M. Ghaithan ^{1,*}, Zeyad. A. Alahmed ^{1,*}, Saif M. H. Qaid ¹, and Abdullah S. Aldwayyan ^{1,2,3,*}

- ² King Abdullah Institute for Nanotechnology, King Saud University, P.O. Box 2454, Riyadh 11451, Saudi Arabia
- ³ K.A.CARE Energy Research and Innovation Center at Riyadh, P.O. Box 2022, Riyadh 11454, Saudi Arabia
- * Correspondence: hghaithan@ksu.edu.sa (H.M.G.); zalahmed@ksu.edu.sa (Z.A.A.);

dwayyan@ksu.edu.sa (A.S.A.); Tel.: +96-6532-257-491 (H.M.G.)

Lattice Parameters									
	a	b	С	alı	pha	beta	g	amma	
5.8	37400	5.87400	23.4960	0 90.0	0000	90.0000	9	0.0000	
		U	nit-cell volu	ume = 810.7	03101 Å^	3			
			Structu	ure Parame	ters				
		x	У	Z	Occ.	В	Site	Sym.	
1	Cs Cs1	0.00000	0.00000	0.00000	1.000	1.000	1a	1	
2	Cs Cs2	0.00000	0.00000	0.25000	1.000	1.000	1a	1	
3	Cs Cs3	0.00000	0.00000	0.50000	1.000	1.000	1a	1	
4	Cs Cs4	0.00000	0.00000	0.75000	1.000	1.000	1a	1	
5	Pb Pb1	0.50000	0.50000	0.12500	1.000	1.000	1a	1	
6	Pb Pb2	0.50000	0.50000	0.37500	1.000	1.000	1a	1	
7	Pb Pb3	0.50000	0.50000	0.62500	1.000	1.000	1a	1	
8	Pb Pb4	0.50000	0.50000	0.87500	1.000	1.000	1a	1	
9	Br Br1	0.50000	0.50000	1.00000	1.000	1.000	1a	1	
10	Br Br2	0.00000	0.50000	0.12500	1.000	1.000	1a	1	
11	Br Br3	0.50000	0.00000	0.12500	1.000	1.000	1a	1	
12	Br Br4	0.50000	0.50000	0.25000	1.000	1.000	1a	1	
13	Br Br5	0.00000	0.50000	0.37500	1.000	1.000	1a	1	
14	Br Br6	0.50000	0.00000	0.37500	1.000	1.000	1a	1	
15	Br Br7	0.50000	0.50000	0.50000	1.000	1.000	1a	1	
16	Br Br8	0.00000	0.50000	0.62500	1.000	1.000	1a	1	
17	Br Br9	0.50000	0.00000	0.62500	1.000	1.000	1a	1	
18	Br Br10	0.50000	0.50000	0.75000	1.000	1.000	1a	1	
19	Br Br11	0.00000	0.50000	0.87500	1.000	1.000	1a	1	
20	Br Br12	0.50000	0.0000	0.87500	1.000	1.000	1a	1	

Table S1. CsPbBr3.

¹ Physics and Astronomy Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; sqaid@ksu.edu.sa

Lattice Parameters								
	а	b	с	alp	ha	beta	g	amma
5.	80100	5.80100	23.4202	6 90.0	90.0000		90	0.0000
		Un	it-cell volu	me = 807.00	8322 Å^3			
	Structure Parameters							
		x	у	Z	Occ.	В	Site	Sym.
1	Cs Cs1	0.00000	0.00000	0.00000	1.000	1.000	1a	1
2	Cs Cs2	0.00000	0.00000	0.25000	1.000	1.000	1a	1
3	Cs Cs3	0.00000	0.00000	0.50000	1.000	1.000	1a	1
4	Cs Cs4	0.00000	0.00000	0.75000	1.000	1.000	1a	1
5	Pb Pb1	0.50000	0.50000	0.12144	1.000	1.000	1a	1
6	Pb Pb2	0.50000	0.50000	0.37437	1.000	1.000	1a	1
7	Pb Pb3	0.50000	0.50000	0.62563	1.000	1.000	1a	1
8	Pb Pb4	0.50000	0.50000	0.87856	1.000	1.000	1a	1
9	Cl Cl1	0.50000	0.50000	1.00000	1.000	1.000	1a	1
10	Br Br1	0.00000	0.50000	0.12488	1.000	1.000	1a	1
11	Br Br2	0.50000	0.00000	0.12486	1.000	1.000	1a	1
12	Br Br3	0.50000	0.50000	0.24829	1.000	1.000	1a	1
13	Cl Cl2	0.00000	0.50000	0.37504	1.000	1.000	1a	1
14	Br Br4	0.50000	0.00000	0.37507	1.000	1.000	1a	1
15	Br Br5	0.50000	0.50000	0.50000	1.000	1.000	1a	1
16	Br Br6	0.00000	0.50000	0.62493	1.000	1.000	1a	1
17	Cl Cl3	0.50000	0.00000	0.62496	1.000	1.000	1a	1
18	Br Br7	0.50000	0.50000	0.75171	1.000	1.000	1a	1
19	Br Br8	0.00000	0.50000	0.87514	1.000	1.000	1a	1
20	Br Br9	0.50000	0.00000	0.87512	1.000	1.000	1a	1

Table S2. CsPbBr2.75C10.25.

Table S3. CsPbBr₂Cl

Lattice Parameters									
	a	b	с	alp	ha	beta	g	amma	
5.7	78433	5.78433	23.1373	1 90.0	000	90.0000	90	gamma 90.0000 Site Sym. 1a 1 1a 1	
	Unit-cell volume = 774.138727 Å^3								
			Structu	re Paramete	ers				
		х	у	Z	Occ	В	Site	Sym.	
1	Cs Cs1	0.00000	0.00000	0.00000	1.000	1.000	1a	1	
2	Cs Cs2	0.00000	0.00000	0.25000	1.000	1.000	1a	1	
3	Cs Cs3	0.00000	0.00000	0.50000	1.000	1.000	1a	1	
4	Cs Cs4	0.00000	0.00000	0.75000	1.000	1.000	1a	1	
5	Pb Pb1	0.50000	0.50000	0.12500	1.000	1.000	1a	1	
6	Pb Pb2	0.50000	0.50000	0.37500	1.000	1.000	1a	1	
7	Pb Pb3	0.50000	0.50000	0.62500	1.000	1.000	1a	1	
8	Pb Pb4	0.50000	0.50000	0.87500	1.000	1.000	1a	1	
9	Br Br1	0.50000	0.50000	0.00000	1.000	1.000	1a	1	
10	Br Br2	0.00000	0.50000	0.12500	1.000	1.000	1a	1	
11	Cl Cl1	0.50000	0.00000	0.12500	1.000	1.000	1a	1	
12	Br Br3	0.50000	0.50000	0.25000	1.000	1.000	1a	1	
13	Br Br4	0.00000	0.50000	0.37500	1.000	1.000	1a	1	
14	Cl Cl2	0.50000	0.00000	0.37500	1.000	1.000	1a	1	
15	Br Br5	0.50000	0.50000	0.50000	1.000	1.000	1a	1	

16	Br Br6	0.00000	0.50000	0.62500	1.000	1.000	1a	1
17	Cl Cl3	0.50000	0.00000	0.62500	1.000	1.000	1a	1
18	Br Br7	0.50000	0.50000	0.75000	1.000	1.000	1a	1
19	Br Br8	0.00000	0.50000	0.87500	1.000	1.000	1a	1
20	Cl Cl4	0.50000	0.00000	0.87500	1.000	1.000	1a	1

Lattice Parameters								
	a	b	c	alpha		beta	ga	mma
5.7	5.739505.7395022.9579990.000090.0000		0.0000	90	.0000			
		Unit-c	ell volume :	= 756.278366	5 Å^3			
			Structure P	arameters				
		x	у	Z	Occ	В	Sit e	Sym.
1	Cs Cs1	0.00000	0.00000	0.00000	1.000	1.000	1a	1
2	Cs Cs2	0.00000	0.00000	0.25000	1.000	1.000	1a	1
3	Cs Cs3	0.00000	0.00000	0.50000	1.000	1.000	1a	1
4	Cs Cs4	0.00000	0.00000	0.75000	1.000	1.000	1a	1
5	Pb Pb1	0.50000	0.50000	0.12500	1.000	1.000	1a	1
6	Pb Pb2	0.50000	0.50000	0.37500	1.000	1.000	1a	1
7	Pb Pb3	0.50000	0.50000	0.62500	1.000	1.000	1a	1
8	Pb b4	0.50000	0.50000	0.87500	1.000	1.000	1a	1
9	Cl Cl1	0.50000	0.50000	1.00000	1.000	1.000	1a	1
10	Br Br1	0.00000	0.50000	0.12490	1.000	1.000	1a	1
11	Cl Cl2	0.50000	0.00000	0.12495	1.000	1.000	1a	1
12	Br Br2	0.50000	0.50000	0.25000	1.000	1.000	1a	1
13	Cl Cl3	0.00000	0.50000	0.37505	1.000	1.000	1a	1
14	Br Br3	0.50000	0.00000	0.37510	1.000	1.000	1a	1
15	Cl Cl4	0.50000	0.50000	0.50000	1.000	1.000	1a	1
16	Br Br4	0.00000	0.50000	0.62490	1.000	1.000	1a	1
17	Cl Cl5	0.50000	0.00000	0.62495	1.000	1.000	1a	1
18	Br Br5	0.50000	0.50000	0.75000	1.000	1.000	1a	1
19	Cl Cl6	0.00000	0.50000	0.87505	1.000	1.000	1a	1
20	Br Br6	0.50000	0.00000	0.87510	1.000	1.000	1a	1

Table S4. CsPbBr1.5Cl1.5

	Lattice Parameters								
	a b c alpha beta		gar	nma					
5.6	9466	5.69466	22.77865	90.0000	90.	0000	90.	0000	
		Unit-ce	ell volume =	738.691816	Å^3				
	Structure Parameters								
		x	у	Z	Occ.	В	Sit e	Sym.	
1	Cs Cs1	0.00000	0.00000	0.00000	1.000	1.000	1a	1	
2	Cs Cs2	0.00000	0.00000	0.25000	1.000	1.000	1a	1	
3	Cs Cs3	0.00000	0.00000	0.50000	1.000	1.000	1a	1	
4	Cs Cs4	0.00000	0.00000	0.75000	1.000	1.000	1a	1	
5	Pb Pb1	0.50000	0.50000	0.12500	1.000	1.000	1a	1	

6	Pb Pb2	0.50000	0.50000	0.37500	1.000	1.000	1a	1
7	Pb Pb3	0.50000	0.50000	0.62500	1.000	1.000	1a	1
8	Pb Pb4	0.50000	0.50000	0.87500	1.000	1.000	1a	1
9	Cl Cl1	0.50000	0.50000	1.00000	1.000	1.000	1a	1
10	Cl Cl2	0.00000	0.50000	0.12500	1.000	1.000	1a	1
11	Br Br1	0.50000	0.00000	0.12500	1.000	1.000	1a	1
12	Cl Cl3	0.50000	0.50000	0.25000	1.000	1.000	1a	1
13	Cl Cl4	0.00000	0.50000	0.37500	1.000	1.000	1a	1
14	Br Br2	0.50000	0.00000	0.37500	1.000	1.000	1a	1
15	Cl Cl5	0.50000	0.50000	0.50000	1.000	1.000	1a	1
16	Cl Cl6	0.00000	0.50000	0.62500	1.000	1.000	1a	1
17	Br Br3	0.50000	0.00000	0.62500	1.000	1.000	1a	1
18	Cl Cl7	0.50000	0.50000	0.75000	1.000	1.000	1a	1
19	Cl Cl8	0.00000	0.50000	0.87500	1.000	1.000	1a	1
20	Br Br4	0.50000	0.00000	0.87500	1.000	1.000	1a	1

Table S6. (CsPbBr0.25Cl2.75.
-------------	-------------------

	Lattice Parameters								
	a	b	с	alpha	beta	L	gamm	a	
5.6	7225	5.67225	22.68899	90.0000	90.000)0	90.000	0	
		Ur	it-cell volu	me = 730.004	601 Å^3				
	Structure Parameters								
		x	у	Z	Occ.	В	Site	Sym.	
1	Cs Cs1	0.00000	0.00000	0.00000	1.000	1.000	1a	1	
2	Cs Cs2	0.00000	0.00000	0.25000	1.000	1.000	1a	1	
3	Cs Cs3	0.00000	0.00000	0.50000	1.000	1.000	1a	1	
4	Cs Cs4	0.00000	0.00000	0.75000	1.000	1.000	1a	1	
5	Pb Pb1	0.50000	0.50000	0.12848	1.000	1.000	1a	1	
6	Pb Pb2	0.50000	0.50000	0.37562	1.000	1.000	1a	1	
7	Pb Pb3	0.50000	0.50000	0.62438	1.000	1.000	1a	1	
8	Pb Pb4	0.50000	0.50000	0.87153	1.000	1.000	1a	1	
9	Br Br1	0.50000	0.50000	1.00000	1.000	1.000	1a	1	
10	Cl Cl1	0.00000	0.50000	0.12521	1.000	1.000	1a	1	
11	Cl Cl2	0.50000	0.00000	0.12523	1.000	1.000	1a	1	
12	Cl Cl3	0.50000	0.50000	0.25166	1.000	1.000	1a	1	
13	Br Br2	0.00000	0.50000	0.37492	1.000	1.000	1a	1	
14	Cl Cl4	0.50000	0.00000	0.37493	1.000	1.000	1a	1	
15	Cl Cl5	0.50000	0.50000	0.50000	1.000	1.000	1a	1	
16	Cl Cl6	0.00000	0.50000	0.62507	1.000	1.000	1a	1	
17	Br Br3	0.50000	0.00000	0.62508	1.000	1.000	1a	1	
18	Cl Cl7	0.50000	0.50000	0.74834	1.000	1.000	1a	1	
19	Cl Cl8	0.00000	0.50000	0.87477	1.000	1.000	1a	1	
20	Cl Cl9	0.50000	0.00000	0.87479	1.000	1.000	1a	1	

Table	S7.	CsPbCl ₃ .

Lattice Parameters										
a b c alpha beta gamma										
5.60500	5.60500	22.41999	90.0000	90.0000	90.0000					
Unit-cell volume = 704.346569 Å^3										

5	of	7
---	----	---

Structure Parameters								
		x	у	Z	Occ.	В	Site	Sym.
1	Cs Cs1	0.00000	0.00000	0.00000	1.000	1.000	1a	1
2	Cs Cs2	0.00000	0.00000	0.25000	1.000	1.000	1a	1
3	Cs Cs3	0.00000	0.00000	0.50000	1.000	1.000	1a	1
4	Cs Cs4	0.00000	0.00000	0.75000	1.000	1.000	1a	1
5	Pb Pb1	0.50000	0.50000	0.12500	1.000	1.000	1a	1
6	Pb Pb2	0.50000	0.50000	0.37500	1.000	1.000	1a	1
7	Pb Pb3	0.50000	0.50000	0.62500	1.000	1.000	1a	1
8	Pb Pb4	0.50000	0.50000	0.87500	1.000	1.000	1a	1
9	Cl Cl1	0.50000	0.50000	1.00000	1.000	1.000	1a	1
10	Cl Cl2	0.00000	0.50000	0.12500	1.000	1.000	1a	1
11	Cl Cl3	0.50000	0.00000	0.12500	1.000	1.000	1a	1
12	Cl Cl4	0.50000	0.50000	0.25000	1.000	1.000	1a	1
13	Cl Cl5	0.00000	0.50000	0.37500	1.000	1.000	1a	1
14	Cl Cl6	0.50000	0.00000	0.37500	1.000	1.000	1a	1
15	Cl Cl7	0.50000	0.50000	0.50000	1.000	1.000	1a	1
16	Cl Cl8	0.00000	0.50000	0.62500	1.000	1.000	1a	1
17	Cl Cl9	0.50000	0.00000	0.62500	1.000	1.000	1a	1
18	Cl Cl10	0.50000	0.50000	0.75000	1.000	1.000	1a	1
19	Cl Cl11	0.00000	0.50000	0.87500	1.000	1.000	1a	1
20	Cl Cl12	0.50000	0.00000	0.87500	1.000	1.000	1a	1

Table S8. Effective mass of electron (m_e^*) and hole (m_h^*) , reduced mass (μ_r) , bohr diameter (a_0) , dielectric constant (ϵ) , and exciton binding energy (E_b) values calculated by PBE–GGA, mBJ–GGA, and mBJ-GGA + SOC potentials.

Perovskites	m _e *	$\mathbf{m}^*_{\mathbf{h}}$	μr	a0 (nm)	ε(0)	E _b (meV)
CsPbBr₃	0.215 ^{PBE-GGA} 0.283 ^{mBJ-GGA} 0.049 ^{mBJ+SOC} 0.22 [1] 0.2 [2] 0.15 [3] 0.149 [4] 0.26 [5] 0.15 [6]	0.043 ^{PBE-GGA} 0.053 ^{mBJ-GGA} 0.045 ^{mBJ+SOC} 0.14 [1,3] 0.12 [2,5] 0.143 [4] 0.23 [5] 0.10 [5] 0.14 [6]	0.036 ^{pbe_gga} 0.045 ^{mbJ-gga} 0.023 ^{mbJ + SOC}	12.5 ^{pbe-gga} 8.1 ^{mbJ-gga} 5.5 [5] 4.2 [5] 7 [3] 5.8 ^{our paper}	4.69 ^{PBE-GGA} 3.82 ^{mBJ-GGA} 4.631 [7] 4.96 [3]	22 ^{PBE-GGA} 42 ^{mBJ-GGA} 58 ^{our paper} 70 [5] 106 [5] 40 [3] 35 [8] 40 [9]
CsPbBr2.75Cl0.25	0.133 ^{pbe_gga} 0.125 ^{mbj_gga} 0.061 ^{mBJ+SOC}	0.047 ^{pbe_gga} 0.058 ^{mbj_gga} 0.054 ^{mbj + soc}	0.035 ^{pbe-gga} 0.039 ^{mbJ-gga} 0.029 ^{mbJ + soc}	11.8 ^{pbe-gga} 8.8 ^{mbj-gga}	4.34 ^{pbe-gga} 3.59 ^{mBJ-gga}	25 ^{pbe-gga} 41 ^{mBJ-gga}
CsPbBr2Cl	0.119 ^{pbe_gga} 0.346 ^{mbj_gga} 0.067 ^{mbj+soc}	0.058 ^{pbe_gga} 0.073 ^{mBJ_gga} 0.063 ^{mBJ + SOC}	0.027 ^{pbe-gga} 0.060 ^{mbJ-gga} 0.032 ^{mbJ + soc}	14.9 ^{pbe-gga} 5.7 ^{mBJ-gga}	4.23 ^{pbe-gga} 3.57 ^{mBJ-gga}	21 ^{pbe-gga} 46 ^{mBJ-gga}
CsPbBr1.5Cl1.5	0.197 ^{pbe-gga} 0.255 ^{mbj-gga} 0.064 ^{mbj+soc}	0.046 ^{pbe_gga} 0.057 ^{mbj_gga} 0.055 ^{mbj + soc}	0.037 ^{pbe_gga} 0.047 ^{mbJ_gga} 0.029 ^{mbJ + soc}	10.6 ^{pbe-gga} 7.2 ^{mbj-gga}	4.12 ^{pbe-gga} 3.56 ^{mBJ-gga}	30 ^{pbe} -gga 50 ^{mbj} -gga
CsPbBrCl ₂	0.202 ^{pbe_gga} 0.255 ^{mbj_gga} 0.054 ^{mbj+soc}	0.037 ^{pbe-gga} 0.045 ^{mbj-gga} 0.045 ^{mbj + soc}	0.031 ^{PBE-GGA} 0.038 ^{mBJ-GGA} 0.025 ^{mBJ + SOC}	12.6 ^{pbe-gga} 8.9 ^{mBJ-gga}	4.10 ^{PBE-GGA} 3.55 ^{mBJ-GGA}	25 ^{pbe-gga} 41 ^{mBJ-gga}
CsPbBr0.25Cl2.75	0.197PBE-GGA 0.178 ^{mBJ} -GGA 0.067 ^{mBJ + SOC}	0.046 ^{pbe_gga} 0.057 ^{mbj_gga} 0.054 ^{mbj + soc}	0.037 ^{pbe-gga} 0.043 ^{mbJ-gga} 0.030 ^{mbJ + soc}	10.0 ^{pbe-gga} 7.6 ^{mBJ-gga}	3.89 ^{pbe-gga} 3.4 ^{mBJ-gga}	33 ^{pbe-gga} 50 ^{mBJ-} gga

Figure S1. Band structures and PDOS of (**a**) CsPbBr₃ and (**b**) CsPbCl₃ obtained using the mBJ–GGA potential.

References

- 1. Qian, J.; Xu, B.; Tian, W. A comprehensive theoretical study of halide perovskites ABX3. *Org. Electron.* **2016**, 37, 61–73, doi:10.1016/j.orgel.2016.05.046.
- 2. Chang, Y.H.; Park, C.H. First-Principles Study of the Structural and the Electronic Properties of the CsPbX3 and CH3NH3PbX3. *J. Korean Phys. Soc.* **2004**, *44*, 889–893.
- 3. Protesescu, L.; Yakunin, S.; Bodnarchuk, M.I.; Krieg, F.; Caputo, R.; Hendon, C.H.; Yang, R.X.; Walsh, A.; Kovalenko, M.V. Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut. *Nano Lett.* **2015**, *15*, 3692–3696, doi:10.1021/nl5048779.
- 4. Kang, Y.; Han, S. Intrinsic Carrier Mobility of Cesium Lead Halide Perovskites. *Phys. Rev. Appl.* **2018**, *10*, 044013, doi:10.1103/physrevapplied.10.044013.
- Tomanová, K.; Čuba, V.; Brik, M.G.; Mihóková, E.; Turtos, R.M.; Lecoq, P.; Auffray, E.; Nikl, M. On the structure, synthesis, and characterization of ultrafast blue-emitting CsPbBr3 nanoplatelets. *APL Mater*. 2019, 7, 011104, doi:10.1063/1.5079300.
- 6. Wu, K.; Liang, G.; Shang, Q.; Ren, Y.; Kong, D.; Lian, T. Ultrafast Interfacial Electron and Hole Transfer from CsPbBr3 Perovskite Quantum Dots. *J. Am. Chem. Soc.* **2015**, *137*, 12792–12795, doi:10.1021/jacs.5b08520.
- Ahmad, M.; Rehman, G.; Ali, L.; Shafiq, M.; Iqbal, R.; Ahmad, R.; Khan, T.; Jalali-Asadabadi, S.; Maqbool, M.; Ahmad, I. Structural, electronic and optical properties of CsPbX3 (X=Cl, Br, I) for energy storage and hybrid solar cell applications. *J. Alloy. Compd.* 2017, 705, 828–839, doi:10.1016/j.jallcom.2017.02.147.
- 8. Li, J.; Yuan, X.; Jing, P.; Li, J.; Wei, M.; Hua, J.; Zhao, J.; Tian, L. Temperature-dependent photoluminescence of inorganic perovskite nanocrystal films. *RSC Adv.* **2016**, *6*, 78311–78316, doi:10.1039/c6ra17008k.
- Du, W.; Zhang, S.; Shi, J.; Chen, J.; Wu, Z.; Mi, Y.; Liu, Z.; Li, Y.; Sui, X.; Wang, R.; et al. Strong Exciton– Photon Coupling and Lasing Behavior in All-Inorganic CsPbBr3 Micro/Nanowire Fabry-Pérot Cavity. ACS Photon- 2018, 5, 2051–2059, doi:10.1021/acsphotonics.7b01593.

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© 2020 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

7 of 7