

Supplementary Information

Ag₂O and NiO Decorated CuFe₂O₄ with Enhanced Photocatalytic Performance to Improve the Degradation Efficiency of Methylene Blue

Lu Liu ^{1,2,*}, Nan Hu ^{1,2,*}, Yonglei An ^{3,4}, Xingyuan Du ^{3,4}, Xiao Zhang ¹, Yan Li ¹, Yan Zeng ¹ and Zheng Cui ⁵

- ¹ School of Energy and Power Engineering, Changchun Institute of Technology, Changchun 130012, China; zhangx049@nenu.edu.cn (X.Z.); moon471285743@126.com (Y.L.); zengyan@ccit.edu.cn (Y.Z.)
- ² Jilin Province S&T Innovation Center for Physical Simulation and Security of Water Resources and Electric Power Engineering, Changchun Institute of Technology, Changchun 130012, China
- ³ Key Laboratory of Groundwater Resources and Environment, Jilin University, Ministry of Education, Changchun 130021, China; anyonglei85@jlu.edu.cn (Y.A.); duxy19@mails.jlu.edu.cn (X.D.)
- ⁴ Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130021, China
- ⁵ State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China; cuizheng18@mails.jlu.edu.cn
- * Correspondence: liulu@ccit.edu.cn (L.L.); hunan@ccit.edu.cn (N.H.)

Received: 2 September 2020; Accepted: 22 October 2020; Published: 25 October 2020

Figure S1. Dependance of photodegradation of MB dye on sintering temperature in Muffle furnace. (a) Degradation of MB in samples sintered at different temperatures; (b) The pseudo-first-order reaction kinetics for MB degradation with different samples.

Figure S2. Degradation of MB with Ni/CuFe₂O₄ and Ag₂O/CuFe₂O₄ under simulated solar irradiation. Experimental conditions: H₂O₂ 100 uL, Catalyst 10 mg. The degradation rates of MB by Ni/CuFe₂O₄ and Ag₂O/CuFe₂O₄ were 58.92% and 68.91% respectively, which are both higher than CuFe₂O₄(57.88%).

Figure S3. Effect of H_2O_2 dosage on the degradation rate of MB. (a) MB degradation with different H_2O_2 dosage; (b) The pseudo-first-order reaction kinetics for MB degradation with different H_2O_2 dosage.

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).