

Supplementary materials

Effects of Bacterial Nanocellulose Loaded with Curcumin and its Degradation Products on Human Dermal Fibroblasts

Marketa Zikmundova ^{1,*}, Maria Vereshaka ², Katerina Kolarova ², Julia Pajorova ¹, Vaclav Svorcik ² and Lucie Bacakova ¹

Received: 28 September 2020; Accepted: 22 October 2020; Published: 25 October 2020

Wave number (cm ⁻¹)	Primary assignment
3508	Stretching vibration of the OH
2971–2849	Stretch C–H vibrations
1697	Carbonyl vibration
1602	C=C symmetric stretching vibration in the aromatic ring
1505	C=O bond with double bond conjugation
1428	CH ₂ deformation vibration
1374	In plane C–OH vibration
1153	Plane bending vibration in C6H5OH
1025	Stretching C–O vibration in alkyl aryl ether
962	C=O and C-OH
940	Ferulic acid
855, 814	Hydrogen vibration

Table S1. The functional groups responsible for IR absorption.

Curcumin and its Degradation Products in the Culture Medium

Figure S1. Mitochondrial activity of human dermal fibroblasts grown in a pure cultivation medium and in media with unmodified curcumin (C), or with curcumin degraded at 180 °C (DC 180) or at 300 °C (DC 300) in various concentrations (0.01, 0.05, 0.1, and 0.5 mg/mL) on day 1 after adding the agent. Arithmetic mean \pm SD from 4 measurements, ANOVA, Student–Newman–Keuls method. Statistical significance (p \leq 0.05; depicted above the columns): * compared with cells cultivated in the pure medium; **C or DC 300** compared with cells cultivated in the medium with C or DC 300 of the same concentration.

Figure S2. Morphology of human dermal fibroblasts grown in a pure cultivation medium and in media with unmodified curcumin (C), or with curcumin degraded at 180 °C (DC 180) or at 300 °C

(DC 300) in various concentrations (0.01, 0.05, 0.1, and 0.5 mg/mL) on day 1 after adding the agent. The cells were stained with phalloidin-TRITC (red; F-actin cytoskeleton) and with DAPI (blue; cell nuclei). Olympus IX 51 microscope, obj. 10×, DP 70 digital camera.

Curcumin and its Degradation Products in Bacterial Nanocellulose

Figure S3. Morphology of human dermal fibroblasts on pristine bacterial nanocellulose (BC) and on nanocellulose loaded with pure curcumin (BC + C), or with curcumin degraded at 180 °C (BC + DC 180) or at 300 °C (BC + DC 300) at various concentrations (0.05, 0.1, and 0.5 mg/mL) on day 3 after cell seeding. The cells were stained with phalloidin-TRITC (red; F-actin cytoskeleton) and with DAPI (blue; cell nuclei). Olympus IX 51 microscope, obj. 10×, DP 70 digital camera.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).