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Abstract: We propose a design of cylindrical cloak for coupled in-plane shear waves consisting of
concentric layers of sub-wavelength resonant stress-free inclusions shaped as Swiss rolls. The scaling
factor between inclusions’ sizes is according to Pendry’s transform. Unlike the hitherto known
situations, the present geometric transform starts from a Willis medium and further assumes that
displacement fields u in original medium and u′ in transformed medium remain unaffected (u′ = u).
This breaks the minor symmetries of the rank-4 and rank-3 tensors in the Willis equation that describe
the transformed effective medium. We achieve some cloaking for a shear polarized source at specific,
resonant sub-wavelength, frequencies, when it is located in close proximity to a clamped obstacle
surrounded by the structured cloak. The structured medium approximating the effective medium
allows for strong Willis coupling, notwithstanding potential chiral elastic effects, and thus mitigates
roles of Willis and Cosserat media in the achieved elastodynamic cloaking.

Keywords: swiss rolls; chiral elastic cloak; Willis coupling; Cosserat medium; elastodynamic cloak;
transformation elastodynamics

1. Introduction

Following the work of Milton, Briane and Willis [1], a new field has emerged in metamaterials:
transformed elastic media make a region neutral to fully coupled cylindrical [2] and spherical [3]
elastic waves. There are various routes to elastic cloaking, which have been listed in [4,5], and we shall
focus here on one of these based on the concept of some unconventional effective dynamic properties
enabling both minor symmetry breaking in the rank-4 elasticity tensor and non-vanishing rank-3 and
2 tensors in the Willis model [6] near resonant frequencies of certain types of stress-free inclusions
shaped as Swiss rolls. Swiss rolls were introduced in the context of electromagnetic metamaterials for
artificial chirality by Pendry and co-workers [7], and such magneto-optic coupling recently found a
counterpart in elasticity [8–11].

2. Transformed Willis Equations and Minor Symmetry Breaking

We note that the idea of Willis media [6] described in the case of time-harmonic waves by

∇x · (C : ∇xu + S · u) + ρω2u = −D : ∇xu , (1)

with ω the angular wave frequency, the rank-4 elasticity tensor C with all its minor and major
symmetries, as well as the rank-3 elasticity tensors S and D such that Dpqr = −Sqrp, and the rank-2
(symmetric) density tensor ρ, was introduced as a promising route to elastodynamic cloaking and as a
solution to the non-invariance of the Navier equation under general change of coordinates [1].
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This was achieved thanks to a properly chosen gauge linking the displacement fields u and u′

through the Jacobian of the transformation. As pointed out in [2,3], if one assumes that u = u′ the
time-harmonic Navier equation

∇x · (C : ∇xu) + ρω2u = 0 , (2)

retains its form under coordinate change, but the elasticity tensor C loses its minor symmetry.
Other choices of the gauge lead to different types of transformed media [4].

In this article, we start from a Willis material, as our background material and transform it
into a new material with some specific properties. If we consider the coordinate change φ : x =

(x1, x2, . . . ) 7−→ x′ = (x′1(x), x′2(x), . . . ) and we impose that the displacement u = u′ in Willis’s
Equation (1), this equation is actually form invariant, but the tensors therein lose their minor
symmetries. This kind of transformed Willis medium therefore encapsulates some features of Cosserat
media and the expressions of transformed tensors C′, D′, S′ and ρ′ that reflect the minor symmetry
breaking are given in Appendix A.

3. Periodic Medium with Stress-Free Swiss Rolls and Resonances

Our observation of the possibility of a transformed Willis medium with Cosserat-like tensors
opens interesting avenues for the design of cylindrical elastodynamic cloaks via homogenization
approaches combining recent findings in metamaterials displaying strong Willis coupling [12,13]
and chiral elasticity features [8,11], as we shall see in the sequel. To exemplify the usefulness of
the transformed Willis equation with non-fully symmetric elasticity tensors, we propose to design
a microstructured cloak consisting of Swiss rolls displaying the usual features encountered in both
Cosserat and Willis media in the low frequency limit.

Let us first consider a simplified form of Navier equation that governs the propagation of
time-harmonic elastic waves in an isotropic homogeneous elastic medium

(λ + 2µ)∇∇ · u− µ∇×∇× u + ρω2u = 0 (3)

where λ and µ are the compressional and shear Lamé coefficients, ρ is the density and ω is the angular
wave frequency.

If the homogeneous medium is structured with inclusions, one can supply (3) with boundary
conditions, such as clamped u = 0 or stress-free σ(u) · n = (C : ε(u)) · n = 0 where C is the rank-4
elasticity tensor with entries Cijkl = λδijδkl + µ(δikδjl + δilδjk) and σ(u) and ε(u) are the rank-2 stress
and strain tensors with entries σij = λεkkδij + 2µεij and εij = 1/2(∂ui/∂xj + ∂uj/∂xi), respectively,
n being the outward pointing normal to the boundary of inclusions. It is then easily seen from the
Helmholtz decomposition u = ∇Φ +∇×Ψ , ∇ ·Ψ = 0 , with scalar (pressure related) and vector
(shear related) Lamé potentials Φ and Ψ that for stress-free inclusion, pressure (p) and shear (s) waves
in (3) are now coupled. Indeed, there is a conversion of p in s waves (and vice versa) at any stress-free
boundary, and this coupling has been used previously notably for opto-elastic switches in arrays of
stress-free holes in silica [14].

Let us now assume that a homogeneous medium is structured with a square array of stress-free
inclusions shaped as Swiss rolls invariant along the x3-axis, as shown in Figure 1. Thanks to
this invariance, we can consider in-plane coupled shear and pressure elastic waves on one hand,
with unknown (u1, u2, 0) and anti-plane shear waves with unknown (0, 0, u3) in (3), on the other hand.
We focus on the former. The periodicity of the cladding implies that the in-plane displacement field
u = (u1, u2) satisfies the Floquet–Bloch theorem:

u(x1 + d, x2 + d) = uk(x1, x2) exp(i(k1d + k2d)) (4)
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where k = (k1, k2) is the Bloch vector which describes the first Brillouin zone (BZ) ΓMX in the reciprocal
space, with Γ = (0, 0), M = (π/d, 0) and X = (π/d, π/d) and d the array pitch. One can then look for
eigenfrequencies ωk and associated Floquet–Bloch eigenfields uk solutions of (3), and by letting k vary
within BZ we compute some dispersion diagrams. We display in Figure 1 geometric characteristics of
the Swiss rolls under study (panels A, B) and associated dispersion curves along ΓM (green curves)
and MX (red curves), see panel C.

Figure 1. Geometrical characteristics and dispersion properties of the investigated model. (A) Geometry
of the entire cloak; (B) Zoom on an elementary cell; (C) Band diagram for a Bloch vector k running
along ΓM (k = (k1, 0) with k1 ∈ [0, π/d]) and along MY (k = (π/d, k2) with k2 ∈ [0, π/d]), showing
the effective medium is isotropic; (D) Zoom-in in the neighborhood of Γ, where one notes the avoided
crossings at resonances around 1 kHz and 8 kHz;. These dispersion curves serve as a guide for our
homogenized model with an inset showing the isofrequencies around the resonance (approximation of
a Willis-type medium).

One notes that flat bands correspond to localized modes associated with resonances of the Swiss
rolls that are reasonably well approximated (within 10% of error margin) by transverse vibrations a
corresponding unrolled beam with clamped conditions at one end and stress-free at the other end
(see e.g., Chapter 4 in [15]), in the similar way to what was done in [16] in the electromagnetic case.
This elementary model could be improved for instance using effective medium approaches detailed
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in [17,18]. It is also observed in panel D that wavespeed of s waves differs markedly along ΓM and MX
directions, which is interpreted as a dynamic anisotropic mass density (i.e. a symmetric rank-2 tensor).

4. Effective Properties and Cloaking

Let us now note that properties of the effective symmetric rank-4 elasticity tensor C,
rank-3 elasticity tensors S and D such that Dpqr = −Sqrp and rank-2 density tensor ρ are inferred from
a retrieval method such as what was done in [8,11], or alternatively from a direct Bloch-wave [19]
homogenization approach applied to the doubly periodic array of identical Swiss rolls in Cartesian
coordinates, see Figure 1. Thus far, the effective medium is a conventional Willis medium.

However, as explained in the previous section, transformation physics affects the Willis
Equation (1), although it retains its form if we assume that u = u′, and so when we apply Pendry’s
transform (which maps a disc onto a corona, thus creating a hole known as invisibility region, see [20])
to the doubly periodic array of Swiss rolls, the symmetry of the tensors in the effective Willis equation
gets broken, and besides from that tensors become spatially varying. Consequently, the effective
Willis equation describing the cloak with gradually varying Swiss rolls in Figure 2 has the form of
Equations (7)–(10) in Appendix A.

Therefore, when we map the doubly periodic array of Swiss rolls on a transformed medium using
Pendry’s transform, the transformed Willis medium now has built-in Cosserat features (i.e., a minor
symmetry breaking in some tensors). The Swiss roll-based cloak is an example that illustrates this
type of combined mechanisms, in which cloaking is due to both Willis and Cosserat materials. Indeed,
a wave is usually characterized by its polarization, a direction of the wavenumber, a frequency and
a rated velocity. The dynamic density can straightforwardly be omitted since we are exciting the
propagation at a unique nominal frequency. However, the inertial behavior of the Swiss rolls entails a
change in direction of the wave propagation to circumvent the obstacle and is naturally accompanied
by mode conversion (each inclusion becomes a secondary source of waves). Mathematically speaking,
this involves both the symmetry breaking of the fourth and third order elastic tensors in the Willis-type
equation. Our future goal is to rigorously quantify the weighting of each contribution regarding
geometrical and physical properties of the Swiss rolls. Interestingly, similar effective parameters for a
chiral Willis medium have been deduced from a retrieval method in [10] applied to the mechanical
metamaterial first introduced in [8] in the context Eringen equations [21,22], which are the counterpart
of bianisotropic equations in optics [23].

5. Physical Discussion of Band Diagrams

The magneto-optic coupling is actually easily seen using classical homogenization techniques
in [24], and same techniques could be applied to the effective medium description of the Willis coupling
for our array of Swiss rolls. In fact, one can alternatively deduce these features from the reading of
band diagrams. When a bunch of resonant elements meet the wave propagation, a strong coupling
between the so-called continuum and the resonators may occur. This can directly be identified in the
band diagrams in Figure 1 through band repealing between a polarized continuum and the flat mode
describing the energy trapping in the resonator. This level repulsion can reach its maximum with the
appearance of band gaps. The latter describes the energy prohibition inside the periodic structure
through a total reflection, energy storage or conversion to other types of modes. A straight crossing
between the bands reveals no interaction between the resonators and the continuum as has been
reported in [25]. In the latter paper, we have studied the possibility of a resonator to drastically change
the direction of the wave for focusing purposes. In Figure 1A, we show a sketch of the Swiss-roll-based
cloak with a zoom inset in Figure 1B. In Figure 1C, we depict the normalized band structure of a
periodic structure made of inclusions shaped in Swiss-roll resonators (Figure 1B). This band diagram
shows mainly the two modes longitudinal and transverse starting from Γ point and tremendous flat
bands describing the resonance frequencies of the inclusion. It is worth noting that the number and
the position of these bands in a given frequency range depend directly on the length of the spiral
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constituting the Swiss rolls, as can be inferred from our simple asymptotic model of unrolled Swiss
rolls borrowed from [16]. Hence, the cloak has been conceived in a way that most of the resonances
are gathered in a tiny range of frequency. This choice was made to optimize the functionality of the
inclusions while rolling. A zoom-in on the band structure near a resonance frequency is illustrated in
Figure 1D. We can clearly observe that the flat band and the continuum repeal slightly from each other
without creating a bandgap. Though the inclusion shaped as a Swiss-roll is a bad candidate to achieve
perfect reflectors, at this stage we are confident that this weak coupling to the continuum added to the
potential of the inclusion to rotate under an incoming wave would contribute drastically to deflect the
wave propagation. Furthermore, the level repulsion band anti-crossing between the flat mode and
the continuum depends on the direction of the propagation just as well as the inclusion orientation
(Figure 1D). To illustrate more this more or less strong coupling, we computed the isofrequency
contours. In the inset of Figure 1D, the latter were evaluated around a frequency resonance. To be
more consistent, let us split the Brillouin Zone into two subsurfaces; i.e., GXM and GYM. Three bands
(p, s and coupled p-s) are identified around the frequency 8 kHz and each one is extended barely the
same way in the two subsurfaces. If we look more closely we can notice that two kinds of anisotropy
can be observed. The first one is the position of the wavenumbers. We can remark that for both p and s
polarizations, the wave velocity toward GX is slightly fast compared to GY. The second anisotropy
concerns the wave trapping (or coupling between the continuum and the resonator). We stress here
that this coupling depends not on the wavevector but on the polarization of the wave (note the line
width of the curves).

We test our cloak in Figure 2 near resonances of the Swiss rolls, which have been scaled up
and down with respect to Figure 1, depending upon whether they are located on outer or inner,
rings of the cloak in Figure 2. We consider the frequency range from 9.6 to 9.9 kHz and pick up
some resonant frequencies of some Swiss rolls. Upon inspection of the case of a shear polarized point
source in homogeneous medium (first row), same source in the presence of a clamped obstacle without
cloak (second row), with cloak (third row) and with a cloak without the proper design (fourth row),
we deduce that cloaking is achieved i.e., the magnitude of the shear wave is recovered in forward
scattering in third column, although with a slight phase delay induced by the longer wave trajectory
induced by the cloak design. To exemplify the mechanism of the cloak, we show a magnified view of
these plots in Figure 3.
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Figure 2. In-plane shear elastic wave generated by a point force located at (x1, x2) = (0,−150) and
oriented along the x-axis. This S wave propagates within an isotropic homogeneous elastic bulk (here
PMMA) with a cloak centered at (0,0) of inner radius r1 = 1.5 cm and outer radius r2 = 4 cm and
consisting of 11 concentric layers of Swiss rolls made of a soft material (λ = 6.105 Pa and µ = 4.104 Pa).
The wave frequency ranges from 9.6 to 9.9 kHz. Please note that Cartesian elastic Perfectly Matched
Layers have been set on either sides of the square computational domain. First column is for the shear
polarized point source in PMMA (benchmark); Second column has a clamped obstacle centered at (0,0)
of radius r0 = 3 cm; Third column is for the source with clamped obstacle and cloak. Fourth column is
same when the Swiss rolls have been tilted through an angle β = π/2 about their gravity center, which
is a modified cloak (Mcloak). Scattering of clamped obstacle is reduced for cloak, unlike for Mcloak.
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Figure 3. Field plots as in Figure 2 but shown only around the cloak’s region.

6. Conclusions

In this article, we have proposed to approximate a Willis-type elastodynamic cloak with an
elastic isotropic medium structured with stress-free Swiss rolls of gradually varying sizes, according
to Pendry’s transform. We have considered a coordinate change φ such that u′(x) = u(x), in which
case the transformed Willis equation has the exact same structure as (1) , but with a transformed
elasticity tensor C′ without the minor symmetries and same for the rank-3 tensors. Note however
that the density could be a scalar, and in any case it is fully symmetric. The cloak we have designed
is thus neither totally of the Willis-type [1], nor totally of the Cosserat type [2,3]. Finally, we note the
alternative route of direct lattice transforms [26–28] towards elastodynamic cloaking, which does not
make use of resonant structural elements and thus follows a different protocol. In the near future,
we would like to compare numerically and experimentally the efficiency of our cloak’s design with
those in [27,28] in various scenarios. Finally, while completing the revised version of the manuscript,
we have been made aware of a related work on a Cosserat cloak [29].
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Appendix A. On Willis Medium with Cosserat Coefficients

We start from a Willis material with elasticity order 4 tensors Cw, order 3 tensors Sw, Dw and
mass density ρw satisfying the Willis Equations

0 = ∇x ·
(

Cw : ∇xu + Sw · u
)

+Dw : ∇xu + ω2ρwu
(A1)

We apply a transformation x 7→ x′ with Jacobian matrix J by requiring that the original and
transformed displacements be the same. Please note that this is the requirement applied to the
transformation scheme that produces Cosserat material, starting from a background material which is
isotropic homogeneous [2,3]. In this appendix, we pioneer a new scheme consisting on applying this
transformation technique to a Willis material, as our background reference material. As one can see
below, the resulting transformed material will satisfy the same equations as Willis equations, but will
however have elasticity tensor, hereafter denoted by Ccw, which no longer possesses minor symmetries.
The resulting tensors Scw and Dcw of order 3, still satisfy the identities Scw

ijk = −Dcw
kij , but now the

coefficients Scw
ijk and Scw

jik are generally not equal.

We apply a (general) transformation x = (x1, x2, . . . ) 7−→ x′ =
(

x′1(x), x′2(x), . . .
)

mapping

Ω ⊂ Rn to Ω′ ⊂ Rn and we further impose that the displacement u′ in the transformed material filling
Ω′, be the same as the displacement u in the background material (untransformed original material) in

Ω. We use the notations
(
∇xu

)
ij
= ∂uj/∂xi,

(
∇x′u

)
ij
= ∂uj/∂x′i and JT stands for the transpose of

the Jacobian J, with Jij = ∂x′i/∂xj. We next use the weak formulation of (1): for any test function φ,

0 =
∫

Ω

[
∇x ·

(
Cw : ∇xu + Sw · u

)
+ Dw : ∇xu + ρwω2u

]
· φ dx

=
∫

Ω

[
−
(

Cw : ∇xu + Sw · u
)

: ∇xφ

+
(

Dw : ∇xu + ρwω2u
)
· φ
]
dx

=
∫

Ω′

[
−
(

Cw : JT∇x′ u + Sw · u
)

: JT ∇x′ φ

+
(

Dw : JT∇x′u + ρwω2u
)
·Œ
]

det(J−1) dx′

(A2)

Simply further developing the above we deduce the following

0 = ∇x′ .
[
Ccw : ∇x′u + Scw · u

]
+Dcw : ∇x′u + ω2ρcwu

(A3)
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with

Ccw
ijkl = 1

det(J) ∑
p,q

∂x′i
∂xp

∂x′k
∂xq

Cw
pjql ,

Scw
ijk = 1

det(J) ∑
s

∂x′i
∂xs

Sw
sjk,

Dcw
ijk = 1

det(J) ∑
s

∂x′j
∂xs

Dw
isk = −Scw

jki ,

ρcw = 1
det(J)ρw.

(A4)

If we apply to the above the radial transformation (r, θ) 7→ (r′, θ′) := ( r2−r1
r2

r + r1, θ) in polar
coordinates, then the only non-vanishing coefficients of the Cosserat-Willis tensor Ccw are

Ccw
r′r′r′r′ = r′−r1

r′ Cw
r′r′r′r′ , Ccw

r′r′θθ = Cw
r′r′θθ ,

Ccw
r′θr′θ = r′−r1

r′ Cw
r′θr′θ , Ccw

r′θθr′ = Cw
r′θθr′ ,

Ccw
θr′r′θ = Cw

θr′r′θ , Ccw
θr′θr′ =

r′
r′−r1 Cw

θr′θr′ ,
Ccw

θθr′r′ = Cw
θθr′r′ , Ccw

θθθθ = r′
r′−r1

Cw
θθθθ .

Scw
r′ jk = r2

r2−r1

r′−r1
r′ Sw

r′ jk = −Dcw
kr′ j, j, k = r′, θ,

Scw
θ jk = r2

r2−r1
Sw

θ jk = −Dcw
kθ j, j, k = r′, θ′.

(A5)

and the Cosserat-Willis density is

ρcw =
r2

2
(r2 − r1)2

r′ − r1

r′
ρw. (A6)
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