

Thermal Upgrade of Enzymatically Synthesized Aliphatic and Aromatic Oligoesters

James W. Comerford ¹, Fergal P. Byrne ¹, Simone Weinberger ², Thomas J. Farmer ¹, Georg M. Guebitz ^{2,3}, Lucia Gardossi ⁴ and Alessandro Pellis ^{1,2,*}

- ¹ Green Chemistry Centre of Excellence, Department of Chemistry, University of York, Heslington, York YO10 5DD, UK; james.comerford@york.ac.uk (J.M.C.); fergal.byrne@york.ac.uk (F.P.B.); thomas.farmer@york.ac.uk (T.J.F.)
- ² Department of Agrobiotechnology IFA-Tulln, Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences, Konrad Lorenz Strasse 20, Tulln an der Donau 3430, Austria; simone.weinberger@boku.ac.at (S.W.); guebitz@boku.ac.at (G.M.G.)
- ³ Division Enzymes & Polymers, Austrian Centre of Industrial Biotechnology, Konrad Lorenz Strasse 20, Tulln an der Donau 3430, Austria
- ⁴ Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Piazzale Europa 1, 34127 Trieste, Italia; gardossi@units.it
- * Correspondence: alessandro.pellis@boku.ac.at or alessandro.pellis@gmail.com

Figure S1. Thermal upgrade of poly(1,4-butylene isophthalate) (PBI) conducted in air at 140 °C (left), 160 °C (centre), and 180 °C (right).

Figure S2. Enzymatically synthesized poly(1,4-butylene adipate) (PBA) before conducting any thermal upgrade.

Figure S3. Thermal upgrade of poly(1,4-butylene adipate) (PBA) conducted in air at 140 °C (left), 160 °C (centre), and 180 °C (right).

Figure S4. Thermal upgrade of poly(1,4-butylene 2,5-furanoate) (PBF) conducted in air at 140 °C (left), 160 °C (centre), and 180 °C (right).

Figure S5. Thermal upgrade of poly(1,4-butylene 2,4-pyridinoate) (PBP) conducted in air at 140 °C (left), 160 °C (centre), and 180 °C (right).

Figure S6. ¹H-NMR analysis of poly(1,4-butylene adipate) after the initial, solventless enzymatic synthesis step.

Figure S7. ¹H-NMR analysis of poly(1,4-butylene adipate) after the thermal upgrade conducted at 150 °C under vacuum.

Figure S8. ¹H-NMR analysis of poly(1,4-butylene adipate) after the thermal upgrade conducted at 140 °C under air.

Figure S9. ¹H-NMR analysis of poly(1,4-butylene adipate) after the thermal upgrade conducted at 160 °C under air.

Figure S10. ¹H-NMR analysis of poly(1,4-butylene adipate) after the thermal upgrade conducted at 180 °C under air.

Figure S11. ¹H-NMR analysis of poly(1,4-butylene isophthalate) after the initial, solventless enzymatic synthesis step.

Figure S12. ¹H-NMR analysis of poly(1,4-butylene isophthalate) after the thermal upgrade conducted at 150 °C under vacuum.

Figure S13. ¹H-NMR analysis of poly(1,4-butylene isophthalate) after the thermal upgrade conducted at 140 °C under air.

Figure S14. ¹H-NMR analysis of poly(1,4-butylene isophthalate) after the thermal upgrade conducted at 160 °C under air.

Figure S15. ¹H-NMR analysis of poly(1,4-butylene isophthalate) after the thermal upgrade conducted at 180 °C under air.

Figure S16. ¹H-NMR analysis of poly(1,4-butylene 2,5-furanoate) after the initial, solventless enzymatic synthesis step.

Figure S17. ¹H-NMR analysis of poly(1,4-butylene 2,5-furanoate) after the thermal upgrade conducted at 150 °C under vacuum.

Figure S18. ¹H-NMR analysis of poly(1,4-butylene 2,5-furanoate) after the thermal upgrade conducted at 140 °C under air.

Figure S19. ¹H-NMR analysis of poly(1,4-butylene 2,5-furanoate) after the thermal upgrade conducted at 160 °C under air.

Figure S20. ¹H-NMR analysis of poly(1,4-butylene 2,5-furanoate) after the thermal upgrade conducted at 180 °C under air.

Figure S21. ¹H-NMR analysis of poly(1,4-butylene 2,4-pyridinedicarboxylate) after the initial, solventless enzymatic synthesis step.

Figure S22. ¹H-NMR analysis of poly(1,4-butylene 2,4-pyridinedicarboxylate) after the thermal upgrade conducted at 150 °C under vacuum.

Figure S23. ¹H-NMR analysis of poly(1,4-butylene 2,4-pyridinedicarboxylate) after the thermal upgrade conducted at 140 °C under air.

Figure S24. ¹H-NMR analysis of poly(1,4-butylene 2,4-pyridinedicarboxylate) after the thermal upgrade conducted at 160 °C under air.

Figure S25. ¹H-NMR analysis of poly(1,4-butylene 2,4-pyridinedicarboxylate) after the thermal upgrade conducted at 180 °C under air.

© 2020 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).