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Abstract: To improve the corrosion performance of magnesium alloys in the marine environment, the
MAO, MAO–Cu2CO3(OH)2·H2O and MAO–Cu2P2O7 ceramic coatings were deposited on AZ91D
magnesium alloys in basic electrolyte and the discoloration mechanism of the Cu-doped MAO
coatings and the corrosion behavior of the three MAO coatings in the artificial seawater solution
were investigated by SEM, EDS and XPS. The results indicated that the formation and discoloration
mechanism of the brown MAO ceramic coatings were attributable to the formation of Cu2O in
the coatings. Though the three MAO coatings had a certain protective effect against the corrosion
of AZ91D substrate in the artificial seawater, the distinctive stratification phenomenon was found
on the MAO–Cu2P2O7 coated sample and the corrosion model of the MAO–Cu2P2O7 coatings in
the immersion experiment was established. Therefore, the brown Cu-doped MAO coatings were
speculated to significantly reduce the risk of the magnesium parts in marine environments.

Keywords: magnesium alloy; MAO coating; corrosion behavior; stratification phenomena; marine
environments

1. Introduction

The magnesium alloy is the lightest structure metal material, and is considered as the green
engineering material in the 21st century [1]. Now it is widely applied to the electronic industry,
aerospace industry, and auto industry [2,3]. However, for its poor corrosion resistance, magnesium
alloy, particularly as the magnesium alloy parts for outdoor applications, is confronted with great
challenges [4–7]. Many literatures have verified that the surface modification technique, such as chemical
conversion coatings, anodic oxidation, micro arc oxidation (MAO), organic coatings, vapor phase
processes, etc, is an effective way to change the surface composition and improve its corrosion resistance
of magnesium alloy [8–12]. MAO is a newly developed technology for the preparation of ceramic
coatings on aluminum, magnesium or titanium alloys to improve the corrosion resistance [10,13–16].
At present, the synthesis of white MAO coatings on magnesium alloy is a mature and universal
technology [16], but it has the same disadvantage as the chemical conversion coating technology,
which often causes the formation of the light spots on the surfaces of magnesium diecast components
and hardly meets the market demand of 3C (computer, communication and consumer) electronic
products. It has been reported that the colored MAO coatings can be formed by adding metal
salts in the electrolytes [17–24]. The black MAO coating containing V2O3 can be obtained on an
aluminum alloy surface by adding ammonium metavanadate into the commonly used (NaPO3)6

(sodium hexametaphosphate) and Na2SiO3 solution [21] and the black MAO coating with excellent
properties can also be prepared in the electrolyte with dichromate addition [22]. Moreover, it has been
reported that by adding potassium fluotitanate or sodium stannate into the base electrolyte, a yellow
or grey MAO coating can be formed on the surface of Mg alloys, respectively [23,24].
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Brown is a very important and common decorative color. Lee et al. [25] has reported that with the
addition of 3% and 5% Cu in the base electrolyte, the color of the MAO coating changes from brown
to dark brown and the corrosion resistance of the AZ91 alloy is significantly improved after being
treated with the micro-arc oxidation process, but the corrosion process and coloring mechanism of this
brown MAO coating are still not clear. Furthermore, the magnesium alloy parts with MAO coating for
lightweight are sometimes exposed to marine environment and the marine corrosion behavior of the
coatings has not been clarified. As a result, the application of magnesium alloy in a marine environment
is seriously restricted. In this study, a convenient process to fabricate the MAO coatings with brown
color on Mg alloys is introduced by adding alkaline copper carbonate and copper pyrophosphate in
the electrolyte and the white and two brown MAO coatings are prepared. Then, the microstructure,
formation mechanism and seawater corrosion behaviors of the coatings are investigated in detail.
Finally, the seawater corrosion mechanism of the MAO coatings is revealed, which is helpful for the
surface protection of magnesium alloy applied in marine environments.

2. Materials and Methods

AZ91D magnesium alloys were used as the substrate discs in the size of φ30 mm × 5 mm and
its nominal chemical composition (in wt. %) was Al 8.5–9.5 %, Zn 0.5–0.9 %, Mn 0.17–0.27 %, Cu
≤0.01, Ni ≤0.01, Si ≤0.01, Fe ≤0.004 and Mg balance. Before the micro arc coatings, the specimens were
prepared by means of standard metallographic procedure, such as coarse grinding, accurate grinding,
polishing with alumina waterproof abrasive paper up to 1200 grit and then ultrasonically degreased in
acetone for 10 min followed by rinsing with distilled water.

The MAO coatings were prepared on the specimen surface by using of micro arc oxidation
equipment (JHMAO-60, China) with the constant voltage of 420 V, the frequency of 400 Hz, the duty
cycle of 10% and the treatment time of 8 min. The base electrolyte solution was composed of 8.0 g/L
sodium silicate (Na2SiO3·9H2O), 5.0 g/L potassium hydroxide (KOH), 5.0 g/L potassium fluoride (KF),
1.0 g/L EDTA (C10H16N2O8) and 3.5 g/L potassium sodium tartrate (C4H4O6KNa·4H2O). The two
Cu-doped brown coatings were prepared by respectively adding 2.5 g/L basic copper carbonate
(Cu2CO3(OH)2·H2O) and 2.5 g/L copper pyrophosphate (Cu2P2O7) into the base solution and the
temperature of the electrotype with pH of about 13 was kept below 35 ◦C during the MAO process.

The thickness of the MAO coatings was measured by using TT240 eddy current thickness meter
with an accuracy of 0.1 µm. Six measurements were carried out evenly on the whole sample surface.
The surface morphologies and element distribution of the MAO coatings were analyzed by scanning
electron microscope (SEM) with Oxford Inca X-Max energy dispersive spectrometry (EDS). X-ray
photoelectron spectroscopy (XPS) with Al (mono) Kα irradiation at pass energy of 160 eV (AXIS
UTLTRADLD) was used to characterize the chemical bonds of the coatings. The binding energies
were referenced to the C 1 s line at 284.6 eV from adventitious carbon. The corrosion behavior of the
coated AZ91D magnesium alloy was evaluated by the immersion tests in the artificial seawater, whose
composition was shown in Table 1. Before the immersion test, the three MAO-coated specimens were
treated with epoxy resin to avoid the effect of defects at the edge of the samples, then immersed in the
artificial seawater solution for 14 days and the corrosion morphologies of the samples were observed
by SEM.

Table 1. Composition of artificial seawater in immersion test.

Chemical Reagents Concentration (g/L)

NaCl 24.53
MgCl2·6H2O 11.11

Na2SO4 4.09
CaCl2 1.16
KCl 0.70

NaHCO3 0.20
KBr 0.10
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3. Results and Discussions

The MAO–Cu2CO3(OH)2·H2O and MAO–Cu2P2O7 coatings on AZ91D magnesium alloys in
Figure 1 are prepared with the thicknesses of 8.4 µm, 9.1 µm and 9.6µm, respectively. It reveals that for
the more intense micro arc discharge many defects are observed at the edge of the sample in Figure 1b.
The microstructures of the three MAO coatings are given in Figure 2. It can be seen from Figure 2 that
the surfaces of the three MAO coatings are characterized by lots of micropores with the size range
from submicron to several micro scale, and different from the MAO and MAO–Cu2P2O7 coatings,
there are some bumps on the MAO–Cu2CO3(OH)2·H2O coating surface, which are formed by the
spark discharge and gas bubbles throughout the discharge channels during MAO process [26,27].
So it reveals that the addition of Cu2CO3(OH)2·H2O into the base electrolyte results in a strongly
intense micro arc discharge, which promotes the formation of large molten deposits (Figure 2c,d).
The elemental compositions of the three MAO coatings are examined by EDS in Table 2. Carbon (C) is
considered to be an impurity from the atmosphere or the electrolyte, F and Na are also presumed to
originate from the electrolyte or the AZ91D alloy substrate, P and Si are from the electrolyte and Zn
comes from the substrate which indicates that the thickness of the three MAO coatings is very thin.
Thus the three MAO coatings are mainly composed of Mg, O, Si and a little amount of C, F, Na species.
The presence of Si and O reveals that the components of the electrolyte have intensively incorporated
into the micro arc oxidation reactions to from the ceramic coatings [16]. Moreover, by addition of
Cu2CO3(OH)2·H2O or Cu2P2O7 into the electrolyte, a very small amount of Cu or Cu, P has been
respectively doped into the MAO–Cu2CO3(OH)2·H2O and MAO–Cu2P2O7 coatings to make the color
of the coatings change from white to brown. The discoloration mechanism of the MAO coatings will
be further discussed by using SEM + EDS and XPS.
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Figure 2. Surface morphologies of three MAO coatings on AZ91D magnesium alloy, (a) and (b) MAO,
(c) and (d) MAO–Cu2CO3(OH)2·H2O and (e) and (f) MAO–Cu2P2O7.

Table 2. EDS results of the MAO, MAO–Cu2CO3(OH)2·H2O and MAO–Cu2P2O7 coatings on AZ91D
magnesium alloy (at. %).

Coatings C O F Na Mg Si Zn Cu P

MAO 1.84 49.64 3.63 0.46 33.98 9.78 0.67 - -
MAO–Cu2CO3(OH)2·H2O 2.95 48.18 3.76 0.86 35.28 8.05 0.39 0.53 -

MAO–Cu2P2O7 2.35 49.42 4.45 0.21 32.42 7.27 1.17 0.74 2.81

The surface morphologies of the MAO–Cu2CO3(OH)2·H2O coatings formed at different oxidation
times are shown in Figure 3 and the corresponding EDS analysis results are listed in Table 3. As shown
in Figure 3a and Table 3, when the oxidation time is about 70 s, the surface morphology of the AZ91D
substrate is inhomogeneous at the moment of starting arc with two distinct regions: region I with a
damaged area caused by electrical break-down involving amount of O, F, Si and Cu elements from
the electrolyte and Mg and Zn alloying species from the substrate, and region II with a smooth
surface morphology and the scratches in the substrate including lower content of O, Si, Cu and
much higher content of Mg than those in region I, which indicates that the electrical breakdown
phenomenon does not occur in region II. With the prolongation of oxidation time, the surface of the
samples presents a typical porous feature and the pore size of the MAO coatings increases with the
oxidation time in Figure 3b–d; a similar micro arc process and the mechanism of the pore initiation and
the pore development are reported by some literatures [10,21]. However, it is worth noting that the
concentrations of O, F, Si, Cu, Mg and Zn elements are similar in the MAO–Cu2CO3(OH)2·H2O coatings,
the color of the coatings gradually becomes deeper with oxidation time, so it is very meaningful to
analyze the discoloration mechanism of the coatings.
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Figure 3. Surface morphologies of MAO–Cu2CO3(OH)2·H2O coatings formed with different oxidation
time on AZ91D magnesium alloy, (a) 70 s, (b) 100 s, (c) 120 s and (d) 180 s.

Table 3. EDS results of MAO–Cu2CO3(OH)2·H2O coatings formed with different oxidation time on
AZ91D magnesium alloy (at. %).

Oxidation Time C O F Mg Si Cu Zn

70 s—I 2.92 45.97 4.45 36.30 7.73 0.26 2.37
70 s—II 2.05 29.67 2.77 60.81 2.45 - 1.76

100 s 1.04 49.26 5.97 34.99 7.71 0.28 0.75
120 s 1.00 52.41 5.80 32.41 7.65 0.28 0.45
180 s 1.80 50.68 4.55 34.28 8.16 0.12 0.40

The chemical states of Cu, Mg and Si are investigated by using XPS in Figure 4. From the wide
spectra demonstrated in Figure 4a, Mg, O, Si and F elements are all found in the three MAO coatings
and Cu is detected in the MAO coating with MAO–Cu2CO3(OH)2·H2O or Cu2P2O7 addition by XPS.
The Cu2p3/2 spectrum consists of two peaks at the binding energies of 932 eV associated with Cu2O
and 939.7 eV corresponding to CuF2 in the brown MAO coating with Cu2CO3(OH)2·H2O addition
in Figure 4b. Figure 4c,d illustrate that the Mg2p peak at the binding energy of 47.8 eV and the Si2p
peak of 100.25 eV are individually assigned to MgO and SiO2. So, it can be concluded that the solute
ions (such as Cu and Si) from the electrolyte are involved in the growth process of the MAO coatings,
and the same results are found in the growth process of the MAO coatings on Ti substrate [28,29].
Therefore, it is the formation of the red Cu2O in the MAO coatings with MAO–Cu2CO3(OH)2·H2O
addition that results in the discoloration of the coatings.
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high-resolution XPS spectrum of MAO–Cu2CO3(OH)2·H2O coatings.

Figures 5 and 6 are the macro and micro surface appearances of the three MAO coatings immersed
in the artificial seawater solution for 14 days, respectively. Compared with Figure 1, it can be observed
from Figure 5 that the color of the three MAO coatings obviously changes and some corrosion products
are formed on the immersed coatings. The corrosion is more serious at the edge of the three MAO
samples due to the defects caused by micro arc discharge (Figure 1b) or the damage during the
embedding. It has been reported that once the corrosion reaction is initiated on the sample through
a pit or minute pore, the corrosive medium can come into contact with the substrate to form some
corrosion pits [30]. The elemental compositions of the three MAO coatings detected by EDS after the
immersion test are listed in Table 4. The three corroded MAO coatings are mainly composed of Mg
from the substrate and the artificial seawater and O from the electrolyte during the micro arc discharge,
and Si, Cu and F from the electrolytes and Cl, K and Ca elements from the artificial seawater are
also found in the corroded MAO coatings, which indicate that the MAO coatings are not completely
destroyed. From Figure 6, it is quite clear that the microstructures of the MAO coatings have a
significant change before and after the immersion test. The white MAO coating exhibits a relatively
uniform surface appearance with a high degree of porosity, some cracks and corrosion products as
shown in Figure 6a, which indicates that the AZ91D substrate is still protected by the coatings. The
MAO–Cu2CO3(OH)2·H2O coatings are relatively rougher and exhibit a stacking structure with limited
number of pores in Figure 6b. For the MAO–Cu2P2O7 coatings, besides many micropores and some
micro-cracks, there is a sedimentary layer with a lot of cracks in the coatings in Figure 6c and SEM
morphology and EDS analysis results of this MAO coating after the immersion test are shown in detail
in Figure 7 and Table 5. It can be seen from Figure 7 that the corroded coatings are divided into three
regions: region I (the inner layer near the Mg substrate), region II (the middle layer attached to the
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surface coating) and region III (the top layer). From Table 5, Mg, O, F and Si elements are found in the
region I and the atom percentage of these elements is similar to those in the MAO coating before the
immersion test. Moreover, Cl and Ca elements from the artificial seawater are not observed, indicating
that the MAO ceramic coatings in region I have not been destroyed. Region II is a dense layer attached
to the MAO coating, where the contents of Mg, Si and F elements dramatically decrease whereas the
contents of O element significantly increase compared with that in region I; both Cl and Ca elements
have been detected. It indicates that there is the interaction between the MAO coating and the corrosive
medium. In the case of region III, this layer is relatively thick and composed of some loose and porous
structure sediments, mainly containing O and Ca elements. It is well known that the deposition of
corrosion products can hinder the transfer of the charge and increase the inhibition of corrosion, so it
is believed that this thick sediment layer is very helpful to improve the corrosion behavior of the
MAO–Cu2P2O7 coatings in artificial seawater.
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Table 4. EDS results of the three MAO coatings immersed in artificial seawater for 14 days (at. %).

Coatings O Mg Zn Cu Si F Cl K Ca

MAO 48.03 29.17 1.66 - 5.72 7.05 0.35 0.26 0.81
MAO–Cu2CO3(OH)2·H2O 35.25 38.13 2.02 - 4.07 5.92 0.41 - -

MAO–Cu2P2O7 57.89 27.09 0.82 1.04 6.30 - 0.59 - 0.55
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Table 5. EDS results of the three layers of the MAO–Cu2P2O7 coatings immersed in artificial seawater
for 14 days (at. %).

Regions O Mg Si F Cl Ca

Region I 47.08 30.15 5.72 7.05 - -
Region II 60.47 25.42 2.37 - 0.73 2.57
Region III 71.34 0.61 - - - 22.09

From Figure 7 and Table 5, it has been learnt that the inner layer of the coatings is not destroyed
near the substrate during the corrosion process, a middle dense layer is formed in the corrosion solution
and the top thick deposition layer is of porous characteristics. Thus, a schematic diagram of the
MAO–Cu2P2O7 coatings during the immersion corrosion in the artificial seawater solution is shown in
Figure 8. Due to the eruption and condensation of molten materials caused by micro arc discharge,
the MAO coating normally has porous characteristics [31]. As a result, some interconnected micro
closed-pores exist inside the MAO ceramic layer in Figure 8a. As shown in Figure 8b, the corrosion
medium, especially Cl-, can seep into the interface between the electrolyte and the coatings through the
micropores during the corrosion process; these micropores are exposed to the corrosive medium due to
the oxygen concentration polarization between the interior holes and the interface. Then the corrosion
products accumulate in the micropores and form a dense corrosion product layer on the MAO coating
with the prolonging of the immersion corrosion time to prevent further corrosion of the coatings. Finally,
the further interaction between the substrate and the artificial seawater has effectively been prevented
by the corrosion product layer and the top calcium oxide-like thick porous layer forming on the middle
dense layer in the following corrosion process in Figure 8c, which can further prevent the corrosion
medium into the substrate to enhance its corrosion performance in the artificial seawater. Thus, it can
be concluded that the stratification phenomena have been found on the MAO–Cu2P2O7-coated sample
and similar results have also been reported in the literatures [32,33]. However, although there is no
Mg detected in the top sedimentary layer, for its loose and porous structure there is maybe a risk of
corrosion for AZ91D substrate with further extension of the corrosion process.
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Figure 8. Schematic diagrams of the immersion corrosion of MAO–Cu2P2O7 coating in the artificial
seawater. (a) Morphology of MAO coating before corrosion, (b) Morphology of MAO coating at the
initial stage of corrosion, (c) Morphology of MAO coating at the latter stage of corrosion.

4. Conclusions

(1) Brown MAO coatings on magnesium alloy can be prepared in the Na2SiO3 alkaline electrolyte
with copper pyrophosphate or copper carbonate as the colorant, and for strongly intense micro arc
discharge, some bumps appear on the Cu-doped MAO coatings.

(2) With the increase of reaction time, Cu in the colorant is fully involved in the formation of
the MAO–Cu2CO3(OH)2·H2O and MAO–Cu2P2O7 coatings on AZ91D magnesium alloys, and the
discoloration mechanism of these coatings are attributed to the formation of Cu2O in the coatings.

(3) After immersion in seawater for 14 days, the stratification corrosion microstructure with the
three layers named the inner layer, the middle dense layer and the top calcium oxide-like layer are
formed on the MAO–Cu2P2O7 coated sample, which is helpful to prolong the service life of AZ91D
magnesium alloys in artificial seawater.
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