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Abstract: The major hindrance for high-density application of two-terminal resistive random-access
memory (RRAM) array design is unintentional sneak path leakage through adjacent cells. Herein,
we propose a bilayer structure of Ta2O5/Al2O3-based bipolar type RRAM by evaluating the intrinsic
nonlinear characteristics without integration with an additional transistor and selector device.
We conducted X-ray photoelectron spectroscopy (XPS) analysis with different etching times to verify
Ta2O5/Al2O3 layers deposited on the TiN bottom electrode. The optimized nonlinear properties
with current suppression are obtained by varying Al2O3 thickness. The maximum nonlinearity
(~71) is achieved in a Ta2O5/Al2O3 (3 nm) sample. Furthermore, we estimated the comparative read
margin based on the I-V characteristics with different thicknesses of Al2O3 film for the crossbar array
applications. We expect that this study about the effect of the Al2O3 tunnel barrier thickness on
Ta2O5-based memristors could provide a guideline for developing a selector-less RRAM application.
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1. Introduction

The interest in developing an alternative storage device to overcome the scaling-limit issue has
been extensively growing during the past two decades [1–3]. Among the potential candidates for
next-generation non-volatile memory, resistive switching random-access memory (RRAM) has received
significant attention in recent years due to its noticeable resistive switching characteristics, such as fast
switching speed [4,5], low power consumption [6], complementary metal-oxide-semiconductor (CMOS)
compatibility [7], and multifunctional applicability, which is suitable for non-volatile memory [8–10],
logic in memory [11–13], and neuromorphic device applications [14–17]. The RRAM is generally
composed of a simple and compact metal-insulator-metal (MIM) structure, which has a major specialty
in minimizing cell size, as 4F2 (F is feature size for lithography) [18,19]. Recently, several cases have been
reported of fabricating a crossbar array for high integration using RRAM cells in various ways [20–22].
However, the crossbar array structure including two terminal RRAM cells has the issue about reading
disturbance between adjacent cells because of the sneak current issue. [23,24]. Several approaches
including one transistor-one resistor (1T-1R) [25], one diode-one resistor (1D-1R) [26], and one
selector-one resistor (1S-1R) [27] have been introduced to overcome this challenging issue. However,
in terms of spatial integration, the intrinsic nonlinear characteristic in RRAM is more desirable than
the above candidates. Numerous studies have analyzed the effect of nonlinear switching with various
material structures [28–32]. However, additional efficient methods are available to optimize and utilize
the selector-less property in more detail.

In this work, we propose the built-in nonlinear characteristics in Pt/Ta2O5/Al2O3/TiN devices to
realize the selector-less RRAM application. First, we confirm the comparative X-ray photoelectron
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spectroscopy (XPS) analysis by etching for a top-down layer with information from the investigated
material. Depending on the Al2O3 thickness, we investigate the detailed nonlinear switching performances
in both positive and negative bias to ensure high nonlinearity. The read margin from I–V characteristics
of the devices with different Al2O3 thickness is calculated using the half-bias scheme in crossbar array
application. We suggest the conceptual physical mechanism in the oxide layer to explain the specific effect
of Al2O3 modulation.

2. Experimental Procedure

The schematic configuration of the Pt/Ta2O5/Al2O3/TiN structure on the SiO2/Si substrate is
presented in Figure 1a, and the fabrication process is summarized in Figure 1b. First, we deposited
the TiN as a bottom electrode (BE) on a SiO2/Si substrate by direct current (DC) sputtering with the
thickness of approximately 100 nm. Afterward, the Al2O3 thin layer was deposited by thermal atomic
layer deposition (TALD) at 350◦C with different thicknesses for 1 nm, 3 nm, and 5 nm. We used
trimethylaluminum (TMA) and ozone (O3) as a precursor for Al and O, respectively [33]. Then we
deposited 15-nm-thick tantalum oxide (Ta2O5) as a main switching layer on the Al2O3 film by reactive
DC sputtering from a tantalum target with Ar (8 sccm) and O2 (12 sccm) at room temperature. Finally,
the 100-nm-thick Pt top electrode (TE) was deposited by e-beam evaporation and patterned through a
shadow mask containing a circular pattern with a diameter of 100 µm. We observed the cross-sectional
image from the transmission electron microscopy (TEM) in Figure 1c. The electrical properties in the
DC sweep and transient modes were measured using a semiconductor parameter analyzer (Keithley
4200-SCS and 4225-PMU ultrafast module, Solon, OH, USA).Transmission electron microscope (TEM)
and energy-dispersive X-ray spectroscopy (EDS) was conducted by the JEOL (JEM-2100F, Tokyo,
JAPAN). Moreover, we applied a voltage to the Pt TE, while the TiN BE was grounded during the DC
and pulse measurement.
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Figure 1. (a) Schematic illustration of Pt/Ta2O5/Al2O3/TiN device; (b) flow chart of device fabrication
of the device; (c) Cross-sectional transmission electron microscopy (TEM) image of the device.

3. Results and Discussion

In order to identify the chemical composition with a binding energy of Ta2O5/Al2O3/TiN structure,
we carried out the XPS analysis to verify the comparative atomic spectra by Ar+ etching from the
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surface. The detailed XPS working conditions are summarized in Figure S1. Figure 1a–c shows the XPS
spectra of Ta 4f, Al 2p, and Ti 2p, respectively. Ta 4f7/2 and Ta 4f5/2 peaks were centered at 26.3 eV and
28.2 eV, respectively, at the surface (0 s) [34]. Subsequently, the suboxide was detected after 5 s because
of the Ta-O-Al bond near the Ta2O5/Al2O3 interface [35]. For the Al 2p peaks shown in Figure 2b,
until the etching for 10 s, the Al 2p peak was undetectable because of the bulk Ta2O5 layer. The Al
2p peak was detected with 10 s after etching, indicating the Al3+ state (75.8 eV) of stoichiometric
Al2O3 [36]. The second peak with low intensity is related to combination of Ta 4f and Al 2p. After 20 s,
the sub-oxide peaks at a lower binding energy frequently appeared because of the formation of Al-O-Ti
near the Al2O3/TiN interface. The Ti 2p spectra contains the dominant two doublets of Ti2p3/2 (454.2 eV)
and Ti2p1/2 (460.15 eV) that stem from TiN in Figure 2c [37]. The other doublets at the low binding
energy were affected by a reaction in the Al2O3/TiN interface, such as TiON.
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Figure 2. XPS analysis by Ar+ etching of Ta2O5/Al2O3/TiN layer: (a) Ta 4f spectra of the Ta2O5 film;
(b) Al 2p spectra of the Al2O3 film; (c) Ti 2p spectra of the TiN bottom electrode.

To activate the oxygen ions/vacancies for the filament formation, a one-step electroforming process
was induced to make the low-resistance state (LRS) while limiting the compliance current (CC) of 1
mA, as in Figure S2. Note that the electroforming voltage increased with the thickness of the Al2O3

layer. The CC was confined to 1 mA in order to prevent the device from permanent breakdown during
the electroforming process. In Figure 3a–d, the experimental DC I–V characteristics of Pt/Ta2O5/TiN,
Pt/Ta2O5/Al2O3 (1 nm)/TiN, Pt/Ta2O5/Al2O3 (3 nm)/TiN, and Pt/Ta2O5/Al2O3 (5 nm)/TiN devices are
investigated to verify the nonlinear tendency depending on the thickness of Al2O3 layer. The results
suggest that inserting an Al2O3 layer from 1 nm to 3 nm reinforces the nonlinear switching characteristics
during the multiple cycles. In particular, the current increases abruptly, and then decrease gradually
with the voltage sweep in a positive region, indicating that it is like a complementary resistive switching
(CRS) curve. Note again that the current must be suppressed at low voltage to obtain a nonlinear
curve. Therefore, it is important that the Al2O3 tunnel barrier should be maintained with the insulated
property in the LRS (discussed in more detail later). The nonlinear property in the LRS loses for the
Pt/Ta2O5/Al2O3 (5 nm)/TiN device because a high forming voltage makes the current overshoot [38,39].
It should be noticed that the optimized Al2O3 thickness between the Ta2O5 and TiN layer is the most
important factor in ensuring the nonlinear characteristics after the electroforming process.
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Figure 3. Experimental I–V results of (a) Pt/Ta2O5/TiN; (b) Pt/Ta2O5/Al2O3 (1 nm)/TiN;
(c) Pt/Ta2O5/Al2O3 (3 nm)/TiN; (d) Pt/Ta2O5/Al2O3 (5 nm)/TiN devices.

To specifically analyze the nonlinear characteristics of the Pt/Ta2O5/Al2O3 (3 nm)/TiN device,
the SET process occurs with the CC of 1 mA by applying −2 V to turn into the LRS. On the other
hand, the RESET process occurs by sweeping from 0 V to 1.5 V to turn back to high resistance
state (HRS). The nonlinear I–V characteristics, which indicate the suppression of the current in a
low-voltage region, are clearly demonstrated by the Pt/Ta2O5/Al2O3 (3 nm)/TiN device structure in
Figure 4a. The nonlinearity is defined as the value of the current at read voltage (Vread) divided by
the current at half read voltage (V1/2read). In Figure 4b, the pulse current responses are observed
to demonstrate the nonlinear property of the Pt/Ta2O5/Al2O3(3 nm)/TiN device. The currents are
significantly suppressed when the applied voltages are low (<|1 V|). Figure 4c shows the statistical
distribution of the nonlinearity in both polarities for 4 devices. Especially, the maximum nonlinearity
(~71) is achieved by the Pt/Ta2O5/Al2O3(3 nm)/TiN device in a positive bias. The nonlinearity can be
improved by inserting an Al2O3 layer with appropriate thickness in both polarities.
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Figure 4. (a) Nonlinear I–V curve of Pt/Ta2O5/Al2O3 (3 nm)/TiN selector-less RRAM device. (b) Pulse
responses of suppressed characteristics in Pt/Ta2O5/Al2O3 (3 nm)/TiN device. (c) Comparison box plot
of nonlinear parameter in both polarities.

The most effective use of the nonlinear characteristics in the Pt/Ta2O5/Al2O3/TiN device is the
suppression of the sneak path to implement high-density crossbar arrays in Figure 5a. The RRAM cells
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with high nonlinearity have a strong immunity to overcome the sneak path interference [40]. The read
margin is considered to evaluate the relationship between the array density and nonlinear behaviors in
detail. Note that the read margin degrades with the increasing number of word lines because of a high
sneak path current through the adjacent cells with increasing array size [41]. For the calculation based
on Kirchhoff’s circuit law, the virtual two-terminal passive crossbar arrays (N rows × N columns)
can be simplified as the equivalent circuit and calculated from the measured I–V characteristics with
a half-bias read scheme [42]. The detailed process of calculation for the read margin is explained
in Figure S3. Figure 5b presents the read margin by a unified half-bias scheme in Pt/Ta2O5/TiN
device and Pt/Ta2O5/Al2O3(1, 3, 5 nm)/TiN devices. The array size (N rows × N columns) is extracted
by 10% criteria to evaluate a reliable sensing margin. Compared to the Pt/Ta2O5/TiN device and
Pt/Ta2O5/Al2O3(1, 5 nm)/TiN devices, the Pt/Ta2O5/Al2O3 (3 nm)/TiN device has a higher read margin
(~71) because of the highest nonlinearity through optimization of the Al2O3 thickness.
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To analyze the possible conducting mechanism process and the filamentary model of nonlinear
characteristics in the Pt/Ta2O5/Al2O3/TiN device, we divided the experimental I–V curve in a positive
bias into 4 regions to express the movement of oxygen vacancies in oxide layers (Figure 6a). The slope
in log-log fitting and the current is at a low voltage in region 1 because the Al2O3 layer somewhat
insulates the LRS. The Al2O3 tunnel barrier layer acts as the main role in nonlinear characteristics, by
suppressing the current at low voltage. When the oxygen vacancies are increased by an increased
electric field (E-field), Fowler–Nordheim (F–N) tunneling, which is one of the well-known conduction
mechanisms in the thin-film dielectric [43], can be the dominant conduction mechanism in Figure 6c.
It is also confirmed that the I–V curve in region 2 is well matched with ln (I/V2) vs. 1/V fitting for F–N
tunneling in Figure 6a [44]. When the electric field is strongly applied inside the Al2O3 tunnel barrier,
the barrier viewed from the metal electrode is deformed into a triangle, so that the movement of the
carrier becomes easier. In other words, the effective Al2O3 barrier becomes thinner. At the end of
saturation with the more increased E-field, the Al2O3 also has become activated to form a conducting
filament with high conductivity, and the device is changed to LRS for the set process in region 3,
as shown in Figure 6d. Then finally, in Figure 6e, the overinflated E-field elicits the filament breakage
in Figure 6e. The temporal LRS turns into HRS for a reset transition. These experimental results are
well matched with previously reported research [45–48].
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4. Conclusions

In summary, we proposed the intrinsic nonlinear characteristics in a Pt/Ta2O5/Al2O3/TiN RRAM
device considering the Al2O3 thickness effect. The optimized bilayer device (3-nm-thick-Al2O3) shows
better nonlinearity. The improved read margin in Al2O3 inserted devices are verified by the half-bias
scheme simulation in cross-point structure. The XPS study verified the chemical state/element of the
Ta2O5/Al2O3/TiN layer. The nonlinear properties are explained by the E-field-dependent conducting
filament model process. This result can provide the feasibility of the selector-less RRAM approach in
cross-point array structure.
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