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Abstract: The use of a continuum structural model for the analysis of masonry structures in the plane
stress state is discussed in this paper. Attention is paid to orthotropic masonry at the material level
and validation of the model after its implementation in a proprietary finite element method (FEM)
system via user-supplied subroutine. The constitutive relations are established in the framework
of the mathematical elastoplasticity theory of small displacements and deformations. Based on
the orthotropic failure criterion that was originally proposed by Hoffman in the spatial stress state,
the model includes a generalization of the criterion in the plane stress. As it is the case for isotropic
quasi-brittle materials, different yield surfaces are considered for tension and compression, which are
both of Hoffman type.
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1. Introduction

The mechanical behavior of masonry is subjected to various influencing factors, mostly resulting
from its complicated mesoscopic and microscopic structure and two basic materials used. Therefore,
different modeling approaches are available for the numerical simulation of the mechanical behavior of
masonry structures. Extensive research has been conducted on the development of advanced numerical
modeling and the analysis of historical masonry structures for several decades [1–4]. However,
a macroscopic approach is required for the viable analysis and the prediction of global structural
behavior. The macroscopic composite behavior of masonry can be described assuming a homogeneous
continuum and an anisotropic material with directional properties. This alternative of the constitutive
modeling proved to be promising in two-dimensional problems, especially for models with closed
form of the failure, yield, or limit surface. Some constitutive macro-models that are relied on for the
finite element method (FEM) are widely used in the last decades with a different degree of complexity
and idealizations—from initial models with simply isotropic, linear elastic behavior to advanced
models with non-linear orthotropic behavior that are recently developed in the framework of modern
concepts of continuum damage mechanics.

More considerable interest in the biaxially loaded masonry began more than forty years ago,
in the late seventies of the last century, both by experiments and theory. In general, experiments
were mainly carried out at that time concerning the failure of shear walls. They were usually related
to the proposed failure criterion for the masonry in the plane state of stresses in the representative
form of the particular tests that had to be involved [5,6]. The representative biaxial test for walls built
with any kind of masonry elements was conducted very seldom because of the technical difficulties.
The biaxial test data of Page [7,8] were interpolated in [9] in the form of a failure criterion. The criterion
was written using three failure surfaces in the form of elliptic cones expressed by a second-order
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polynomial of stress components in the reference axes coaxial with masonry layers and without any
reference to the observed distinct failure modes of masonry panels. On the other hand, an important
composite failure criterion which was derived based on the four different failure mechanisms was
proposed in [10]. This criterion was next used in the FEM-based constitutive model in [11].

There have been few attempts to use a single failure surface in constitutive models of masonry
panels because of the non-acceptable fit of experimental values. The general orthotropic failure
criterion of Tsai-Wu [12] was already available for composite materials since 1971. The use of this
criterion for masonry was attempted in [13] in the form of a polynomial function of the second degree
in stresses. A criterion in the form of a double pyramid with a rectangular base and the slope angle
equal to the internal friction angle of the material was assumed in [14]. The non-acceptable fit of
Page’s experimental values resulting from the Hoffman [15] single surface criterion was discussed
in [16], although the criterion itself as a single limit condition is quite flexible and attractive to use.
The phenomenological single-surface constitutive model cannot also distinguish between different
failure modes. In the framework of computational plasticity, the use of a composite yield criterion
containing several failure criteria seems to overcome this drawback. The choice of two failure surfaces,
one for the tension regime and the second one for the compression regime, provides better agreement
with Page’s experimental results. To describe the orthotropic behavior of masonry, two orthotropic
yield criteria were used in [17], where a hydrostatic pressure insensitive material of a Hill-type as the
yield criterion for compression together with a Rankine-type yield criterion for tension were assumed.
The composite criterion containing three failure surfaces, each of them being for tension, compression,
and shear regimes, allows distinguishing between different failure modes [18]. Contours consisting of
a few surfaces are characterized good compatibility with the experimental results—see, e.g., [19,20]
and [18,21]. However, this approach seems to be too demanding a computational task of plasticity.

Concerning masonry inelastic behavior, the closed-form macro-models are more efficient and
suitable for complex structural computations. Some constitutive models that are recently developed in
the framework of modern concepts of continuum damage mechanics are based on the assumption that
the masonry axes of the bed and head joints are also damage principal axes. Usually, scalar damage
parameters are assumed in each direction of the fixed axis, see for instance [14], where two independent
scalar parameters in each direction of the material axis were used and their evolution is described by
the energy-based approach. A similar approach in the framework of computational plasticity was
used in [17], where the principal directions of damage are fixed and aligned with the initial orthotropy
axes and softening/hardening relationships were adopted for the stress–strain diagrams in tension
and compression, with different fracture energies along the axes of each material. The energies were
coupled by a single scalar internal parameter used in the plasticity algorithm to measure simultaneously
the amount of softening/hardening in two material axes. The main drawback of the closed-form
orthotropic macro-models is the identification of the material parameters. To estimate macro-scale
properties from mortar and brick parameters and their bonding, homogenization techniques can
be used, both in elastic as well as plastic behavior, e.g., [22–24]. An alternative option is to transfer
the identification problem to the level of masonry constituents by using multi-scale methods, e.g.,
[18,20,21], or to use methods developed recently for modeling of anisotropic quasi-brittle fracture,
e.g., the so-called phase-field fracture model in the diffusive damage mechanics [25–27].

A continuum damage model in which the orthotropic behavior is simulated using a mapping
relationship between the orthotropic behavior and an auxiliary model has been recently published
in [28]. By using the concept of the mapped stress tensor the problem can be more efficiently solved in
the mapped space and the results can be transported to the real field. Two distinct isotropic failure
criteria are assumed in the mapped space and two stress transformation tensors are adopted. In the
paper, the computational representation of complex failure loci obtained by experiments on orthotropic
masonry is also presented.

This paper discusses an extension of the approach presented in [17]. Although the extension can
be done both in a plane stress state as well as in a spatial stress state, the constitutive model with the
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generalization of the Hoffman criterion in a plane stress state is discussed here. Two orthotropic failure
criteria are used, which are formulated in the framework of the representation theory of orthotropic
tensor functions based on the Hoffman criterion [15]. The use of two Hoffman-type failure criteria as
the yield criteria in the plasticity model seems to be particularly attractive and may give the better fit
of the experimental values [29,30]. The composite masonry is treated as a homogenized orthotropic
continuum. Since the failure criteria are scalar-valued functions of the stress tensor, the invariant
representations of these criteria are dependent only on orthotropic invariants of the stress tensors.
It is also the purpose of the paper to show the possibility of formulating robust numerical algorithms
of the model implementation into a commercial finite element code at the integration point level
using user-defined subroutines. Some tests of the proposed numerical algorithm for an anisotropic
continuum are presented in the paper, both at the single element level and at the structural level and
in the plane stress state.

2. The Orthotropic Hoffman-Type Failure Criteria in an Invariant Form

To model such effects as a marked difference observed between strengths in tension and
compression, Hoffman [15] proposed a fracture criterion for brittle orthotropic materials as an extension
to the Hill yield criterion. The criterion was proposed in the spatial stress state and in the {mi} frame
of reference that coincides with the axes of orthotropy. The criterion was originally described by the
function with nine material constants Ci that are dependent on the three uniaxial tensile strengths Yti
and the three uniaxial compressive strengths Yci, along with the orthotropy directions i and also on
the three shearing strengths kij on the planes of material orthotropy. In the case of the plane stress
state, when the normal vector to the stress plane is coincided with the axis of orthotropy n = m3 = b3

(Figure 1), stress components σ33 = σ31 = σ23 = 0 and the Hoffman criterion:

C1(σ22 − σ33)
2 + C2(σ33 − σ11)

2 + C3(σ11 − σ22)
2+
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takes the following form with the six material constants:

C1(σ22)
2 + C2 (σ11)

2 + C3(σ11 − σ22)
2 + C4 σ11 + C5 σ22 + C9 σ2

12 − 1 = 0 , (3)

where the constants C1 ÷ C3 are dependent on uniaxial strengths Yt3 and Yc3 in the direction
perpendicular to the stress plane.

The theory of tensor functions together with the theorems on their representations has been
recognized to be an efficient mathematical tool for the formulation of constitutive relationships with
both the desirable analytical clarity and required generality.
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Figure 1. Axes of orthotropy {mi} and a Cartesian system {bi}.
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For some other recent applications of tensor functions see, e.g., [31,32]. It also allows accounting
straightforwardly the invariance requirements of the principle of the space isotropy and the material
symmetries so that the orientation of the material in space does not affect on its constitutive relation.
Using this theory with Boehler’s results [33], we can assume that the orthotropic criterion (3) is a
particular case of the more general scalar-valued orthotropic function of three invariants tr (M1σ),
tr (M2σ), trσ2 of the following form:

f
(

tr (M1σ) , tr (M2σ) , trσ2
)
− 1 = 0 , (4)

where σ is the symmetric plane stress tensor (σ ∈ Ts
2 , dimTs

2 = 3) and Mα are the parametric (structural)
tensors defined as:

M1 = m1 ⊗m1, M2 = m2 ⊗m2. (5)

The unit vectors mα are the privileged directions of the orthotropic material, so they have to
be perpendicular to each other. The invariants are very useful for the interpretation of the failure
surface in any coordinate systems of the plane stress tensor that are different from the principal axes of
orthotropy. Following the paper [34] or [35], we can choose another set of invariants Kp in the form:

K1 = tr (M1σ) , K2 = tr (M2σ) , K3 = trσ2 − (tr (M1σ))
2 − (tr (M2σ))

2 , (6)

where the symbol “tr” denotes the trace of a second order tensor (tr(AB) = AijBij). The form (6) is
very convenient because in the {mα} axes the invariants are:

K1 = σ11, K2 = σ22, K3 =
(√

2σ12

) 2
. (7)

Using the invariants (7), the criterion (3) can be treated as a particular case of the criterion
proposed in [34] and may be written in the following invariant form:

f (Ki)− 1 = aαKα + bαβKαKβ + cK3 − 1 = 0, (8)

where α, β = 1, 2 , i = 1, 2, 3 and the material constants are defined as:

aα =
1

Ytα
− 1

Ycα
, b11 =

1
Yt1Yc1

, b22 =
1

Yt2Yc2
,

b12 =
1
2

(
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− 1
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)
, c =

1
2k2

12
.

(9)

Note that in the constant b12 there are again uniaxial strengths Yt3 and Yc3 in the direction
perpendicular to the stress plane.

The criterion (8) can be also written in the following invariant form:

1
2
σ · P ·σ+ p ·σ− 1 = 0 , (10)

where a dot means a double contraction of two tensors, p is the symmetric tensor function of the
second-order:

p = a1M1 + a2M2, (11)

P is the double symmetric tensor function of the fourth-order:

P = 2b11M1 ⊗M1 + 2b22M2 ⊗M2 + 2b12 (m1 ⊗m2 + m2 ⊗m1) + cM (12)
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with the fourth-order tensorM:

M = 4 N⊗N , N =
1
2
(m1 ⊗m2 + m2 ⊗m1) . (13)

Several criteria proposed in the literature for orthotropic materials are special cases of the quadratic
limit surface (8), including an elliptic failure surface according to Tsai and Wu [12] and criteria
discussed recently in [30]. However, a phenomenological single-surface model may give an insufficient
description of the mechanical behavior. It does not permit easy identification of failure modes and
thus renders the description of different post-failure mechanisms very difficult. At least two failure
criteria should be taken into consideration, the one for the compression regime and the second for
tension regime. Each of them may be of the form (8) as proposed in [34] where the failure criterion
for orthotropic materials in the spatial stress state is represented by two quadratic functions of the
six invariants of the stress tensor and parametric tensors. It may more accurately describe the failure
data distribution than classical limit surfaces, although it may include fifteen independent material
parameters for the description of failure surfaces. On the other hand, the concept of a smooth
single-surface description seems to be attractive from a numerical point of view and also allows for
modeling of different inelastic behavior by changing size, shape, and location of a quadratic state
function according to the form (8) in orthotropic stress space.

It is possible to propose a generalization of the Hoffman criterion for the orthotropic material in
the plane state of stresses. The determination of the six material parameters in the criterion (3) requires
six strength tests. The five standard tests are uniaxial loading along the axes of orthotropy (two tests
for tension and two for compression) and the shearing test in the plane of stresses. If the test of the
uniform biaxial compression is used for determining the strength Ycc as the sixth test in addition to
conventional tests, we will get the criterion in the invariant form (8) or (10), in which the material
parameter b12 is changed to the form:

b(1)12 =
1

2Y2
cc
− 1

2Yt1Yc1
− 1

2Yt2Yc2
+

1
2Ycc

(
1

Yt1
+

1
Yt2
− 1

Yc1
− 1

Yc2

)
. (14)

If as the additional test we will use the test of the uniform biaxial tension for determining the
strength Ytt, we will get the criterion in the invariant form with the following material parameter b12:

b(2)12 =
1

2Y2
tt
− 1

2Yt1Yc1
− 1

2Yt2Yc2
− 1

2Ytt

(
1

Yt1
+

1
Yt2
− 1

Yc1
− 1

Yc2

)
. (15)

Note that now there are not the uniaxial strengths Yt3 and Yc3 in the material constant b12. Finally,
using two functions of the form (8) or (10), one with the parameter (14) for compression regime
f1(Ki)− 1 = 0 and the second with the parameter (15) for tension regime f2(Ki)− 1 = 0, we can
construct the composite failure criterion in such a way that the following set:

B = B1 ∩ B2 ∧ Bα ≡ {σ ∈ Ts
2 | fα(Ki)− 1 < 0} , (16)

is convex and
fα(Ki)− 1 = a(α)α Kα + b(α)αβ KαKβ + c(α)K3 − 1 = 0, (17)

We can also assume that c(1) = c(2) ≡ c and a(α)α = aα, b(α)αα = bαα for simplification and we then
have the following seven material parameters: the two uniaxial tensile strengths (Ytα > 0), the two
uniaxial compressive strengths (Ycα > 0), the pure shear strength (k12 > 0), the biaxial uniform
compressive strength Ycc > 0 and the biaxial uniform tensile strength Ytt > 0. This procedure is
proposed in the paper [34], although the number of material parameters may be increased to 12 even
though some of them can be used just to adjust failure surfaces to experimental data.
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Figure 2 shows the criterion in the orthotropy axes with the following parameters for material:
simple shear strength k = 0.4 [MPa], vertical compression strength Yc2 = 6.34 [MPa] and vertical tensile
strength Yt1 = 0.31 [MPa] perpendicular to the horizontal joint, compression strength Yc1 = 4.95 [MPa]
and tensile strength Yt2 = 0.14 [MPa] parallel to the horizontal joint, biaxial uniform compression
strength Ycc = 9.0 [MPa] and biaxial uniform tension Ytt = 0.14 [MPa]. Figure 2a shows general
view and Figure 2b cross section of σ12 = 0 (solid line) with contours every 0.2 [MPa] (dashed lines).
Figure 2c shows cross section of σ22 = −6.34 [MPa] (solid line) with parallel contours every 0.81 [MPa]
(dashed lines). Figure 2d shows cross section of σ11 = −4.95 [MPa] (solid line) with parallel contours
every 0.81 [MPa] (dashed lines).

s
s

22
11

Yt2

-Yc1

-Yc2

Yt1

Ytt

s122

(a)

s22

s11Yt2 Ytt-Yc1

-Ycc

-Yc2

Yt1

(b)

s11

s122

(c)

s22

s122

(d)

Figure 2. Criterion in orthotropy axes: (a) 3D view, (b–d) contours (described in text).

An alternative connection of two surfaces is proposed, different from that used in [34], which is
shown schematically in Figure 3. It allows for shifting a common edge. Figure 3 shows the method for
constructing a boundary surface of the criterion in the normal stress components, in the orthotropy axes
(at zero shear stresses). The surface in the tension range conventionally adopts compressive strength
values Yt

cα greater than twice those for the area of the compression range Yc
cα, that is Yt

cα = 2 Yc
cα. On the

other hand, the surface in the compression range conventionally adopts tensile strength Yc
tα, by making

them the value of compressive strength Yc
cα. It is assumed that they will be two-fold smaller, that is

Yc
tα = 0.5 Yc

cα.



Materials 2020, 13, 4064 7 of 24

Y
c c

c

s
11

Yc 2

c

Y =2
c 2

t c

Y
c 2

Y =0.5t 1

c c
Yc 1

Yt 1

t

Yt 2

t

Y =0.5t 2

c c
Yc 2

Yc 1

c

Y =2c 1

t c
Yc 1

compression -Y
c tension -Y

t

s
22

Yt t

t

Figure 3. The proposed criterion and material parameters determining the surfaces.

3. Comparison with the Experimental Results

The composite failure criterion is shown in Figure 4 in the orthotropy axes and in comparison
with one of the most complete sets of experimental data of biaxially loaded masonry that was given by
Page [7,8], who tested 102 panels of half-scale solid clay brick masonry. Tested elements were made
on a scale of 1:2 with dimensions 360 × 360 × 50 [mm]. Tests were differentiated due to the rotation
of the principal stress terms of the horizontal joint (axis of the material). The ratio of the principal
stresses was changed so that the wall was considered in any possible state of stress. The following
values of the parameters are adopted: axial tensile strength along the horizontal joint Yt1 = 0.43 [MPa]
and perpendicular to it Yt2 = 0.32 [MPa], the axial compression strength along the horizontal joint
Yc1 = 8.74 [MPa] and perpendicular to it Yc2 = 8.03 [MPa], the pure shear strength k = 0.33 [MPa],
uniform biaxial tensile strength Ytt = 0.32 [MPa] and compression strength Ycc = 8.38 [MPa]. Good
agreement was found in the shape of the failure surface for principal stresses, which may mean
that the criterion would appear to be sufficiently well validated for further investigations. Finally,
the Rankine–Hill failure criterion [16] is shown in Figure 4 by dashed lines as a comparison to the
proposed criterion.
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Figure 4. Comparison of the proposed criterion with the experimental results of Page [7,8] depending
on the inclination axes of orthotropy relative to the principal axis: (a) φ = 0.0, (b) φ = 22.5, (c) φ = 45.0.
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Another discussed example is the comparison of the proposed failure criterion with the results of
the experimental research from work [36]. The research program was carried out at the ETH Polytechnic
in Zurich. Ganz and Thürliman’s team investigated biaxially loaded wall panels (designated K1–K12)
with dimensions of 1200 × 1200 × 150 [mm3] and with different orientation of material axes to the
principal stress directions. The results of experimental tests [36] are presented in Table 1 excluding
two tests (K5 and K9), which concerned samples of reinforced walls. The second column of the
Table 1 contains the proportion of stresses, while the third column gives the angle by which the system
of material axes has been rotated to the load directions. The ratio of principal stresses allows the
direction of the load path to be determined. The intersection point of the load path direction with the
criterion surface determines the stress state, the components of which are placed in columns 7–9 of
the Table 1. The criterion surfaces are determined by the following parameters [MPa]: for a tension
regime — Yt1 = 0.28, Yt2 = 0.01, Yc1 = 3.74, Yc2 = 15.72, kt = 0.048, Ytt = 0.01 and for a compression
regime — Yt1 = 0.94, Yt2 = 3.81, Yc1 = 1.87, Yc2 = 7.61, kc = 2.868, Ycc = 2.06. The anisotropy ratio
of the compressive strength is Yc2/Yc1 = 4.07 and is related to the arrangement of cores in ceramic

masonry elements. The length of the load vector should be determined as
√

σ2
11 + σ2

22 + 2σ2
12. The last

column of the Table 1 presents the values of the ratios of the length of the vectors resulting from the
experiment and from the initial surfaces of the proposed criterion. The results show good compliance
of the criterion with the experimental results.

Table 1. Comparison of the proposed criterion with the experimental results of [36].

Experimental Numerical
Panel σ1

/
σ2 φ [MPa] [MPa] Exp/Num

[◦] σ11 σ22 τ12 σ11 σ22 τ12 [-]

K1 −0.09 22.5 −0.08 −0.92 0.42 −0.09 −1.04 0.47 0.88
K2 −0.05 22.5 −0.17 −1.42 0.62 −0.17 −1.35 0.59 1.05
K3 0.0 0.0 0.00 −7.63 0.00 0.00 −7.61 0.00 1.01
K4 0.0 90.0 −1.83 0.00 0.00 −1.87 0.00 0.00 0.98
K6 0.0 45.0 −0.32 −0.32 0.32 −0.43 −0.43 0.43 0.74
K7 0.0 22.5 −0.39 −2.25 0.93 −0.37 −2.15 0.89 1.05
K8 0.0 67.5 −0.22 −0.04 0.09 −0.22 −0.04 0.08 1.01

K10 0.33 0.0 −2.11 −6.44 0.00 −2.02 −6.15 0.00 1.05
K11 0.31 22.5 −2.04 −4.49 1.23 −2.02 −4.46 1.22 1.01
K12 0.30 45.0 −2.03 −2.03 1.08 −2.01 −2.01 1.07 1.01

Figure 5a shows the initial surface of the criterion with points marked on the surface, indicating
the stress limits of individual experimental tests conducted by Ganz and Thürliman. Analyzing the
contour lines, it can be seen that most of the safe area is limited by the tensile regime. This is more
clearly seen in Figure 5b,c, in which the plane cross-sections of the criterion are shown. One can see
cross-sections with assigned to them, the values of the ultimate stress obtained from the individual
experimental tests which are marked with diamonds.
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Figure 5. Comparison of the proposed base contour of the failure surface with the experimental results
of Ganz and Thürliman [36]: (a) 3D view, (b) by cross sections of the body with σ22 = const, (c) by cross
sections of the body with σ11 = const.

At the ETH Polytechnic in Zurich, a test program for walls made of concrete, hollow masonry
elements ZSW1-ZSW12 was also carried out [37]. The results of the experimental tests are given in
Table 2, and in Figure 6. Figure 6a shows failure surface of the criterion with the experimental results
of [37]. Figure 6b,c shows cross-sections with planes of the constant normal stress. A position of the
yield stress from experimental tests are marked with diamonds.

Table 2. Comparison of the proposed criterion with the experimental results of [37].

Experimental Calculated
Panel σ1

/
σ2 φ [MPa] [MPa] Exp/Num

[◦] σ11 σ22 τ12 σ11 σ22 τ12 [-]

ZSW1 0.0 0.0 0.00 −9.12 0.00 0.00 −9.21 0.00 0.99
ZSW2 0.14 0.0 −6.12 −0.83 0.00 −6.05 −0.82 0.00 1.01
ZSW4 1.53 0.0 −5.98 −9.13 0.00 −5.58 −8.52 0.00 1.07
ZSW5 0.0 45.0 −3.06 −3.06 3.06 −3.06 −3.06 3.06 1.00
ZSW6 0.22 45.0 −4.60 −4.60 2.93 −4.69 −4.69 2.98 0.98
ZSW7 1.0 45.0 −6.12 −6.12 0.00 −6.36 −6.36 0.00 0.96
ZSW8 0.0 67.5 −2.34 −0.40 0.97 −2.34 −0.40 0.97 1.00
ZSW9 0.0 22.5 −0.97 −5.66 2.35 −0.97 −5.66 2.35 1.00

(a)
-10

22
s
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11
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12

2s

[ ]MPa

(c)

Figure 6. Comparison of the proposed criterion with the experimental results of of Lurati [37]: (a) 3D
view, (b) by cross-sections of the body with σ22 = const, (c) by cross-sections of the body with
σ11 = const.

The criterion surfaces are determined by the following parameters [MPa]: for a tension
regime — Yt1 = 0.01, Yt2 = 0.01, Yc1 = 11.52, Yc2 = 18.42, kt = 0.01, Ytt = 0.01 and for a compression
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regime — Yt1 = 2.88, Yt2 = 4.61, Yc1 = 5.76, Yc2 = 9.21, kc = 3.98, Ycc = 6.36. The anisotropy ratio of
the compressive strength is Yc2/Yc1 = 1.60. The material has almost zero tensile strength. As before,

the load vector length was determined for each limit point as
√

σ2
11 + σ2

22 + 2σ2
12. The maximum

difference of vectors resulting from the experiment data and those of the initial surface compared
criterion does not exceed 7 percentage points, which shows a very good agreement of the proposed
model with the experiment results.

4. The Constitutive Relations and Implementation of the Model

The elastic-plastic orthotropic material is considered assuming an additive decomposition of the
strain tensor into the elastic part εe and the plastic part εp. The elastic part is defined by orthotropic
Hooke’s law. The plastic part of the strain tensor is defined by a flow rule associated with the yield
function given by the plasticity (failure) criterion written based on the forms (10) and (17) as:

fα (σ, zα) =
1
2
σ · Pα ·σ+ pα ·σ− Kα (zα) = 0, (18)

where the Kα(zα) are given functions with the real functional value from a closed interval [0, 1]
that describes the type of hardening/softening (Figure 7), zα are internal scalar hardening variables.
The softening behavior is modeled with a smeared approach, where the localized damage is represented
by the scalar, which is related by an equivalent length h to the released energy per unit cracked area,
G f . The length h should correspond to a dimension of the finite element mesh. As one can see in
Figure 7, different fracture energies are introduced in the model, as additional parameters—the tensile
fracture energy G f t and the compressive energy G f c.

In the frame of reference coinciding with the orthotropy axes, we have the following matrix

representations of tensors Pα and pα in the Voigt notations for the plane stress σ⇒
[
σ11 σ22

√
2σ12

]T
,

(α = t for tension surface, α = c for compression surface):

Pα ⇒ Pα =

2bα
11 2bα

12 0
2bα

21 2bα
22 0

0 0 4cα

, pα ⇒ pα =
[

aα
1 aα

2 0
]
. (19)

For composite criteria, the subscript α also denotes the number of the active surface. Let us first
assume that only one surface is active, which will allow this marking to be omitted. In the framework
of the mathematical theory of the elastic-plastic material a permissible stress state is any state of stresses
for which f ≤ 0. A stress state is called the elastic stress state if f < 0. A plastic state refers to a stress
state at the boundaries of the current elastic region for which f = 0. The plastic part of the strain tensor
is defined by a flow rule associated with the yield function given by the Equation (18). The flow rule
defines the sign (direction) of plastic-strain increment in the following form:

ε̇p = γ
∂ f (σ, z)

∂σ

∣∣∣∣
σ=σT

= γ (P ·σ+ p) ≡ γ r, (20)

where γ > 0 is a plastic multiplier. After applying differentiation to orthotropic Hooke’s elastic law
with the respect to the time and after substituting Equation (20) we obtain:

σ̇ = C · (ε̇− γ r) ≡ Cep · ε̇, (21)

where the elasto-plastic tangent operator Cep can be calculated after the parameter γ is known.
Assuming that

ż = γ(r · r) ≡ γ‖r‖2. (22)
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one can compute from the consistency condition

γ ḟ (σ, z) = 0, γ > 0, (23)

the plastic multiplier

γ =
〈r ·C · ε̇〉

r ·C · r + ∂K/∂z ‖r‖2 , (24)

and the operator Cep in the following form:

Cep = C− (C · r)⊗ (r ·C)
r ·C · r + ∂K/∂z ‖r‖2 . (25)

The double symmetric fourth-order tensor of elastic material constants C in the orthotropic
Hooke’s law can be conveniently defined by the compliance tensor S ≡ C−1, which in the frame of
reference aligned with the orthotropic axes can be written in Voigt notation for the plane stress as

S→


1

E1
− ν21

E2
0

− ν12
E1

1
E2

0
0 0 1

G12

. (26)

where we have five technical in-plane moduli: E1, E2 are Young’s moduli, G12 is the shear modulus and
ν12, ν21 are Poisson’s ratios (ν12/E1 = ν21/E2). It should be noted that two yield criteria are combined
in the model into a composite yield surface and the intersection of different yield surfaces defines
corners that require special attention in a numerical algorithm according to Koiter’s generalization.

4.1. Implementation into Finite Elements under the Plane Stress Condition

In this subsection, according to the convention adopted in many finite element programs the
components of a symmetric second-order tensor are presented as a single column array, whereas
fourth-order tensors are presented as two-dimensional arrays. The matrix representations of the
tensors are shown in terms of the Cartesian components in the frame coinciding with the materialaxes
of orthotropy.

The constitutive relationship in (21) is in the form of the “highly non-linear” differential equation
which can be solved by the modified Euler method (usually the implicit Euler backward algorithm).
Therefore, it is replaced by the incremental equation of the form:

∆σ = C (∆ε− γ r̃) ≡ C̃ep ∆ε, (27)

where C̃ep is called the operator consistent with the integration algorithm of constitutive relations.
We assume that for each tn ∈ [0, T] the strain increment ∆ε = εn+1 − εn is known, thus the problem is
strain driven, and we want to compute the stress state σn+1 for tn+1. We assume:

σn+1 = σtrl
n+1 − ∆γ Crtrl , (28)

where σtrl
n+1 = C εn+1 is called the trial stress state and rtrl is the gradient of f

(
σtrl

n+1, zn

)
.

The calculation of the multiplier ∆γ > 0 and the tensor function r̃ (Equation (27)) is significantly
dependent on the realization of σtrl

n+1. A detailed description of the numerical implementation into
the FEM is given in [38] for the elastic-plastic material with the yield criteria of Huber–Mises–Hencky
(isotropy) and Hill (orthotropy). The most important step is to calculate the multiplier using the
quadratic equation of the variable ∆γ. This step is significantly different from the case of the Hill
yield criterion.
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Based on the consistency condition (23) in the algorithmic form:

f
(

σT
n+1, zn+1

)
=

1
2

σT
n+1P σn+1 + pT σn+1 − K (zn+1) = 0, (29)

we obtain after the substitution of (28) into (29) a following quadratic equation (indices
n + 1 suppressed):

A ∆γ2 + B ∆γ + C = 0, (30)

where:

A = 1
2

(
C rtrl

n+1

)T
P C rtrl

n+1 −
∂2K
∂z2

[(
rtrl

n+1

)T
rtrl

n+1

]2
,

B = −
[

1
2 σtrl

n+1P Crtrl
n+1 +

1
2

(
C rtrl

n+1

)T
P σtrl

n+1 + pTC rtrl
n+1 +

∂K
∂z

(
rtrl

n+1

)T
rtrl

n+1

]
,

C = f trl
(

σtrl
n+1, zn

)
.

(31)

The solution of the Equation (30) is particularly simple if the hardening/softening function K (z)
is the second degree polynomial of the form as shown in the Figure 7. The last part of (30) may
become then equal to the yield function of the trial state f trl . It can be seen that the linearization of the
Equation (30) does not lead to significant errors. Determining the plastic multiplier from the linear
part of Equation (30) in the form ∆γ = −B/C does not lead to large errors, although it depends on the
assumed strain increment step length.

z
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t
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Figure 7. Degradation of material strength parameters curves adopted in the model: (a) tension regime,
(b) compression regime.

A model based on two criteria complicates the procedure algorithm. If only one of the criteria is
exceeded, e.g., the stresses are reduced to the exceeded surface according to the algorithm (28)–(30),
as for a model based on only one criterion. It remains, to establish which criterion is actually exceeded.

A separate case is exceeding both conditions at the same time:

f trl
1 > 0 ∧ f trl

2 > 0.

This is the case where the point is outside the edge joining both surfaces and requires a
different procedure. A linear combination of gradients has been used here (compare Koiter’s law).
The component of the plastic multiplier is calculated separately for the tensile criterion and for the
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compression criterion. Plastic strains and stress state components at time tn+1 can be determined on
the basis of the formulas:

ε
p
n+1 = ε

p
n + ∆γ1 r1,trl

n+1 + ∆γ2 r2,trl
n+1,

σn+1 = σtrl
n+1 − ∆γ1 C r1,trl

n+1 − ∆γ2 C r2,trl
n+1,

Cep = C−
C r1,trl

n+1

(
r1,trl

n+1

)T
CT(

r1,trl
n+1

)T
C r1,trl

n+1 + ∂K1/∂z1

∥∥∥r1,trl
n+1

∥∥∥2 −
C r2,trl

n+1

(
r2,trl

n+1

)T
CT(

r2,trl
n+1

)T
C r2,trl

n+1 + ∂K2/∂z2

∥∥∥r2,trl
n+1

∥∥∥2 .

(32)

After similar transformations as before, the following system of quadratic equations is obtained.{
A1(∆γ1)

2 + B1∆γ1 + C1 + D1(∆γ2)
2 + E1∆γ2 + F1∆γ1∆γ2 = 0

A2(∆γ2)
2 + B2∆γ2 + C2 + D2(∆γ1)

2 + E2∆γ1 + F2∆γ1∆γ2 = 0
, (33)

where some of the coefficients are analogous to the problem with one active surface and are marked
with letters Aα, Bα, Cα (α = 1, 2):

Aα =
1
2

(
Crα,trl

n+1

)T
PαCrα,trl

n+1 − K′′α,n

[(
rα,trl

n+1

)T
rα,trl

n+1

]2
,

Bα = −1
2

σtrl
n+1PαCrα,trl

n+1 −
1
2

(
Crα,trl

n+1

)T
Pασtrl

n+1 − (pα)
TCrα,trl

n+1 − K′α,n

(
rα,trl

n+1

)T
rα,trl

n+1,

Cα = f trl
α

(
σtrl

n+1, zα
n

)
. (34)

The remaining coefficients depend on the data related to both boundary surfaces and the formulas
can be expressed as follows:

D1 =
1
2

(
C r2,trl

n+1

)T
P1C r2,trl

n+1, D2 =
1
2

(
C r1,trl

n+1

)T
P2C r1,trl

n+1,

E1 = −1
2

σtrl
n+1P1C r2,trl

n+1 −
1
2

(
C r2,trl

n+1

)T
P1σtrl

n+1 − pT
1 C r2,trl

n+1,

E2 = −1
2

σtrl
n+1P2C r1,trl

n+1 −
1
2

(
C r1,trl

n+1

)T
P2σtrl

n+1 − pT
2 C r1,trl

n+1,

F1 =
(

C r1,trl
n+1

)T
P1C r2,trl

n+1, F2 =
(

C r2,trl
n+1

)T
P2C r1,trl

n+1. (35)

According to the above numerical algorithm, the several models with the failure criterion of
the type (18) has been coded in the programming language FORTRAN and next implemented into a
commercial finite element code DIANA [39]. There are standard Newton–Raphson and Riks algorithms
for the solving nonlinear equilibrium equations in the program. Because of this, implementation of
the model into a finite element code is done at the integration point level by means of user-defined
subroutine USRMAT. The subroutine lets the user specify a general nonlinear material behavior
by updating the state variables over the equilibrium step n → n + 1 within a framework of an
incremental–iterative algorithm of finite element method. Both the return-mapping algorithm allowing
the stresses to be returned to the yield surface and a consistent tangent stiffness operator have been
coded. The implementation of the model is presented both at the single element tests (see Figures 8–12)
and at the structural level test (next section).

4.2. Results of the Single-Element Tests

Tests in the plane stress were performed in the homogeneous stress state and with one
isoparametric continuum finite element (four-node, linear interpolation and Gaussian integration).
The displacement-controlled load diagram is shown in Figure 8. The following material data are
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adopted: the moduli of elasticity in two directions of orthotropy: E1 = E2 = 8 [GPa], the shear modulus:
G12 = 3.478 [GPa], the Poissonś coefficient: ν12 = 0.15, that is, as for the isotropic material. The strength
parameters associated with the initial tensile failure surface of the criterion are: Yc1 = 17, Yc2 = 17,
Yt1 = 0.35, Yt2 = 0.25, Ytt = 0.22, k12 = 0.296 [MPa]. The strength parameters associated with
the compressive surface are: Yc1 = 8.5, Yc2 = 8.5, Yt1 = 8.5, Yt2 = 8.5, Ytt = 8.5, k12 = 4.9 [MPa].
The material parameters are typical for unreinforced walls in terms of the values and the proportion
between them. The strength degradation curves are adopted with two internal scalar parameters: zt for
the tensile softening and zc for the softening during compression (Figure 7). The curves are matched to
set the fracture energies along the first orthotropic material axis as G f 1 = 54.0 [J/m2] during tension
and as G f c1 = 20.0 [kJ/m2] during compression.
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Figure 8. Single-element test results. Relationship σ− ε: (a) compression along 1(x) axis, (b) tensile
softening in the direction rotated by an angle θ to the first orthotropy axis.

In the test with the homogeneous deformation field, all eight degrees of freedom in the four-node
finite element were fixed to force the desired linear deformation. To compare the behavior of our model
in the tests, the model of the Rankine–Hill criterion was used, which is standard in the DIANA system
and dedicated to the analysis of masonry structures. The following parameters of the Rankine–Hill
model are adopted: Yc1 = 8.5Y, Yc2 = 8.5Y, β = −1.0, γ = 3.0, Yt1 = 0.35Y, Yt2 = 0.25Y, α = 1.0,
where Y = 1 [MPa] and the tensile fracture energies G f X = 54.0 [J/m2], G f Y = 18.0 [J/m2] and the
compressive fracture energies G f cX = 20.0 [kJ/m2] and G f cY = 15.0 [kJ/m2]. The algorithm of the
own model was also programmed in MATHEMATICA. As a result, it was possible to control the
correctness of the algorithm and its implementation in both computing environments. Results of the
tests are presented in Figures 9–12.
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Own Criterion Own Criterion Criterion R-H
MATHEMATICA FEM DIANA FEM DIANA

ε11 = 3.85× 10−5 σ11 [MPa]: 0.315090 0.315090 0.315090
σ22 [MPa]: 0.0472634 0.0472634 0.0472634

ε11 = 3.5× 10−3 σ11 [MPa]: 0.283159 0.283125 0.130216
σ22 [MPa]: −1.05447 −1.05355 −1.65648

0.5 1.0 1.5 2.0 2.5 3.0 3.5

-1.5

-1.0

-0.5

0.0

s
ii

e11

0.4

[MPa]

10
-3

[-]

s
11

s
22

u

(a)

Rankine-Hill

proposed criterion

0.5 1.0 1.5 2.0 2.5 3.0 3.5

-1.5

-1.0

-0.5

0.0

s
ii

e11

0.4

10
-3

[-]

s
11

s
22

[MPa]

(b)

Figure 9. A homogeneous strain field ε11 > 0 and ε22 = 0 single element test results: (a) symbolic
computation by MATHEMATICA [40], (b) finite element method (FEM) analysis in TNO DIANA [39].

Own Criterion Own Criterion Criterion R-H
MATHEMATICA FEM DIANA FEM DIANA

ε11 = −3.2× 10−3 σ11 [MPa]: −9.79701 −9.79701 −9.78427
σ22 [MPa]: −4.38814 −4.38809 −4.39655

ε11 = −5.0× 10−2 σ11 [MPa]: −0.967462 −0.967462 −0.92013
σ22 [MPa]: −0.626954 −0.626954 −0.491048
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Figure 10. A homogeneous strain field ε11 < 0 and ε22 = 0 single element test results: (a) symbolic
computation by MATHEMATICA [40], (b) FEM analysis in TNO DIANA [39].
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Own Criterion Own Criterion Criterion R-H
MATHEMATICA FEM DIANA FEM DIANA

εOwn
11 = 5.25× 10−5 σ11 [MPa] : 0.276645 0.276645 0.344186

εR−H
11 = 4.2× 10−5 σ22 [MPa] : 0.171389 0.171389 0.241186

ε11 = 3.5× 10−3 σ11 [MPa] : 0.0592608 0.0592608 0.0144707
σ22 [MPa] : −0.047245 −0.047245 0.0002711
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Figure 11. A strain field ε11 > 0 and ε22 > 0 single element test results: (a) symbolic computation by
MATHEMATICA [40], (b) FEM analysis in TNO DIANA [39].

Own Criterion Own Criterion Criterion R-H
MATHEMATICA FEM DIANA FEM DIANA

εOwn
11 = −2.4× 10−3 σ11 [MPa]: −8.49975 −8.49975 −8.49992

εR−H
11 = −1.5× 10−3 σ22 [MPa]: −8.49975 −8.49975 −8.49992

ε11 = −5.0× 10−2 σ11 [MPa]: −0.850000 −0.850000 −0.850075
σ22 [MPa]: −0.850000 −0.850000 −0.849990

0.05 0.04 0.03 0.02 0.01 e11

-10

-8

-6

-4

-2

s
ii

s
11

s
22

[MPa]

[-]

=

u

u

(a)

0.05 0.04 0.03 0.02 0.01 e11

-10

-8

-6

-4

-2

s
ii

s
11

s
22

Rankine-Hill

proposed criterion

[-]

[MPa]

(b)

Figure 12. A strain field ε11 < 0 and ε22 < 0 single element test results: (a) symbolic computation by
MATHEMATICA [40], (b) FEM analysis in TNO DIANA [39].

5. Tests at the Structural Level

Two examples of the proposed constitutive model are briefly presented here as the tests at the
structural level. More information on the tests can be found in the works [41,42].
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The first example is restricted to the numerical simulation of the load capacity tests of masonry
structures in the plane stress state that were conducted experimentally in [43]. In laboratory tests,
two similar wall fragments marked as J2G and J3G were tested, Figure 13. The masonry shear walls
with an opening and the thickness of 10 mm were built from 18 courses of masonry cement-sand
units 210 × 52 × 100 [mm]. The top and bottom courses were fully clamped in steel beams. The wall
is shearing with the horizontal force F under displacement control. The top edge can move with a
horizontal displacement (Figure 13). The wall was first vertically loaded through a steel beam to the
value p = 0.3 kN/m2 that remains constant through the subsequent loading steps of the horizontal
force up to the maximum horizontal displacement of ∆ = 16 mm. The beam movement was limited
to the horizontal direction, i.e., the lower and upper edges of the wall were kept parallel. Figure 14
shows the forms of cracks obtained in the tests.

p=0.3MPa

F, D

(a)

1
0
0
0

7
0

7
0

350 210 430

(b)

Figure 13. Walls tested by Raijmakekers and Vermeltfoort [43]: (a) load scheme for shear
walls, (b) geometry and static sheme for numerical analysis.

Cracks appeared diagonally between the opening and the lower and upper corners of the wall.
In addition, tensile cracks appeared on the outer vertical edges of the wall, on both sides of the opening
at the top of the left pillar and at the bottom of the right pillar, and their development ran from
the outside to the center of the wall. The failure mechanism resulting from the wall tests is shown
schematically in the Figure 14. As can be seen, the kinematics of the system focuses on the movement
of four blocks connected by hinges. Due to the development of the material crushing zone, also marked
in the drawing, the mechanism will activate the compression criterion.

J2G

(a)

J3G

(b)

compression failure

(c)

Figure 14. Experimental crack pattern at failure load [43] (a,b). (c) Mechanism of destruction.

For the numerical simulation of the wall failure using the model based on the own criterion,
a 1989 mesh of four-node flat finite elements with an average side length of 23 [mm] was built.
The values of material parameters used in the numerical simulation are shown in the Table 3. The values
given in the table were adopted on the basis of work [44], where the data were adopted based on the
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results of experimental tests [43], and the supplementary parameters result from the homogenization
procedures and were taken from work [16].

Table 3. Masonry shear wall. Material properties of the model.

Elastic Moduli

E11 E22 ν12 G12
[MPa] [MPa] − [MPa]
7520 3960 0.09 1460

Uniaxial, Biaxial and Shear Strengths in the Orthotropic Axes [MPa]

Yα
c1 Yα

c2 Yα
t1 Yα

t2 Yαα k12
Compression α = c 5.25 3.75 2.625 1.825 3.0 0.45

Tension α = t 11.0 7.5 0.35 0.25 0.30 0.30

Fracture energies in J/m2 G f c1 = 2350 G f t1 = 43.3

The comparison between numerical and experimental load–displacement diagrams, for wall
J2G and J3G, is given in Figure 15. Apart from own calculation, results obtained by Pelá in [44]
are also shown. Good agreement is found in the elastic range and satisfactory agreement in the
inelastic range, although slightly worse in terms of the load capacity than the results obtained in [44].
The maximum divergence is around 17%. It is possible to better match the results of the experiment,
however it requires additional calculations and time-consuming calibration of strength parameters
and fracture energies. The behavior of the wall at the horizontal displacement ∆ = 12 mm is depicted
in Figures 16 and 17 in terms of the maximum and minimum principal plastic strains, respectively.
Both tensile and compressive failure zones are captured by the model. This indicates that the wall
deformability and the general mechanism of its destruction are correctly reflected.

0 2 4 6 161412108

10

20

30

40

50

60

0
[mm]

[kN]

D

F

proposed criterion

PELA 2009
experimental test J2G

experimental test J3G

Figure 15. Horizontal load–horizontal displacement diagrams.

Figure 16 shows the principal plastic strains ε
p
1 obtained from own simulations. They can be

interpreted as the distribution of material failure zones as a result of exceeding the criterion in tension.
These are also zones of development of cracks in the structure. Figure 16a shows the strain results in
the form of maps plotted on a deformed finite element mesh. For a better effect, the deformation has
been scaled 10 times.
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Figure 16. Maps of maximum principal plastic strain at ∆ = 12 mm: (a) crack (tensile) zones,
(b) directions of the tensile strain.
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Figure 17. Maps of minimum principal plastic strain at ∆ = 12 mm: (a) compressive failure zones,
(b) directions of the compressive strain.

In Figure 16b, the results in the vector form were superimposed on the mesh, wich allows to
compare the length of the strain and the direction. Figure 17a shows the principal plastic deformations
ε

p
3, which in Figure 17b are shown in vector form. Areas with large ε

p
3 strains can be interpreted as

zones of material failure due to possible material crushing.
In the second example, the behavior of the masonry infill wall that is built within a reinforced

concrete frame is numerically simulated (Figure 18). The wall was experimentally tested in [45].
The frame and the wall were first subjected to the vertical loads P2 = 97.8 kN and P3 = 48.9 kN that
remain constant through the subsequent loading steps of the horizontal force P1 up to the failure.

For the numerical analyses 4-noded quadrilaterals, linear plane stress, and continuum elements
are utilized. The subsequent loading steps of the horizontal force up to the maximum horizontal
displacement ∆ = 20 mm were analyzed under a displacement control. The material properties of the
model are given in Table 4. The comparison between numerical and experimental load–displacement
diagrams is given in Figure 19. The low initial vertical load combined with the confinement provided
by the reinforced concrete frame yields extremely ductile behavior.

In Figure 20, a crack zone is plotted as the map of the tensile principal plastic strain. A good
agreement is found with respect to the calculated collapse load value. The model gives the response
that is close to the experimental equilibrium path. At the ultimate stage, a well-defined failure
mechanism is formed with a final diagonal shear band going from one corner of the specimen to
the other.
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Table 4. Characteristics of materials for orthotropic model of masonry.

Elastic Moduli

E11, MPa E22, MPa ν12 = ν21 G12

[MPa] [MPa] [-] [MPa]

13,790 13,790 0.16 3480

Characteristics of the Strength Surface in MPa

Yα
c1 Yα

c2 Yα
t1 Yα

t2 Yαα kα
12

Compression (α = c) 20.7 20.7 20.7 20.7 23.00 5.0

Tension (α = c) 40.0 40.0 1.38 1.38 1.2 0.5

Fracture energies in J/m2 G f c1 = 350 G f t1 = 16.7

The precise localization of cracks can also be achieved using models based on a smeared crack
approach [46,47], fracture-based models with advanced crack tracking techniques [44] or by using
micro-modeling [16]. To the evaluation of historic buildings for dynamic actions methods based on
ultimate load-bearing capacity are used. Especially in combination with the monitoring based on
operational modal analysis (OMA) techniques, it is becoming a popular practice [48]. An alternative
may also be the relatively young topic of multi-scale modeling [49] or to describe diffuse cracks
a gradient-enhanced damage model based on nonlocal displacements and the extended finite element
method (XFEM) for sharp cracks [50,51]. However, if we compare the numerical result presented here
with the failure mechanisms shown in Figures 16 and 20, we find a good agreement and confirm the
ability of our own model to correctly reflect the behavior of the structure.

6. Conclusions

The mechanical behavior of the continuum material model can be described using constitutive
relations based on the theory of tensor functions. This theory, together with the theorems on the
representation of tensor functions, constitute an effective mathematical tool for the formulation of
constitutive relations of the orthotropic material. The invariance requirements of the isotropy of space
and the orthotropic symmetry of materials are easily considered, so that the orientation of the material
in space does not affect its constitutive relation. It is possible to obtain the analytical transparency as
well as to maintain the required universalism of constitutive equations, see, e.g., [30]. The composite
orthotropic failure criterion of the proposed model is constructed from two square scalar functions that
are dependent on three orthotropic invariants of the plane stress tensor. In general, the criterion needs
to have the twelve material parameters to define the failure surface. However, in practice, only seven
of them are used that are obtained from the appropriate uniaxial, biaxial and shear strength tests.
The criterion is an example of the orthotropic failure criteria, which can be treated as a generalization
of the well-known Hoffman failure criterion that is often used for brittle orthotropic materials in which
compressive strengths and tensile strengths are significantly different.

The numerical tests confirm correctness of the implementation and the ability of the models to
reproduce failure modes in the structural tests in certain situations. They also show that it is possible
to incorporate strain softening into the proposed class of models with a single yield surface. At present,
the implementation of the other models within the framework of multisurface plasticity is being tested.
Although for the multisurface plasticity the intersection of the different yield surfaces defines corners
that require special attention in a numerical algorithm, it has the advantage of engaging different
hardening laws for each surface, which might be more physically realistic due to the distinction of
tension and compression regimes. The choice of a hardening parameter is not crucial because the
available experimental data are scarce.

The commercial version of Diana with the so-called user-supplied subroutine mechanism can
be used as the development environment for computational materials research. We have used the
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user-supplied subroutine USRMAT to implement new material models for continuum spatial and plane
stress elements. The new models can be applied to a variety of structural problems, to single element
tests but also to simulate physical experiments, using different elements types and using standard
features of the program such as advanced solution procedures, for instance indirect displacement
control with full Newton–Raphson. Also, the use of the post-processing capabilities of the program
is an advantage, although the post-processing of the user-defined status variables might be more
user-friendly.

Author Contributions: Conceptualization, P.B. and L.M.; methodology, L.M.; software, P.B.; validation, L.M.;
visualization, P.B.; supervision, L.M.; writing—original draft preparation, P.B.; writing—review and editing, L.M.;
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Lourenço, P. Recent advances in Masonry modelling: Micromodelling and homogenisation. Multiscale Model.
Solid Mech. Comput. Approaches 2009. [CrossRef]

2. Giamundo, V.; Sarhosis, V.; Lignola, G.; Sheng, Y.; Manfredi, G. Evaluation of different computational
modelling strategies for the analysis of low strength masonry structures. Eng. Struct. 2014, 73, 160–169.
[CrossRef]

3. Lemos, J. Discrete Element Modeling of the Seismic Behavior of Masonry Construction. Buildings 2019, 9, 43.
[CrossRef]

4. Asteris, P.; Moropoulou, A.; Skentou, A.; Apostolopoulou, M.; Mohebkhah, A.; Cavaleri, L.; Rodrigues, H.;
Varum, H. Stochastic Vulnerability Assessment of Masonry Structures: Concepts, Modeling and Restoration
Aspects. Appl. Sci. 2019, 9, 243. [CrossRef]

5. Yokel, F.; Fattal, S. Failure hypothesis for masonry shear walls. J. Struct. Div. 1976, 102, 515–532.
6. Mann, W.; Muller, H. Failure of shear-stressed masonry—An enlarged theory, tests and application to shear

walls. Proc. Br. Ceram. Soc. 1982, 30, 223–235.
7. Page, A. The biaxial compressive strength of brick masonry. Proc. Inst. Civ. Eng. 1981, 71, 893–906. [CrossRef]
8. Page, A. The strength of brick masonry under biaxial tension-compression. Int. J. Mason. Constr. 1983, 3, 26–31.
9. Dhanasekar, M.; Page, A.; Kleeman, P. The failure of brick masonry under biaxial stresses. Proc. Inst.

Civ. Eng. 1985, 79, 295–313. [CrossRef]
10. Ganz, H.; Thürlimann, B. Strength of brick walls under normal force and shear. In Proceedings of the 8th

International Symposium on Load Bearing Brickwork, London, UK, November 1983.
11. Seim, W. Nümerische Modellierung Des Anisotropen Versagens Zweiachsig Beanspruchter Mauerwerksscheiben.

Ph.D. Thesis, Universität Karlsruhe, Karlsruhe, Germany, 1995.
12. Tsai, S.; Wu, E. A general theory of strength for anisotropic materials. J. Compos. Mater. 1971, 5, 58–80.

[CrossRef]
13. Syrmakezis, C.; Asteris, P. Masonry failure criterion under biaxial stress state. J. Mater. Civ. Eng. 2001, 13, 58–64.

[CrossRef]
14. Berto, L.; Saetta, A.; Scotta, R.; Vitaliani, R. An orthotropic damage model for masonry structures. Int. J.

Numer. Methods Eng. 2002, 55, 127–157. [CrossRef]
15. Hoffman, O. The brittle strength of orthotropic materials. J. Compos. Mater. 1967, 1, 200–206. [CrossRef]
16. Lourenço, P. Computational Strategies for Masonry Structures. Ph.D. Thesis, Delf University of Technology,

Delft, The Netherlands, 1996.
17. Lourenço, P.; Borst, R.; Rots, J. Plane stress softening plasticity model for orthotropic materials. Int. J. Numer.

Methods Eng. 1997, 40, 4033–4057. [CrossRef]
18. Małyszko, L. Modelowanie Zniszczenia w Konstrukcjach Murowych z Uwzglȩdnieniem Anizotropii (Failure
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