

Article

Supplementary Materials: Metal Ions Supported Porous Coatings by Using AC Plasma Electrolytic Oxidation Processing

Figure S1. EDS spectra of coatings obtained at applied voltage of +400|-35 V and +400|-135 V.

Table S1. Results of XPS analysis of PEO coatings in atomic percentage.

Sample	Ca	Mg	Zn	Cu	Ti	Р	0	Ν	
•		<u> </u>							-

TiZnCu-35	_	_	0.4	0.4	3.6	27.5	65.2	2.9
TiZnCu-135	-	_	0.4	0.4	4.9	27.8	64.4	2.1
TiZnCuCa-35	5.0	-	0.6	0.6	4.7	25.5	62.5	1.1
TiZnCuCa-135	5.4	-	0.5	0.4	4.5	23.7	63.8	1.7
TiZnCuMg-35	-	5.6	0.4	0.3	4.7	26.3	60.7	2.0
TiZnCuMg-135	_	6.5	0.4	0.4	6.1	25.0	59.9	1.7

Table S2. Maxima of binding energies (eV) of PEO coatings.

Figure S2. XPS spectra of coatings enriched in zinc and copper, obtained at applied voltage of +400|-35 V.

Figure S3. XPS spectra of coatings enriched in zinc and copper, obtained at applied voltage of +400|-135 V.

Figure S4. XPS spectra of coatings enriched in zinc, copper, and calcium, obtained at voltage of +4001–35 V.

Figure S5. XPS spectra of coatings enriched in zinc, copper, and calcium, obtained at voltage of +400|-135 V.

Figure S6. XPS spectra of coatings enriched in zinc, copper, and magnesium, obtained at voltage of +400|–35 V.

Figure S7. XPS spectra of coatings enriched in zinc, copper, and magnesium, obtained at voltage of +400|-135 V.

Figure S8. Elemental composition by XPS of top 10 nm of coatings enriched in copper and zinc, obtained at voltage of: (a) +400|-35 V, (b) +400|-135 V.

Figure S9. Elemental compositions by XPS of top 10 nm of coatings enriched in copper, zinc, and calcium, obtained at voltages of: (a) +400|-35 V, (b) +400|-135 V.

Figure S10. Elemental composition by XPS of top 10 nm of coatings enriched in copper, zinc, and magnesium, obtained at voltages of: (a) +400|-35 V, (b) +400|-135 V.

Compounds	BE, eV	Peak	Ref.
CaO	529.4-531.3	O 1s	[1]
Cu ₂ O	530.3	O 1s	[1]
CuO	529.6	O 1s	[1]
CuO	529.5	O1s	[3]
TiO ₂	529.9	O1s	[1]
MgO	530.0-532.1	O 1s	[1]
Mn ₃ O ₄	529.6	O 1s	[1]
Cu ₃ (PO ₄) ₂	531.8	O1s	[5]
Cu(NO₃) ₂	533.4	O1s	[5]

Table S3. Binding energies (BE, eV) of selected chemical compounds from available literature.

Mg(OH)2	530.9	O1s	[1]
Ca(NO ₃) ₂	533.6	O 1s	[1]
CaHPO ₄	531.7	O 1s	[6]
Ca5(PO4)3OH	531.1	O1s	[7]
Mg3(PO4)2	532,1	O 1s	[8]
Zn3(PO4)2	532.3	O 1s	[9]
P2O5	532.2-534.3	O 1s	[1]
Ti ₂ O ₃	457.8	Ti2p _{3/2}	[2]
TiO	455.1-455.9	Ti2p3/2	[2]
TiO _{1.5}	455.2-456.8	Ti2p3/2	[2]
TiO 0.73	454.5	Ti2p3/2	[2]
TiO _{0.9}	454.7	Ti2p _{3/2}	[2]
TiP	454.8	Ti2p _{3/2}	[2]
CaTiO ₃	458.9	Ti2p3/2	[2]
Ti ₃ (PO ₄) ₄	458.8	Ti2p _{3/2}	[2]
TiO ₂	458.6	Ti2p _{3/2}	[2]
CaO	346.1-347.3	Ca 2p _{3/2}	[1]
Ca ₃ (PO ₄) ₂	347.7	Ca 2p _{3/2}	[2]
$Ca(H_2PO_4)_2$	347.6-347.8	$\frac{Ca}{2p_{3/2}}$	[2]
CaHPO ₄	347.5-347.8	Ca 2p3/2	[2]
CaHPO ₄	347.4	Ca 2n3/2	[6]
	347.6	Ca 2p3/2	[2]
	347.4	$\frac{\operatorname{Ca} 2p_{3/2}}{\operatorname{Ca} 2p_{3/2}}$	[2]
	348.7	$\frac{\operatorname{Ca} 2p_{3/2}}{\operatorname{Ca} 2p_{3/2}}$	[1]
	347.1	$\frac{\operatorname{Ca} 2p_{3/2}}{\operatorname{Ca} 2p_{3/2}}$	[7]
MaO	87.0.88.1		[1]
$\frac{1000}{M_{\odot}(PO_{1})_{2}}$	07.9-00.1 00.21	Mg 25	[8]
<u>7nO</u>	1021 40 1021 80	7n 2na	[0]
7n(OH)	1021.40-1021.00	Zn 2p3/2	[2]
$\frac{Z \Pi(0\Pi)^2}{Z m_0(P \Omega_1)_2}$	1022.3	Zn 2p3/2	[4]
Z113(1 O4)2	1023.3	Z115p3/2	[7]
ZII31 2 ZnD -	1020.0	Zn 2p3/2	[1]
	1020.9	Zn 2p3/2	[1]
Cu3P	129.6	P 2p	[1]
	129.7	P 2p	[1]
	128.3	P 2p	[1]
$\sum nP_2$	129.8	P 2p	[1]
Mg3(PO4)2	134.4	<u>P 2p</u>	[8]
	133.6	P 2p	[6]
P4O10	135.3	P 2p	[1]
P2O5	135.2	P 2p	[10]
Cu ₂ O	932.7	Cu2p _{3/2}	[5]
CuO	933.6	Cu2p _{3/2}	[5]
Cu(OH) ₂	934.0	Cu2p _{3/2}	[5]
Cu ₃ (PO ₄) ₂	935.9	Cu2p _{3/2}	[5]
Cu(NO ₃) ₂	935.5	Cu2p _{3/2}	[5]
Zn3(PO ₄) ₂	133.4	Р 2р	[9]
Ca10(PO4)6(OH)2	133.8	Р 2р	[2]
CaHPO ₄	133.8	Р 2р	[2]
Ca ₂ P ₂ O ₇	100.0	D 2-	[0]
	133.8	r zp	[2]

(P2O5)33(ZnO)67	134.0	Р 2р	[2]
Ca(H2PO4)2	134.0	Р 2р	[2]
Ca5(PO4)3OH	133.7	P 2p _{3/2}	[7]
Cu ₃ (PO ₄) ₂	133.9	P 2p _{3/2}	[5]

References:

- 1. Moulder, J.F.; Stickle, W.F.; Sobol, P.E.; Bomben, K.D. *Handbook of X-ray Photoelectron Spectroscopy*; Chastain, J., Ed.; Perkin-Elmer Corporation: Eden Prairie, MN, USA, **1992**.
- 2. Wagner, C.D.; Naumkin, A.V.; Kraut-Vass, A.; Allison, J.W.; Powell, C.J.; Rumble, J.R. NIST Standard
- 3. Reference Database 20, Version 4.1. 2003. Available online: http://srdata.nist.gov/xps (accessed on
- 4. 24 July 2020).
- 5. Vasquez, R.P. CuO by XPS. Surface Science Spectra 1998, 5(262), 261-266, doi: 10.1116/1.1247882.
- Khairallah, F.; and Glisenti, A. XPS Study of MgO Nanopowders Obtained by Different Preparation Procedures. Surface Science Spectra 2006, 13(58), 57-71, doi: 10.1116/11.20060601.
- Biesinger, M.C. Advanced analysis of copper X-ray photoelectron spectra. *Surface and Interface Analysis* 2017, 49(9), 1325–1334, doi.org/10.1002/sia.6239.
- Chusuei, C.C.; Goodman, D.W. Brushite (CaHPO4·2H2O) by XPS. Surface Science Spectra 2001, 8(39), 38-44, doi: 10.1116/11.20010501.
- Eighmy, T.T.; Kinner, A.E.; Shaw, E.L.; Eusden, J.D.; Francis, C.A. Hydroxylapatite (Ca5(PO4)3OH) Characterization by XPS: An Environmentally Important Secondary Mineral. *Surface Science Spectra* 1999, 6(193), 192-201, doi: 10.1116/1.1247925.
- 10. Felker, D.L.; Sherwood, P.M.A. Magnesium Phosphate by XPS. *Surface Science Spectra* **2002**, *9*(*83*), 82-90, doi: 10.1116/11.20030104.
- 11. Felker, D.L.; Sherwood, P.M.A. Zinc Phosphate (Zn3(PO4)2) by XPS. *Surface Science Spectra* **2002**, *9*(106), 105-113, doi: 10.1116/11.20030107.
- 12. Wang, Y.; Sherwood, P.M.A. Phosphorus Pentoxide (P2O5) by XPS. urface Science Spectra 2002, 9(159), 158-165, doi: 10.1116/11.20030115.

© 2020 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).