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Abstract: Isothermal hot compression tests of TC4-DT titanium alloy were performed under
temperatures of 1203-1293 K and strain rates of 0.001-10 s~!. The purpose of this study is to develop
a new high-precision modified constitutive model that can describe the deformation behavior of
TC4-DT titanium alloy. Both the modified strain-compensated Arrhenius-type equation and the
modified Hensel-Spittel equation were established by revising the strain rate. The parameters in the
above two modified constitutive equation were solved by combining regression analysis with iterative
methods, which was used instead on the traditional linear regression methods. In addition, both the
original strain-compensated Arrhenius-type equation and Hensel-Spittel equation were established
to compare with the new modified constitutive equations. A comparison of the predicted values
based on the four constitutive equations was performed via relative error, average absolute relative
error (AARE) and the correlation coefficient (R). These results show the modified Arrhenius-type
equation and the modified Hensel-Spittel equation is more accurate and efficient with a similar
prediction accuracy. The AARE-value of the two modified constitutive equation is relatively low
under various strain rates and their fluctuation is small as the strain rate changes.

Keywords: constitutive equation; modified Arrhenius-type equation; strain rate; the Hensel-Spittel
(HS) equation

1. Introduction

The deformation behavior of alloys is complicated at elevated temperatures. The deformation
behavior of alloys is affected by many factors, including deformation conditions, work hardening (WH),
dynamic recovery (DRV) and dynamic recrystallization (DRX) and phase transition. Constitutive
equations can represent the material behaviors during deformation, and these equations can provide a
fundamental understanding of the metal forming process [1,2]. Because a constitutive equation can
relate stress and strain to the related conditions of temperature and strain rate, it plays a crucial role in
numeric analysis, modeling and optimizing hot forming process parameters [3].

There were three main constitutive model categories: phenomenological constitutive models,
physical-based constitutive models and artificial neural network constitutive models, which are used to
predict the constitutive behavior of metals and alloys [4]. Moreover, the phenomenological constitutive
models have a lesser number of material constants and can be easily calibrated [4]. Among all
the phenomenological constitutive models, the strain-compensated Arrhenius-type model is widely
used. Based on the flow stress of modified 9Cr—1Mo steel and SnSbCu Alloy, it was found that the
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strain-compensated Arrhenius-type model has higher prediction accuracy than the Johnson-Cook
model and modified Zerilli-Armstrong model [5,6]. To predict the hot flow stress of 28CrMnMoV steel,
Li et al. [7] found the prediction accuracy of the strain-compensated Arrhenius-type model is higher
than that of modified Johnson Cook, modified Zerilli-Armstrong equation. For describing the hot
deformation behavior, Wang found the strain-compensated Arrhenius-type model had the highest
accuracy when compared to Johnson-Cook model, modified Johnson—-Cook model, Zerilli-Armstrong
model, modified Zerilli-Armstrong model and KHL model [8]. A similar result was obtained by
developing constitutive models of 21-4 N heat resistant steel [9]. Moreover, the strain-compensated
Arrhenius-type equation is most widely applied to describe the high-temperature flow behavior of
metals and alloys [10-18]. These results mean that the strain-compensated Arrhenius-type model has a
relatively strong predictive ability.

About the Arrhenius-type equation, Sellars and Tegart proposed that the sine-hyperbolic law
can be used over a very wide range of stress [19], which is shown in Equation (1). The common
effect of the temperatures and strain rates on the hot deformation behavior can be shown through the
Zener-Hollomon parameter (Z) in an exponent-type equation, which is shown in Equation (2) [17].

¢ — AF(0) exp(-Q/ (RT)) M)
7 = éexp(Q/(RT)) @
where
F(o) = 0" (a0 <0.8) (©)]
F(o) = exp(Bo)(ac > 1.2) 4)
F(o) = [sinh(a0)]" (for all o) (5)

where ¢ is the real strain rate (s71), o is the flow stress (MPa), T is the deformation temperature (K),
Q is the activation energy (J-mol~'), R is the molar gas constant (8.3145 J-mol~'-K™'), A, 1, n, @ and
are material constants. Moreover, a = f/n;.

Because there is no strain in the Arrhenius-type equation, the polynomial is employed to represent
the influence of strain on material constants to establish the strain-compensated Arrhenius-type
equation [20,21]. Moreover, the material constant « is used as an adjustable parameter to improve the
predictive power of the Arrhenius-type equation [22-25]. Moreover, the exponent of the strain rate in
the Arrhenius-type equation was revised to give an accurate and precise estimate for the flow stress of
42CrMo steel [20]. Wang et al. [26] proposed to obtain a more reasonable value of material constants
by combining the iterative methods and regression analysis.

Regarding the Hensel-Spittel equation, it was proposed by Hensel and Spittel to describe the
hot deformation behavior of metals and alloys [27]. Wei et al. [28] used Hensel-Spittel equation
to describe the hot deformation of Mg-9Li-3Al-25r-2Y under the whole compression process.
Claudimir J et al. [29] established the constitutive model of HSI.LA350/440 and DP350/600 steels based
on the Hensel-Spittel equation. Flora et al. [30] used the Hensel-Spittel equation to predict the flow
stress of TiAl-Mo alloys at high temperatures.

Because of its excellent physical and mechanical properties, TC4-DT titanium alloy is extensively
adopted in a wide range of temperature applications. The elevated temperature can improve the
plastic deformation ability of TC4-DT titanium alloy. Therefore, the hot deformation behaviors of
TC4-DT titanium alloy have been investigated by some researchers.

Based on the flow stress of TC4-DT titanium alloy, Liu et al. [31] found there was low
prediction accuracy of the strain-compensated Arrhenius-type flow stress equation at the higher
strain rate. Peng et al. [32] obtained a similar result. In addition, based on hot deformation behavior of
Ti2AlNb-based alloys, He et al. [33] performed a comparative study and found the Arrhenius-type
equation was not suitable for the deformation with relatively higher strain rates. However, Tao et al. [34]
found that the application of the strain-compensated Arrhenius-type equation is limited by its relatively
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low predicted accuracy at lower strain rates. In addition, for describing the hot tensile deformation
Behavior of TC4-DT alloy (also named Ti-6A1-4V Alloy), Lin et al. [35] found the prediction accuracy
of the Hensel-Spittel equation is higher than that of the strain-compensated Arrhenius-type equation.

In summary, because the strain-compensated Arrhenius-type equation cannot consider the effect of
strain rates on stress relatively accurately, the accuracy under specific strain rates is relatively lower for
predicting the flow stress of some metals and alloys, especially TC4-DT alloy. Although Peng et al. [32]
improved the prediction accuracy of the strain-compensated Arrhenius-type equation by modifying
the temperature and the exponent of strain rate under partial deformation conditions, they did not
attempt to propose an effective method to establish a simpler constitutive equation. Moreover, based
on the work of Lin et al. [35], the Hensel-Spittel equation may have a higher prediction accuracy for
describing the hot compressed deformation behavior of TC4-DT alloy, which is also probably achieved
by revising the Hensel-Spittel equation.

In present study, to predict the hot compressed flow stress of TC4-DT alloy, the new modified
strain-compensated Arrhenius-type (ms—cA-type) and modified Hensel-Spittel (mHS) equation is
developed by modifying the strain rate. Moreover, the two new modified constitutive equations are
established by combining regression analysis with iterative methods, which is used instead of the
traditional linear regression method. Meanwhile, both the original strain-compensated Arrhenius-type
(os—cA-type) and original Hensel-Spittel (0HS) equation are established by the traditional method.

A comparative study has been made on the above four constitutive equations, which is used to
prove the two modified constitutive equations are more accurate for prediction of the flow stress of
TC4-DT alloy.

2. Materials and Methods

The flow stress data of TC4-DT alloy at elevated temperature is taken from the literature
(Peng et al. [32]), which is shown in Table Al. The chemical composition (in wt%) of the titanium alloy
is 6.20A1-4.1V-0.04Fe-0.017C-0.110—(bal.) Ti. The microstructure is entirely homogeneous equiaxed
a + B, consisting of 70% primary a phase with the average grain size 9 um and transformed f with the
secondary lamellar a thickness of 1.4 um.

Cylindrical specimens with 12 mm in height and with 10 mm in diameter are prepared and their
flat ends are recessed to a depth of 0.1 mm entrap the lubricant of graphite mixed with machine oil,
which can minimize the frictions between the specimens and die. The isothermal hot compression
tests were performed at temperatures of 1203, 1218, 1233, 1248, 1263, 1278 and 1293 K with strain
rates of 0.001, 0.01, 0.1, 1 and 10 s~1. The isothermal hot compression tests of the titanium alloy were
conducted on a Gleeble-1500 thermo-simulation system (Dynamic Systems Inc., Poestenkill, NY, USA).
The specimen was heated to the deformation temperature at a rate of 10 K/s and held for 3 min to
eliminate the thermal gradients.

3. Results

To predict the flow stress of TC4-DT titanium alloy, Peng et al. [32] determined two sets of material
constants in the original strain-compensated Arrhenius-type equations based on different phase regions,
and they modified the original constitutive equation under partial deformation condition. These results
mean that the flow stress curves of TC4-DT titanium alloy obtained by Peng et al. [32] are more
complicated. Therefore, the experimental data collected by Peng et al. [32] is used in the current study,
which is used to prove a stronger predictive ability of the new modified constitutive equations and the
authenticity of results.

Figure 1 shows the relationship between ¢ vs. the mean of ¢ and ¢ vs. ¢ under the strain of 0.20
and various temperatures. It is easily found a strong nonlinear relationship between ¢ and ¢ at various
temperatures. Moreover, as the value of strain rate increases from 1 to 10 s71, the stress increases
sharply, especially below 1273 K. Figure 2 shows the relationship between temperatures and stress
under the strain of 0.20 and various strain rates. When the value of the strain rate is below 1 s71, the
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change of stress with temperature is relatively stable. However, under the strain of 10 s7!, the stress
decreases sharply as the temperature increases.
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Figure 1. Relationship between (a) ¢ vs. the mean of o; (b) € vs. ¢ under the strain of 0.20 and various
deformation temperatures.
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Figure 2. Relationship between deformation temperatures and stress under the strain of 0.20 and
various strain rates.

At hot temperature, the flow stress of metals and alloys is dependent on the interaction between
them the work hardening and the dynamic softening mechanisms between the work hardening and
the dynamic softening mechanisms. As the strain rate increases, the time required to reach the same
strain becomes shorter. Moreover, the dynamic softening mechanisms become increasing insufficient,
including the dynamic recovery (DRV) and dynamic recrystallization (DRX). Therefore, stress increase
with the rise of the strain rate, especially above 1s~! in Figure 1b. In contrast, the increase in temperature
promotes dynamic recovery (DRV) and dynamic recrystallization (DRX). At the higher stain rate, the
softening effect of temperature becomes increasing prominent, especially at 1293 K in Figure 2.

In Figures 1 and 2, differences in strain rates lead to different trends in stress. Therefore, these
results mean the strain rate has a significant influence on stress, especially under the higher strain rate.

Based on the above result, revising the strain rate is used to improve the accuracy of the constitutive
equation. Therefore, the new modified strain-compensated Arrhenius-type (ms—cA-type) equation
and the modified Hensel-Spittel (mHS) equation is established. Moreover, it is also established the
original strain-compensated Arrhenius-type (0os—cA-type) equation and the original Hensel-Spittel
(oHS) equation. The four constitutive equations are used to predict the flow stress of TC4-DT titanium
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alloy under temperatures of 1203-1293 K and strain rates of 0.001-10 s~!. The different constitutive
equations are compared to prove that the accuracy of the modified equation is higher.

3.1. Establishing the Original Strain-Compensated Arrhenius-Type (os—cA-type) Equation

The relationship between deformation parameters at elevated temperature can be expressed by
the original Arrhenius-type equation, which is shown in Equation (1). The hyperbolic sine model in the
Arrhenius-type equation gives better approximations for the flow stress of the TC4-DT titanium alloy.

Material constants are solved based on experimental data from the isothermal hot compression
tests. The strain of 0.30 is taken as an example to introduce the procedures of solving material constants.

Substituting Equations (4) and (5) in Equation (1), respectively gives:

& = Ad" exp(—Q/(RT)) (6)
& = Aexp(Bo) exp(—Q/(RT)) (7)

Taking the logarithm of both sides of Equations (6) and (7), respectively yields:
Iné =InA + nyIno - Q/(RT) (8)

Iné =InA + po - Q/(RT) 9)

Then, it is obtained that two groups of straight lines based on Equations (8) and (9), as shown in
Figure 3a,b, respectively. The values of 1 and f3 are the average value of the slope of the fitting lines
in the Ino-In¢ and o-Iné plots, which were 5.9160 and 0.0871, respectively. Then, the value of « is
0.0147 based on a = /n,. Moreover, the values of ao varied from 0.29 to 3.23 under the strain of 0.30.
Therefore, it is reasonable to choose the constitutive equation under all the strain levels.

4 4

Iné

0 50 100 150 200 250

o (Mpa) ' " The
(a) (b)

Figure 3. Results of regression analysis for determining a. (a) Relationship between o-In¢;
(b) relationship between Ino-Ine.

For all the strain levels, Equation (1) can be written as:
é = Alsinh(ao)]" exp(-Q/(RT)) (10)
Taking the logarithm of both sides of Equation (10) gives:

Iné = nin[sinh(ao)]+1In A - Q/(RT) (11)
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The value of 1 can be obtained from the average slope of the lines in Iné-In[sinh(ao)] plots, as
shown in Figure 4a.
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Figure 4. Results of regression analysis based on a = 0.0147. (a) Relationship between In[sinh(ao)]-Iné;
(b) relationship between 1000/T-In[sinh(a0)]; (c) relationship between In[sinh(ao)]-InZ.

Because the value of In[sinh(ao)] is approximately 1000 times the value of 1/T, 1000/T is used
instead of 1/T to obtain a more accurate result. When 1000/T is used, the unit of Q becomes kJ-mol ™.
For a particular strain rate, Equation (12) can be derived based on Equation (11), as follows:

dIn[sinh(ao)]

Q = Rn—1500,T

(12)
Therefore, the value of Q can be gained from the average slope of the lines in In[sinh(«c)]-1000/T
under various strain rates, as shown in Figure 4b.
Substituting Equation (2) in Equation (10) and taking the logarithm of both sides of Equation (10) give:

InZ = In A + n[In(sinh(ao))] (13)

Based on Equation (13), it is easily found that the relationship between In[sinh(ac)] and InZ is
linear. Moreover, the value of InA is the InZ-intercept of the fitting lines in the In[sinh(ac)]-InZ plots
when the value of In[sinh(ao)] is zero, as shown in Figure 4c. The values of n, Q and InA are 4.31,
646.50 and 59.43, respectively.

In summary, the values of material constants «, 1, Q and InA are obtained under a single strain,
namely ¢ = 0.30. However, when the strain is different, the values of the material constants will
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change [21]. The constitutive equation is established based on strain range from 0.10 to 0.60 at an
interval of 0.05. The above solving process is repeated to obtain material constants under various
strains. By adjusting the order of the polynomial, it is found that a seventh order of the polynomial is
employed to represent the influence of strain on material constants with a very good correlation and
generalization, which is shown in Figure 5 and Equation (14) [35]. Moreover, the values of multinomial
coefficients are shown in Table 1.

a=ay+a1&+ azez + 11353 + 11464 + 11555 + a6£6 + 11767

n = No+ Nie + Noe? + N3ed + Nye* + Nse® + Nge® + Nye/
Q=Qp+ Qe+ Qe + Q3¢ + Quet + Qse” + Qpe® + Qpe”
INA = Ag + Aje + Ase? + Aze® 4+ Age* + Ase® + Age® + Aye”

(14)
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Figure 5. Variation of (a) a; (b) n; (c) InA; (d) Q with true strain represented by a 7th order of
the polynomial.

Table 1. Coefficients of the polynomial for a, 1, Q and InA.

o n Q InA
ag = 0.0136 Np =5.024 Qp =425.153 Ag =39.642
a = 0.0236 N, =-5.757 Qq =9463.639 Aq =860.817
a, = —0.3988 N, =72.989 Q, =-113,579.0 A, =-10,345.921

13 =29127  N3=-649.946 Q3 =647,939.428 Az =58,956.037
a;=—104516 Ny =2802.387 Qu=-2.029%x1070 Ay =—184,2985
a5 =19.8532 Ns=-6137.141 Qs=3575x10"0  As=324,376.105
1 =—19.0393  Ng=6620972 Qg=-3.332x10°  Ag =—302,056.1
a; =72107 Ny =-2796.638 Q;=1279x10"° A, =115906.977
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When the materials constant can be evaluated based on Equation (14), the flow stress can be
predicted from Equation (15) [14,32], which is derived from Equations (1), (2) and (5).

oo %ln{(%)l/n_F[(%)2h1+_1r/2} .

Z = éexp(Q/(RT))

3.2. Establishing the Modified Strain-Compensated Arrhenius-Type (ms—cA-type) Equation

The modified strain-compensated Arrhenius-type (ms—cA-type) equation is developed by revising
the strain rate in the original strain-compensated Arrhenius-type equation. Namely, the constitutive
equation is modified by using an effective strain rate ¢* instead of real strain rate ¢ again. The modified
Arrhenius-type equation is shown in Equation (16).

¢ = A[sinh(ao)]" exp(-Q/(RT)) (16)

where ¢" is the effective strain rate (s71), o is the flow stress (MPa), T is the deformation temperature
(K), Qis the activation energy (J-mol™1), R is the molar gas constant (8.3145 J-mol LK™, A, a, n and m
are material constants.

First, material constants are obtained to establish the modified strain-compensated Arrhenius-type
equation. Because material constants A, a, n, m and Q change with strain, it is necessary to solve
material constants under various strain. After obtaining material constants under different strain, the
effective strain rate can be determined.

3.2.1. Determining Material Constants

Wang et al. [26] proposed material constants in the Arrhenius-type equation were solved by
combining iterative methods with regression analysis. In the prevent study, the same method is used
to solve the material constants in the modified Arrhenius-type equation. During solving material
constants, A, @, n, m and Q, the real strain rate ¢ is used instead of the effective strain rate ¢ in Equation
(16). Namely, substituting ¢ = ¢ in Equation (16) gives:

é = Alsinh(ao)]" exp(-Q/(RT)) (17)
Taking the logarithm of both sides of Equation (17) gives:
In¢ = In A+nIn[sinh(ao)] - Q/(RT) (18)
Rearranging gives:
sinh{exp[iné/n + Q/ (nRT) - In(A)/n]} = ac (19)

where sinh™! is the inverse function of sinh.

1000/T is used instead of 1/T to obtain a more accurate result again. Therefore, the unit of Q
becomes kJ-mol~1.

Based on Equations (18) and (19), Equations (20) and (21) is established, respectively.

y1 =Ine

x1 = In[sinh(ao)]
x, = 1000/ (RT)
bl =n

b, =Q

(20)
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Yo = sinh_l{exp [Iné/n+1000Q/ (nRT) — ln(A)/n]}
X3 =0 (21)
c=a

Substituting Equations (20) and (21) in Equations (18) and (19), respectively gives:
Y1 = b1xq1 + byxy + by (22)

Y2 = cxy (23)

If a is determined, the n, Q and A (b1, b, and b3) will be obtained by performing multiple linear
regression on Equation (22). Similarly, if n, Q and A are determined, the « (c) will be obtained by
performing linear regression on Equation (23). Therefore, iterative methods can be used to solve
material constants.

Based on the above analysis, it is used that a new method combines regression analysis with
iterative methods. About the new method, first, the initial guess of « is determined to solve x;
in Equation (23). Second, the approximation of 7, Q and A is determined by performing multiple
linear regression on Equation (22). Third, n, Q and A obtained in the second step are substituted in
Equation (21) to determine y,, and then the approximation of « is determined by performing linear
regression on Equation (23). Fourthly, the approximation of @ from one iteration is the input of the next
to iterate Equations (22) and (23) until a stopping criterion is met. Finally, it is obtained the convergence
values of 1, Q, A and a under a single strain.

The above four steps are repeated for solving material constants under different strain. When the
stopping criterion is established based on the predicted stress under all strain, it is used to obtain the
convergence values of 71, Q, A and «a under various strain. The solution process under a single strain is
as follows:

The strain of 0.30 is still taken as an example to introduce the procedures of solving material
constants 1, Q, A and « under a single strain. The real strain rate is used to replace the effective strain
rate during determining material constants.

At first, the initial guess of « is the value of a in the original Arrhenius-type equation under strain
of 0.30. Namely, the initial guess of « is equal to 0.0147. Next, it is needed to determine the value
of x1. At a special strain, there are seven different deformation temperatures (1203, 1218, 1233, 1248,
1263, 1278 and 1293 K) and five different values of strain (0.001, 0.01, 0.1, 1 and 10 s~1), which can be
obtained based on the selected experimental data points. Namely, there are thirty-five experimental
data points at a special strain. The set of x;-values can be obtained based on the experimental data
points and Equation (20). The multiple linear regression is performed based on Equation (22), where
x1, Xp and x3 are the independent variables, y; is the dependent variable and by, b, and b3 are the
unknown parameters.

Newton’s method is used to perform multiple linear regression. For Newton’s method, the initial
value of the unknown parameters is needed. The initial guess of by, b, and b3 are 4.31, 646.50 and 59.43,
respectively. After finishing multiple linear regression, it is obtained that the approximate value of by,
by and b3 are 3.99, 597.50 and 54.72, respectively.

Then, the set of y,-values is obtained by substituting the value of b, b, and b3 in Equation (21).
Linear regression can be performed based on Equation (23). During linear regression, Equation (23)
is the regression model, x4 is the independent parameters, y; is the dependent variable and c is the
unknown variables. Newton’s method is still used to perform linear regression and the initial guess of
a is still equal to 0.0147. After finishing linear regression, it is obtained that the approximate value of ¢
(o) is 0.0146. To date, the approximate values of 1, Q, A and « are obtained. Namely, it is obtained the
results of the first iteration, which is shown in Equation (24).
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9 7 \1/3.99 7 \2/3.99 1/2
9= 00146 ln{(m) * (m) +1 (1thiteration) (24)

Z = ¢ exp(597.50 x 103 /RT)

The approximate value of « is the input of the next iteration to continue to iterate Equations (22)
and (23). After the 253rd iteration, the approximate values of by, by, b3 and ¢ are 5.86, 586.27, 80.10
and 1.927 x 107%, respectively. Therefore, a new result is obtained, which is shown in Equation (25).
The strain rate is not modified in Equations (24) and (25).

B 1 7 \1/5.86 7 \2/5.86 1/2
0 = T927x10% ln{(m) + (m) +1 (253th iteration) (25)
Z = ¢ exp(586.27 x 10° /RT)

MATLARB software is used for programming and the nlinfit function is called to conduct regression
analysis based on Newton’s method.

In the above iterative process, the same number of data points and the same regression model
are used in regression analysis and the prediction accuracy can be verified by the coefficient of
determination (R2), which is shown in Equation (26) [36]. The higher the R2-value, the higher the
prediction accuracy. Figure 6 shows R2-values of Equations (22) and (23) keep increasing with
increasing the number of iterations, which means the prediction accuracy is continuously improved
with increasing the number of iterations. Therefore, the prediction accuracy of Equation (25) is higher.

G
[
S
e

R’=

—_
|

(26)

Mz| L=z

(Ei-E)’

I
—

where E; is the experimental data, P; is the predicted value obtained from the constitutive equation,
E is the mean value of E; and N is the total number of data employed in the investigation.

0.98
0.96
= =03
L L
094 .
Equation. (22)
A Equation. (23)
092 |
| L | ! | !

0 100 200 300
The number of iterations

Figure 6. Variation of R? of Equations (22) and (23) with iterations.

To date, it is shown the process of solving the material constants under a single strain. Then the
stopping criterion is determined to obtain material constants in the strain range from 0.10 to 0.60 at an
interval of 0.05.

About the stopping criterion, average absolute relative error (AARE) is an unbiased statistical
parameter that is calculated via a term-by-term comparison of the relative error [12], as shown in
Equation (27). Moreover, AARE is always used to verify the accuracy of the constitutive models.
Therefore, AARE-value is obtained based on the predicated stress in the strain range from 0.10 to 0.60
at an interval of 0.05. Moreover, the stopping criterion is the error of AARE from the previous iteration
to this one, as shown in Equation (28).
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|E; —

Pyl
; x 100

(27)

1
AARE(%) = NZ
i=1

where E; is the experimental data, P; is the predicted value obtained from the constitutive equation
and N is the total number of data points.

AARE; — AARE; ; <107* (28)
where AARE; and AARE,;_; is the average absolute relative error from the ith and i — 1th iteration.

The value of AARE; changes with the number of iterations, as shown in Figure 7. After the 253rd
iteration, the stopping criterion is met. AAREj35 is equal to 6.53%. It is also obtained that material
constants under strain in the range from 0.10 to 0.60. In addition, a seventh-order polynomial is
used to describe the relationship between material constants and strain, which is shown in Figure 8.
The coefficients of the polynomial functions are given in Table 2. Because the values of « are far less
than 1073, the logarithm of « is used to describe the correlation between the strain and it.

Table 2. Coefficients of the polynomial for «, , Q and InA in the ms—cA-type equation.

Ina n Q InA Iné"
ag = —33.2764 No = 5.539 Qp = 168.423 Ay = 181.345 Eg = —0.0769
a1 = 683.8600 N; =26.621 Qq =14,166.731 A1 =-2463.403 E; =0.9819
ay = —7783.1519 N, = -278.626 Q, =-161,429.97 A, =28,124.806
43 = 454436811 N3 =1260.164 Q3 =904,869.178 Az = —169,711.35
aq = —147,592.0013 Ny =-3006.507 Qu=-2.811x10"¢ A4 =569,436.405
05 =269,494.6845  N5=3912.161 Qs5=4936 x 10  As = -1.068 x 1076
g = —258/493.9747 Ng=-2643.084 Qg=-4593x10°  Ag=1.046 x 1076
ay =101,249.5269 Ny =743.522 Q7 =1.763 x 1076 Ay = —415,487.31
12 b
r £=0.1~0.6
0L AARE,5;=6.5%
B
5
8
6 L1 ; 1 . L ;

100 200
The number of iterations

300

Figure 7. Variation of average absolute relative error (AARE); with iterations.
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Figure 8. Cont.
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(c) (d)

Figure 8. Variation of (a) Ina; (b) n; (c) In A; (d) Q with true strain represented by a 7th order of
the polynomial.

3.2.2. Determining Effective Strain Rate

By the above process, it is obtained the value of 1, Q, A and a under the strain range from 0.10 to
0.60 at an interval of 0.05. After that, the effective strain rate ¢" is solved. The process of solving & is
as follows:

At a special strain rate, there are seven different deformation temperatures (1203, 1218, 1233, 1248,
1263, 1278 and 1293 K) and eleven different values of strain (0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45,
0.50, 0.55 and 0.60), which can be obtained based on the selected experimental data points. Namely,
there are seventy-seven experimental data points at a special strain rate. The values of strain, stress, and
deformation temperatures in an experimental data point are substituted in Equation (17). Moreover,
it is obtained a value of strain rate. Finally, based on the seventy-seven experimental data points,
the seventy-seven values of strain rates can be obtained. Because there are errors in the process of
solving the material parameters, there are differences between the seventy-seven values of strain rates.
Based on least squares, the mean of the seventy-seven values of strain rates is used as the effective
strain rate ¢" at the special strain rate, which is shown in Equation (29).

1 96 123K ,
= Y, ), Allsinh(aco.1))" exp(-Q./(RT)) (29)
e=0.1 T=1203K

where ¢ is the effective strain rate under a special strain rate; ¢ is the strain; n¢, Q., A¢ and a, are
the corresponding material constants under the strain ¢; T is the deforming temperature; o, 1 is the
corresponding experimental stress under the strain ¢, the temperature T and the special strain rate;
and N is the total number of data points under the special strain rate.

The corresponding ¢ at different ¢ can be obtained by repeating the above process. Because
the maximum of the real and effective strain rate is ten times more than the minimum values, the
logarithm of ¢” and ¢ is used to describe their correlation, which is shown in Equation (30) and Figure 9.
The coefficients of the linear functions are given in Table 2.

Iné" =Ey+Ejln¢ (30)

In summary, material constants and effective strain rate are determined based on the above
solution procedure, which is shown in Figure 10. The modified Arrhenius-type equation is derived
from Equations (16) and (30), as shown in Equation (31).

exp(Eo + E1Iné¢) = Afsinh(ao)]" exp(—Q/(RT)) (31)
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To simplify form of Equation (31), Z* is used instead of Z in Equation (2) While ¢" in Equation (30)
is used instead of ¢ in Equation (2). Therefore, a new equation is developed, as follows:

Z" =exp(Ep+E1Ine+Q/(RT)) (32)
Substituting Equation (32) in Equation (31) and rearranging give:
1 7 1/n 7 2/n 172
o=z ln{(x) + [(Z) + 1] (33)
Z* = exp(Eg+ E1Iné+ Q/(RT))

When the parameters in Equation (33) can be evaluated based on Equation (34) and Table 2, the
flow stress can be predicted, which is shown in Figure 11.

Ina = ag + aje + ape? + azed + age + a5e® + age® + aye”

n = No + Nqe + Npe? + N3e3 4+ Nyet + Nse® + Nge® + Nye?
Q= Q4+ Q& + Que? + Q3% + Quet + Qse” + Qqe® + Qye”
INA = Ag+ Aje + Are? + Azed + Age* + Ase® + Age® + Aye”

(34)

5
| In&'=0.9819In& - 0.0769
R?=0.990
0
Tuy
2 L
5 :
B Data points
L Fitting line
-10 1 | 1 ] 1
-10 -5 0 5

Ing

Figure 9. Relation between Iné* and Iné.
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( Determine initial guess of o under each true strain )

( Effective strain rate = real strain rate )

( Solve 1, Q and InA based on Eq.(22) under strain &«

( Solve a based on Eq.(23) under strain &« )

Gunder each true strain)

Gain material constants NO

Under each strain ?

( Solve AARE: )

Satisfaction of
stopping criteria?

( Solve the equivalent strain rate based on Eq.(29) )

End

Figure 10. Flow chart of establishing the modified strain-compensated Arrhenius-type equation.
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Figure 11. Comparison between the experimental and predicted stress by the original and modified
strain-compensated Arrhenius-type equations at (a) 1203 K; (b) 1218 K; (c) 1233 K; (d) 1248 K; (e) 1263 K;
(f) 1278 K; (g) 1293 K.

3.3. Establishing the Original Hensel-Spittel (0HS) Equation

Hensel and Spittel proposed a constitutive equation (namely HS equation) to predict the flow
curves of alloy [27], which is shown in Equation (35).

sinh(ao) = Aexp(myT)e™é™ exp(my/e)(1 + €)™' exp(m6e)ém7TTm8 (35)

where a, A, my, my, ms, my, ms, mg, my and mg are material parameters. Generally, m; and mg
are neglected.
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Taking the logarithms on both sides of Equation (35) gives:
In[sinh(ao)] = In(A) + m T+ moIn(e) +mzIn(e) +my/e +msTIn(1 + ¢) + mepe (36)

About Equation (36), a is a function of stain. The values of a can be gained based on the seventh
polynomial related to strain, which is shown in Figure 5a [37]. Other material parameters can be
obtained by multiple linear regression, which is listed in Table 3.

Table 3. Material parameters obtained by the traditional method.

A m my ms my ms mg

3,199,230.981 -0.0113 0.1064 0.2329 0.0114 -0.0008 0.5115

3.4. Establishing the Modified Hensel-Spittel (mHS) Equation

In the present study, the modified Hensel-Spittel (mHS) equation is established by using the
effective strain rate ¢" instead of the real strain rate ¢, which is shown in Equation (37).

n15T

sinh(ac) = Aexp(mT)e™ ()™ exp(my/e)(1 + €) exp(mée)ém7TTm8 (37)
where the a, A, my, my, ms, my, ms, mg, my and mg are material parameters, « is a fixed value independent
of strain, ¢ is a function of é.

About solving material parameters in mHS equation, there is a process similar to solving the
parameters in the modified strain-compensated Arrhenius-type equation. At first, the real strain rate ¢
is used instead of the effective strain rate ¢ in Equation (37). Namely, the modified Hensel-Spittel
(mHS) equation is transformed into Equation (35). Next, the material parameters can be solved by
combining regression analysis with iterative methods. Because it is needed to perform regression
analysis, Equation (35) is transformed into Equation (36).

Rearranging Equation (36) gives:

asinh[exp(In(A) + miT +myIn(e) + mzIn(éx) +my/e +msTIn(1+¢) +mpe)] =ac  (38)

Based on Equations (36) and (38), Equations (39) and (40) are established, respectively.

y1 = In[sinh(ao)]

X1 = T

xp = In(¢)

x3 = In(¢&)

xg=1/¢ (39)
x5 =TIn(l+¢)

X = &

bi = mi(i = 1,2,3,4,5, 6)

b; =In(A

y2 = asinh[exp(In(A) + m1 T + myp In(e) + mzIn(é") +ma/e +msTIn(1 + ) + mee)]
X7 =0 (40)
c=ua

Substituting Equations (39) and (40) in Equations (36) and (38), respectively gives:
y1 = bixy + baxy + b3xz + baxg + bsxs + bexe + by 41)

Y2 = x7 (42)
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In summary, Equation (37) is transformed into two linear equations, namely Equation (41) and
Equation (42). If the material parameter o can be determined, the other material parameters will
be obtained by performing multiple regression analysis based on Equation (41). Similarly, if the
parameters my~mg can be determined, the material parameter @ will be obtained by performing
regression analysis based on Equation (42). A new iterative process is established based on the above
analysis, which is shown in Figure 12. The material parameters can be solved by combining regression
analysis with iterative methods. The initial guess of « is 0.0147 for iterative methods. The stopping
criterion is still Equation (28). When the stopping criterion is met, the material parameters m;~mg, a,
and A can be gained, which is shown in Table 4.

Solve o based on Eq.(42)

‘ o ) ( Solve AARE;: )

Satisfaction of
stopping criteria?

( Solve A and ni~nie based on Eq.(41)

(Solve the equivalent strain rate based on Eq.(44))

Figure 12. Flow chart of establishing the modified Hensel-Spittel (mHS) equation.

Table 4. Material parameters in the modified Hensel-Spittel (mHS) equation.

@ A m my ms my ms me e e1
0.0003 342914  -0.0075 -0.0863 0.16784 —-0.0131  —0.0005 0.2511 2.7183 —0.0863

After that, the effective strain rates can be solved based on the material parameters. At first, the
real strain rate is separated from the constitutive equation. Rearranging Equation (35) gives:

1
. sinh(ao) s (43)
E =
A exp(mT)em2 exp(my/e)(1+ ¢)"st exp(m6£)ém7TT’”8

Next, based on least squares, it is solved the optimal of the strain rate, which is used as the effective
strain rate. At a special strain rate, there are seventy-seven experimental data points. The values of
strain, stress, and deformation temperatures in experimental data points are substituted in Equation (43).
As a result, it is obtained the seventy-seven values of strain rates. Based on least squares, the mean of
the seventy-seven values of strain rates is used as the effective strain rate at the special strain rate ¢’,
as follows:
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(44)

P

06 1293K . 1/ms3
.1 l sinh(ao; )
e=0.1 T=1203K

Aexp(miT)e™ exp(my/e)(1+ ¢)msT exp(mge)

where the o, A, my, my, m3, my, ms and m¢ are material parameters, T is temperature, ¢ is the strain,
0;, is stress under T, ¢ and a special strain rate ¢, N is the total number of data employed in the
investigation, and ¢ is the corresponding the effective strain rate at a special strain rate &g.

The corresponding ¢" at different ¢ can be obtained by repeating the above process. Then, it is
established a relationship between the strain rate and the effective strain rate. The linear equation can
be used to describe the relationship between ¢ and ¢, which is shown in Equation (45) and Figure 13.

In Equation (45), the values of ey and e; are 0.1668 and —0.0863, respectively.
Iné =ep+erlné (45)

Rearranging Equation (45) gives:
& =e+4 ¢ (46)

where e = exp(ep).

Finally, the new modified constitutive equation is developed by using the effective strain
rate instead of the strain rate in the original constitutive equation. Substituting Equation (46) in
Equation (37) gives:

sinh(ao) = Aexp(miT)e™ (e + &)™ exp(my/€) (1 + €)™" exp(m6€)ém7TTm8 (47)

In summary, the modified Hensel-Spittel (mHS) equation is established, which is shown in
Equation (47). The material parameters are listed in Table 4. The predicted stress the original
Hensel-Spittel (0HS) equation and the modified Hensel-Spittel (mHS) equation is shown in Figure 14.

S

In&g"=1.0029In& — 0.0726
R?=10.990

W Data points
— Fittting line

210 . | . | .
-10 -5 0 5

Figure 13. Relation between Iné¢” and Iné in the modified Hensel-Spittel (mHS) equation.
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Figure 14. Comparison between the experimental and predicted stress from the original Hensel-Spittel
(oHS) equation and the modified Hensel-Spittel (mHS) equation at (a) 1203 K; (b) 1218 K; (c) 1233 K;
(d) 1248 K; (e) 1263 K; (f) 1278 K; (g) 1293 K.

4. Discussion

In the present study, it was established two original and two modified constitutive equations.
The two original constitutive equations are the original strain-compensated Arrhenius-type (os—cA-type)
equation, and the original Hensel-Spittel (0HS) equation, respectively. Moreover, the two modified
constitutive equations include the modified strain-compensated Arrhenius-type (ms—cA-type) equation

and the modified Hensel-Spittel (mHS) equation.

A comparative study was made on the above four constitutive equations and their predictability
was evaluated in terms of the correlation coefficient (R), average absolute relative error (AARE) and
the relative error (RE) and the average root mean square error (RMSE). The correlation coefficient (R) is

shown in Equation (48).

(48)
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where E; is the measured stress, P; is the estimated stress, E and P are the mean values of measured
and estimated flow stresses, respectively.

The correlation coefficient (R) is a statistical measure of the strength of the linear relationship
between two variables. It is assumed that the predicted stress o, is equal to the experimental stress ge.
There will be a linear relationship between op and de, namely o, = e, when o, = e, R = 1. As the
prediction accuracy decreases, the linear relationship between o}, and g becomes weaker and the value
of R also decreases. Therefore, the correlation coefficient (R) can be used as a measure of prediction
accuracy by verifying the strength of the linear relationship between o, and .. Figure 15 shows
the correlation between the experimental stress and predicted flow stress values from the different
constitutive equations.

250 250
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Figure 15. Correlation between the experimental stress and predicted flow stress values from
(a) original strain-compensated Arrhenius-type (os—cA-type) equation; (b) modified strain-compensated
Arrhenius-type (ms—cA-type) equation; (c) original Hensel-Spittel (oHS) equation; (d) modified
Hensel-Spittel (mHS) equation.

In Figure 15, the R-value of the modified strain-compensated Arrhenius-type (ms—cA-type)
equation (0.993) are the maximum, which is followed by the modified Hensel-Spittel (mHS) equation
(0.991), the original strain-compensated Arrhenius-type (os—cA-type) equation (0.963) and the original
Hensel-Spittel (0HS) equation (0.961).

Meanwhile, the straight line o, = ge are introduced into Figure 15, which is used to show the
difference between these constitutive equations. When o, = 0, the data point is located on the straight
line 0, = ge. The distance from the data point to line o, = Je increases as the error value between o,
and o, increases.

From Figure 15, it is easily found that the data point under the strain rate of 10 s™! has the farthest
distance to the straight line op = 0., which means the corresponding error is the largest. However,
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the flow stress is different as temperatures, strain and strain rates changes. The same error between
the experimental and predicted stress may mean different results for two unequal experimental
stress values. In statistics, normalization can overcome the above shortcomings. Therefore, as a
normalized unbiased statistical parameter, the average absolute relative error (AARE) is used to verify
the predictability of the four constitutive equations. The smaller the value of AARE, the higher the
accuracy of the constitutive equation.

The modified strain-compensated Arrhenius-type equation has the smallest AARE-value (4.67%)
when compared to the AARE-value of the modified Hensel-Spittel (mHS) equation (5.31%), the
AARE-value of the original strain-compensated Arrhenius-type (os—cA-type) equation (10.16%), the
AARE-value of the original Hensel-Spittel (0HS) equation (10.65%). The AARE-value of any original
constitutive equation (namely, the os—cA-type equation and the oHS equation) is more than twice
that of the corresponding modified constitutive equation (namely, the ms—cA-type equation and the
mHS equation).

As a statistical parameter, the relative error is commonly employed to show the distribution of
errors between the experimental and predicted values [6]. The relative error is calculated by comparing
the data points and predictions via a term-by-term, which is shown in Equation (49).

(Ei—Py)

i

Relative error = %X 100% (49)

where E; and P; still are the experimental data and is the predicted value, respectively. Moreover, the
results are shown in Figure 16.
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Figure 16. Statistical analysis of the relative error from (a) the original strain-compensated
Arrhenius-type (0os—-cA-type) equation; (b) modified strain-compensated Arrhenius-type (ms—cA-type)
equation; (c) original Hensel-Spittel (0HS) equation; (d) modified Hensel-Spittel (mHS) equation.
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The relative errors gained from modified strain-compensated Arrhenius-type (ms—-cA-type)
equation and the modified Hensel-Spittel (mHS) equation vary from —15.31% to 13.14% and —21.94% to
11.32%, respectively, whereas it is in the range of —25.82% to0 26.85% for the modified strain-compensated
Arrhenius-type (ms—cA-type) equation and —23.14% to 38.44% for the modified Hensel-Spittel
(mHS) equation.

Moreover, 90.65% and 87.80% of the numbers of relative errors of the modified strain-compensated
Arrhenius-type (ms—cA-type) equation and the modified Hensel-Spittel (mHS) equation locate between
RE-values of —10% and 10%. Compared with the two modified constitutive equation, the percentage
of the RE-number of the original strain-compensated Arrhenius-type (os—cA-type) equation and the
original Hensel-Spittel (oHS) equation are 57.40% and 55.84%, respectively, in the same RE-values
range from —10% to 10%.

In addition, the average root mean square error (RMSE) is a statistical measure for model
performance evaluation [14,38], which is used to compare the four constitutive equations further.
The expression of RMSE is as follows:

(50)

where RMSE is the average root mean square error, E; is the experimental data and P; is the predicted
value obtained from the model, and N is the total number of data employed in the investigation.
Regarding the four constitutive equations, the results of RMSE-values are very similar to the results
of ARRE-values. The RMSE-value of any original constitutive equation (namely, the os—cA-type
equation and the oHS equation) is more than twice as big as the corresponding modified corresponding
constitutive equation (namely, the ms—cA-type equation and the mHS equation).

In addition, RMSE-values and AARE-values under a single strain rate can be used to explain the
effect of stain rates on the prediction accuracy of the four constitutive equations.

From Figure 17, with increasing the strain rate, RMSE-values of the two original constitutive
equation (namely, the os—cA-type equation and the oHS equation) change little in the beginning, but
their AARE-values decrease sharply. The reason is that the stress increases with the increase of strain
rate, which is shown in Figure 1. When the strain rate reaches 0.1 s™!, every original constitutive
equation obtains the smallest AARE-value, which is slightly higher than the AARE-value of the any
modified constitutive equations (namely, the ms—cA-type equation and the mHS equation). As the
stain rate continues increasing, RMSE-values of the two original constitutive equations increase sharply,
but their AARE-values increases first and then decreases. Because the increase ratio of RMSE is higher
first and then lower than that of the experimental stress, and the values of stress rise sharply as the
value of the strain rate increases from 1 to 10 s~!, which is shown in Figure 1. AARE-values of the two
original constitutive equations reaches the maximum when the strain rate is one per second.

Although RMSE-values of the two modified constitutive equations (namely, the ms—cA-type
equation and the mHS equation) also increase as the strain rate increases, their AARE-values change
relatively little. The reason is that the RMSE-value of the two modified constitutive equation has the
increasing ratio similar to the experimental stress. Moreover, under various strain rates, RMSE-value of
every modified constitutive equation is lower than that of any original constitutive equation. Therefore,
the modified constitutive equations can have higher accuracy and reflect the effect of strain rate on
stress more accurately.

In sum, the results of the R, AARE, RMSE and RE of the four constitutive equations are listed in
Table 5. Based on the above result, it is found that the original strain-compensated Arrhenius-type
(os—cA-type) equation and the original Hensel-Spittel (0HS) equation have a similar and relatively
lower prediction accuracy. The prediction accuracy of the modified strain-com Arrhenius-type
constitutive equation is the highest, which is slightly higher than the prediction accuracy of the
modified Hensel-Spittel (mHS) equation.
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Figure 17. The relationship between the strain rate and (a) AARE; (b) RMSE obtained by the
original strain-compensated Arrhenius-type (os—cA-type) equation, the modified strain-compensated
Arrhenius-type (ms—cA-type) equation, the original Hensel-Spittel (0HS) equation and the modified
Hensel-Spittel (mHS) equation.

Table 5. R, AARE, RMSE and RE of the original strain-compensated Arrhenius-type (os—cA-type)
equation, the modified strain-compensated Arrhenius-type (ms—cA-type) equation, the original
Hensel-Spittel (0HS) equation and the modified Hensel-Spittel (mHS) equation.

Constitutive Equation R AARE (%) RMSE (Mpa) Maxof RE (%) Min of RE (%)
oHS 0.961 10.65 8.08 38.44 -23.14
0s—cA-type 0.963 10.16 7.93 26.85 -25.82
mHS 0.991 531 4.04 11.32 -21.94
ms—cA-type 0.993 4.67 3.60 13.14 -15.31

5. Conclusions

The hot deformation behavior of TC4-DT alloy was studied. For predicting the flow stress

of the TC4-DT alloy, the modified strain-compensated Arrhenius-type equation and the modified

Hensel-Spittel (mHS) equation were developed by revising strain rates and combining regression

analysis and iterative methods. Meanwhile, the original strain-compensated Arrhenius-type equation
and the original Hensel-Spittel (0HS) equation were established by the original linear regression
methods. A comparative study was made on the above four equations, and the following conclusions

were as follows:

@

)

®)

Both the original and modified strain-compensated Arrhenius-type (0s—cA-type) equation and
the original Hensel-Spittel (0HS) equation had a similar and relatively lower prediction accuracy,
with R-value, AARE-value and RMSE-value of 0.963, 10.16% and 7.93 Mpa for the os—cA-type
equation and of 0.961, 10.65% and 8.08 Mpa for the oHS equation;

The modified strain-compensated Arrhenius-type (ms—cA-type) equation had the highest
prediction accuracy, which had the highest R-value (0.993), the lowest AARE-value (4.67%)
and MRSE-value (3.60 Mpa). The prediction accuracy of the modified Hensel-Spittel (mHS)
equation was very close to that of the ms—cA-type equation. The R-value, AARE-value and
RMSE-value of the mHS equation were 0.991, 5.31% and 4.04 Mpa, respectively. Regarding AARE
and RMSE, the value of any modified constitutive equation was less than half the value of the
corresponding original constitutive equation;

Regarding the two modified constitutive equation (namely, the mHS equation and the ms—cA-type
equation), AARE-value under different strain rated was lower, and its fluctuation was relatively
small as the strain rate changed. The AARE-values of the original constitutive equation (namely,
the oHS equation and the os—cA-type equation) in different strain rated were relatively higher
and differ greatly. The result means the new modified constitutive equation was more precise to
describe the relationship between the strain rate and stress.
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Appendix A
Table Al. Experimental stress under different deforming conditions (Mpa).
Strai i
TK) RI:‘tlen Strain

1) 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

1203 0.001 40.19 3959 3840 36.61 36.01 3542 3363 3244 3184 30.65 30.65
1203 0.01 6521 64.02 6223 6045 5926 5926 5747 55.68 5449 5270 51.51

1203 0.1 110.50 108.12 105.74 105.14 103.35 100.97 99.78 98.58 9739 96.20 95.01
1203 1 127.19 12719 126.00 12421 123.02 121.23 120.63 119.44 11825 116.46 116.46
1203 10 229.68 22790 22790 22432 219.55 21479 210.61 207.04 202.27 20048 197.50

1218 0.001 38.16 3648 3481 3313 33.13 3201 3034 2978 2922 28.66 28.66
1218 0.01 60.52 58.84 5549 5437 5213 4990 4822 4710 4599 4543 4431

1218 0.1 8511 8399 8176 7896 7729 75.61 7449 7449 7449 7393 75.05
1218 1 101.32 101.32 101.32 100.76 100.76 100.76 100.76 99.09 100.76 99.64 100.76
1218 10 18293 18349 181.25 181.81 181.25 179.01 176.22 175.10 17342 17231 17231

1233 0.001 3594 3542 33.85 3177 3125 3073 3021 28.65 27.08 26.04 26.04
1233 0.01 5469 5313 5156 50.00 4896 46.88 4531 4479 4271 41.67 40.10

1233 0.1 76.04 7552 7396 7240 7188 7135 7083 6979 69.79 69.79 69.79
1233 1 91.67 9323 91.67 90.63 8958 88.02 8594 8438 8281 8333 8281
1233 10 158.85 160.94 158.85 156.25 157.29 151.56 151.56 148.44 14740 14531 144.79

1248 0.001 3273 3164 3055 2982 2836 28.00 2655 2582 2473 2400 23.64
1248 0.01 5236 5127 4945 48.00 4655 4436 4327 4182 40.00 3891 38.18

1248 0.1 68.00 6727 6582 6582 6545 6436 6327 6327 6291 6255 60.36
1248 1 79.64 79.27 7855 7818 7745 7636 7418 7382 7236 7236 71.27
1248 10 13345 133.09 13455 13345 133.09 131.64 129.82 127.27 125.82 12582 12545

1263 0.001 2953 2841 2765 2615 2578 25.03 2428 2390 23.15 2240 22.03
1263 0.01 4642 4492 43.04 41.16 40.04 3816 37.04 3666 3553 3516 35.16

1263 0.1 6293 6218 6180 61.05 6030 5993 58.05 5730 5655 5542 54.30
1263 1 73.06 7381 7381 72.68 7193 7043 68.18 6743 66.68 66.68 65.93
1263 10 123.34 126.72 12522 12334 121.09 120.71 118.84 118.09 116.59 11546 113.96

1278 0.001 26.59 2525 2492 2358 2324 2257 2223 2190 2089 2156 21.23
1278 0.01 39.66 3799 36.65 34.64 3363 3263 31.62 3095 30.61 29.61 29.27

1278 0.1 56.76  56.09 5542 56.09 5441 5341 51.06 51.06 49.05 48.04 47.71
1278 1 68.83 6950 6950 6849 67.82 6682 6648 6480 6480 63.13 63.13
1278 10 98.32 100.34 101.01 99.66 98.66 97.65 96.65 95.64 9430 9296 93.63

1293 0.001 22.89 2342 2129 21.83 1996 1943 1996 1890 1837 1730 17.03
1293 0.01 34.07 3380 3194 3087 2875 2821 2688 2635 25.02 2422 2395

1293 0.1 50.30 50.04 4951 4738 4658 47.64 4445 4312 4312 4232 41.52

1293 1 68.14 6734 6627 6574 6548 63.61 63.08 62.02 60.15 60.68 59.89

1293 10 8730 8943 8996 9289 90.23 89.16 8890 89.70 88.37 88.63 88.63
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