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Abstract: This research presents the parametric effect of machining control variables while turning
EN31 alloy steel with a Chemical Vapor deposited (CVD) Ti(C,N) + Al2O3 + TiN coated carbide tool
insert. Three machining parameters with four levels considered in this research are feed, revolutions
per minute (RPM), and depth of cut (ap). The influences of those three factors on material removal
rate (MRR), surface roughness (Ra), and cutting force (Fc) were of specific interest in this research.
The results showed that turning control variables has a substantial influence on the process responses.
Furthermore, the paper demonstrates an adaptive neuro fuzzy inference system (ANFIS) model to
predict the process response at various parametric combinations. It was observed that the ANFIS
model used for prediction was accurate in predicting the process response at varying parametric
combinations. The proposed model presents correlation coefficients of 0.99, 0.98, and 0.964 for MRR,
Ra, and Fc, respectively.

Keywords: alloy steel; feed; ANFIS; RPM; turning

1. Introduction

Metal cutting plays a crucial role in the field of manufacturing. It was found that turning factors
such as feed, depth of cut, and speed influence material removal rate (MRR) and surface roughness
(RA) [1]. However, most of these research findings are established with three levels of parameters
and are for specific levels of these parameters. Thus, there is adequate scope for extensive research
which takes into account extended boundary conditions. The Taguchi orthogonal array has emerged
as one of the most widely adopted experimental designs owing to its ability in providing the most
optimal parametric combinations [2]. Generalizations of the behaviors of the factors mentioned above
and the specified process performance are difficult because the findings of the earlier researchers
were for specific tool–material combinations, such as the range of process variables and given turning
conditions. The feed rate indicates an effect on cutting force (FC) and RA. Moreover, the influence on
depth of cut was rather low while performing a turning operation on AA2219-TiB2/ZrB2 in a setup of
a metal matrix composite using uncoated tungsten carbide inserts. The developed linear regression
equation also showed a reliable agreement with the confirmation experiment during the turning
operation [3]. The surface quality was obtained at low feed and depth of cut, while the speed was
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high. Increase in RA was obtained when the machining time was high during machining Inconel
718 superalloy using cemented carbide inserts [4]. Carbide tool coated with TiAlxN super nitride
shows thermal stability at high temperatures while turning AISI 52,100 steel with cemented carbide
inserts coated with the HSN2 tool. Furthermore, the depth of cut, speed, and feed have impacts on
forces, RA, and wear of the insert [5]. Using minimum quantity lubrication (MQL) during machining
increases the tool life and improves the quality of the surface generated when related to dry machining.
Furthermore, high cutting speed can be utilized when machining with MQL [6]. The speed was
the most substantial factor followed by depth of cut and feed rate, but nose radius does not show a
significant effect towards RA during machining of hybrid metal matrix (Al-SiCp-fly ash) composite
with uncoated tungsten carbide inserts. The optimal parametric combination obtained from the genetic
algorithm shows better outcomes as compared to experimental results [7]. Grey relational analysis
can be used to develop and to identify the RA of work material temperature of surface and vibration
of the tool. A lower grey relational grade (GRG) value provides a smooth surface, whereas a higher
GRG value increases the RA of the material [8]. Cryogenic machining provides environmentally clean
machining and is successfully used in different machining processes which improve the machining
performance. The turning operation in the cryogenic environment increases the MRR and flank wear
through intensification in cutting velocity, feed rate, and depth of cut [9]. The introduction of a magnetic
field to turning process responses, namely, radial force, FC, and feed force, results in higher results
when compared to a turning operation without a magnetic field. Additionally, the increase in tool
life was observed when machining was performed with a magnetic field [10]. The ANOVA-TOPSIS
approach can be suitably used for determining the optimal parametric combination. It was found that
the higher the MRR with a good surface, the lesser the machining temperature and the FC. The most
relevant factor having the highest influence towards machining response criteria is the depth of cut [11].
When machining AISI 304 steel with uncoated carbide inserts, the RA is dominated by feed rate.
The optimization of turning parameters shows a reduction in machining cost and design process [12].
The fuzzy model with adaptive networks is called ANFIS, which provides some merits over neural
networks [13]. The wear in abrasive of a coated sample can sufficiently and accurately be predicted
with the ANN ANFIS [14]. The objective of this research is to present the experimental investigation
and ANFIS-based modelling during a turning operation of EN31 alloy steel. It was observed that
the proposed ANFIS model used for prediction was accurate in predicting the process response
at different parametric combinations. Optimization of turning parameters during a hard turning
process using teaching–learning and bacterial foraging-based optimization shows an efficient method
for determining the optimal turning parameter settings. The teaching–learning algorithm-based
optimization is preferred due to its convergence at the shortest possible time [15]. The hybrid approach
of ANFIS vibration and communication particle swarm optimization (VCPSO) for tool wear estimation
and obtaining optimal cutting parameter settings shows that the proposed model can estimate the
tool wear in real-time, which improves the efficiency of the machining process and raises the tool
life [16]. The proposed research work may be extensively used in the field of metal cutting and the
manufacturing environment. Subtractive clustering with ANFIS model can be used for predicting the
2nd law efficiency and total irreversibility with high accuracy as compared to ANN [17]. The hybrid
approach of PSO-ANFIS and MNR algorithm is adept for estimating the CNs of diesel, and biodiesel
oils have a novel correlation with high accuracy [18]. The ANFIS model utilized for automation of
friction stir welding, further GA and PSO has been implemented to tune the parameters of ANFIS for
better prediction. The developed ANFIS-GA and ANFIS-PSO have been observed to closely accord
with the experimental results [19]. The ANFIS model can foresee more precisely when compared
to ANN and other semi-empirical models using AAEDM of D3 steel [20]. The ANFIS model was
tested during the investigation of FDM parameters regarding the mechanical properties of end-use
parts. The developed model depicts an error percentage of 2.63%, which validates the experimental
data [21]. ANFIS can be implemented as a booming technique for predicting the performance of
rubberized concrete. ANFIS with Gaussian Membership functions (MFs) can predict with better
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accurately. The relationships amongst the parameters and strength are commonly nonlinear and well
taken by the ANFIS [22]. The comparison of RSM with ANFIS model during friction stir welding of
AA2024-AA5083 aluminum alloys in relation to ultimate tensile strength shows that the developed
ANFIS model is a powerful method as compared to the RSM model [23]. ANFIS with fuzzy inference
systems (FIS), such as subtractive clustering, grid partition, and fuzzy c-means (FCM), was utilized for
determining the cetane number. The result shows that all the fuzzy inference systems can determine
the cetane number of fuel (FCM), and the grid partition shows higher desirability [24]. The adsorption
process modelled with ANFIS shows a minimal error of total average error and total average of
absolute error, and the coefficients of determination of the training data set were found to be 0.9999 or
0.9823 respectively, when estimating the efficacy of lead adsorption with functional nanocomposite
adsorbent of hydroxyapatite (HAp)/chitosan [25]. The FFA and GA utilized for optimizing ANFIS
parameters during bench blasting show that both GA and FFA are capable optimizers for improving
the ANFIS prediction [26]. The ANFIS model implemented for prediction of vapor compression
refrigeration system shows good agreement with experimental data and shows better statistical
prediction efficiency [27]. The introduction of FEA optimizer with ANFIS parades a parsimonious
modelling for streamflow forecasting by integrating a small number of factors essential to return the
relatively strengthen performance [28]. The ANFIS model developed for estimating carbon dioxide
loading abilities of amino acid salt solutions depicts that the developed model is sufficient to estimate
the loading capabilities of CO2 of amino acid salt solution [29]. The shear impact of the FRP modeled
with the help of ANFIS shows better performance when related with seven widely used prediction tips.
Further, the ANFIS model shows effective correlation with the experimental data [30]. The optimal
combination obtained from utility function minimization multi criteria optimization approach shows
higher material removal rate and lower feed and normal force. Further, the reduction in tool deflection
and cutting time, and improvement in surface finish and tool life, were observed [31]. The cryogenic
liquid nitrogen was found to be more efficient for specific energy and temperature reduction and
improvement in surface quality during machining of Ti-6Al-4V. The Grey–Taguchi hybrid approach
has been utilized for obtaining the optimal parametric combination [32].

2. Materials and Methods

The experimentation was performed on Panther Geared Centre Lathe (Gujurat Lathe
MFG.Co.Pvt.Ltd, Shapar, Gujarat, India). Cutting variables which include revolutions per minute
(RPM), feed, and depth of cut (ap) having four levels, were adopted for experimentation. The selection
of the input parameters and their levels was done considering the literature survey and trial experiments.
The diameter of the work material considered was 150 mm with a length of 1500 mm. The rpm values
were selected based on the pilot experiment. More than 20 pilot experiments were conducted to choose
the levels of each parameter. Table 1 depicts the parameters with their levels.

Table 1. Turning parameters and their levels.

Sl. No. RPM Feed (mm/rev) ap (mm)

1 160 0.11 0.1
2 240 0.15 0.15
3 400 0.19 0.2
4 575 0.26 0.25

The Taguchi L16 array design of experimental design was implemented for designing the
experiments. The process response parameters, which include MRR, Ra, and Fc, were estimated at
distinct parametric settings. The turning operation was performed in EN31 alloy steel using CVD
Ti(C,N) + Al2O3 + TiN coated carbide tool insert. Table 2 presents the physical properties of EN31
alloy steel.
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Table 2. EN31 alloy steel physical properties.

Density 7850 kg/m3

Thermal Conductivity 46.6 W/mK
Tensile Strength 750 N/mm2

Yield Stress 450 N/mm2

Modulus of Elasticity 215000 N/mm2

Hardness 63 HRc

The MRR was evaluated with an analytical equation—MRR = πdDfN, where d remains the
diameter of the work piece, ap is the depth of the cut, f is the feed, and N is the RPM. Ra was measured
with a roughness tester, (Surftest SJ-210; Mitutoyo, Japan) the measurement was done at three different
points in the finished sample with three repetitions, and the average of the same was utilized for further
analysis; and Fc were measured using the dynamometer (model No-621C, N.K. Instrument, Thane,
Maharashtra, India, having range—500 kgf). Table 3 provides experimental values. The experiment
was repeated several times until the values converged and average values have been considered for
the analysis.

Table 3. Experimental results.

Sl. No RPM Feed (mm/rev) ap (mm) MRR (mm3/sec) Ra (µm) Fc (N/mm2)

1 160 0.11 0.1 0.0147 2.472 288.04
2 160 0.15 0.15 0.0416 3.172 812.63
3 160 0.19 0.2 0.0513 3.315 944.84
4 160 0.26 0.25 0.04 3.385 706.32
5 240 0.11 0.15 0.0217 1.954 305.58
6 240 0.15 0.1 0.0303 2.278 353.28
7 240 0.19 0.25 0.04 2.705 564.00
8 240 0.26 0.2 0.05 2.779 1133.34
9 400 0.11 0.2 0.0385 1.145 267.93
10 400 0.15 0.25 0.0476 1.657 441.84
11 400 0.19 0.1 0.0625 1.950 373.61
12 400 0.26 0.15 0.0856 2.150 487.07
13 575 0.11 0.25 0.0492 3.528 311.26
14 575 0.15 0.2 0.1958 0.927 442.69
15 575 0.19 0.15 0.0875 1.158 296.10
16 575 0.26 0.1 0.1217 1.724 345.38

3. Results and Discussion

The results achieved in this research work are presented in this section. The analysis of the MRR
is presented in Section 3.1. The RA experimental results are presented in Section 3.2 and the evaluation
of the FC tests is presented in Section 3.3.

3.1. Analysis of Material Removal Rate

Figure 1 presents the effect of turning parameters on MRR. The figure defines that with the rise in
the rotational speed of a workpiece, the MRR increases. This is associated with an increase in RPM that
leads to a rise in material removal per unit time. Moreover, with the intensification in RPM, the MRR
also increases. With the increment in feed, the MRR increases in the beginning, and then, it decreases.
The feed rate increases the amount of material removal per unit time. With rise in the value of feed, the
MRR decreases as an increase in feed requires added cutting force, which subsequently reduces the
MRR. The plot also depicts that the increment in the depth of cut initially does not have a noteworthy
effect on MRR. However, the MRR increases when the depth of cut also increases. Furthermore, this is
because the tool plunges into more material, which increases MRR.
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Figure 2 shows the interactions of MRR with other process parameters during turning. Moreover,
it shows that there are influences of turning parameters on MRR at the considered values of
turning parameters.
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The ANOVA for the MRR is depicted in Table 4. The table presents the performance criteria with
calculated F-values concerning the respective control factors.
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Table 4. Analysis of variance for material removal rate (MRR).

Source Degree of
Freedom

Sequential Sums
of Squares

Adjusted Sums
of Squares

Adjusted Mean
Squares F Value %

Contribution

RPM 3 0.0159940 0.0159940 0.0053313 6.12 69
Feed 3 0.0055767 0.0055767 0.0018589 2.13 24

ap 3 0.0032955 0.0032955 0.0010985 1.26 7
Error 6 0.0052278 0.0052278 0.0008713 - -
Total 15 0.0300941 - - - -

Standard value of F distribution: F0.25, 3,6 = 1.78; F0.1, 3,6 = 3.288; F0.05, 3,6 = 4.757; F0.025, 3,6 = 6.599; F0.01, 3,6 = 9.780.

It was observed that both rpm and feed have major contributions (69% and 24% respectively) to
the MRR. The contribution of error is negligibly small and hence ignored. The other parameters (feed
and depth of cut) are less significant. Percentage contributions of the process parameters on MRR as a
pie chart are shown in Figure 3. The percentage contributions of the process variables on MRR as a
chart are shown in Figure 7.Materials 2020, 13, 3137 7 of 16 
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3.2. Analysis of Surface Roughness

The consequence of process variables on surface roughness is represented in Figure 3. It was
perceived that with increment in the RPM, the roughness of a machined surface reduced. An increase
in cutting speed leads to a decrease in the built-up edges, and thus, the friction force between the
cutting tool and workpiece surface to be machined is much less. This is because the resistance offered
by the cutting edge to cutting gets reduced with a reduction in contact area between the tool and the
work surface [33]. The graph also depicts that the surface roughness increases with increases in feed
rate as well. This is because during machining, the cutting edge of the tool is not able to cut uniform
material from the upper surface of a rotating job. Besides, there is a reduction in the contact time
during machining that leads to the material not being appropriately removed.

The depth of cut does not show much significance up to a certain level. However, a greater depth
of cut rises the Ra values. A higher value of depth shows a further reduction of material from the work
surface, causing better surface finish as removal of material from the work surface takes place slowly.
Figure 4 presents the interaction of surface roughness with other process parameters during turning
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operation. The figure indicates that the process parameters have huge influences on surface roughness
values. Table 5 shows the ANOVA results for surface roughness and calculated F-values concerning the
respective control factors. It can be observed that only cutting speed (rpm) has a statistically significant
contribution (68.8%) to the surface roughness of the work-piece. The percentage contributions of the
process parameters on surface roughness as a bar chart is shown in Figure 7.
Materials 2020, 13, 3137 8 of 16 

 

0.260.190.150.11 0.250.200.150.10

3

2

1

3

2

1

Speed (RPM)

Feed (mm/rev)

ap (mm)

160
240
400
575

(RPM)
Speed

160
240
400
575

(RPM)
Speed

0.11
0.15
0.19
0.26

(mm/rev)
Feed

Interaction Plot for Ra

 
Figure 4. Interaction plot for surface roughness (RA). 

Table 5. Analysis of Variance for Surface Roughness (RA). 

Source 
Degreeof 
Freedom 

Sequential 
Sums of 
Squares 

Adjusted 
Sums of 
Squares 

Adjusted 
Mean 

Squares 
F Value 

% 
Contribution 

RPM 3 4.7100 4.7100 1.5700 2.63 68.8 
Feed 3 0.5036 0.5036 0.1679 0.28 8.5 

ap 3 1.6252 1.6252 0.5417 0.91 23.8 
Error 6 3.5781 3.5781 0.5964 - - 
Total 15 10.4169 - - - - 
Standard value of F distribution: F0.25, 3,6 = 1.78; F0.1, 3,6 = 3.288; F0.05, 3,6 = 4.757; F0.025, 3,6 = 6.599; 
F0.01, 3,6 = 9.780. 

3.3. Analysis of Cutting Force 

The significance of turning parameters on cutting force is represented in Figure 5. It is 
understood from the figure that the rise in cutting speed decreases the cutting force, which could be 
owing to a temperature increase at the tool–work contact. Additionally, the shear strength of the 
material at the cutting zone reduced at a higher value of spindle speed. The graph also shows that 
the increment in feed rate raises the cutting force. This is caused by the increase in chip load per tooth 
and the increment in feed rate [13]. The increment in the depth of cut for a specific value (0.1 to 0.2 
mm) has resulted in a higher value of cutting force, and further, an additional increment in the depth 
of the cut decreases the force of cutting. Figure 6 depicts the interaction plot for cutting force. 

Figure 4. Interaction plot for surface roughness (RA).

Table 5. Analysis of Variance for Surface Roughness (RA).

Source Degree of
Freedom

Sequential Sums
of Squares

Adjusted Sums
of Squares

Adjusted Mean
Squares F Value %

Contribution

RPM 3 4.7100 4.7100 1.5700 2.63 68.8
Feed 3 0.5036 0.5036 0.1679 0.28 8.5

ap 3 1.6252 1.6252 0.5417 0.91 23.8
Error 6 3.5781 3.5781 0.5964 - -
Total 15 10.4169 - - - -

Standard value of F distribution: F0.25, 3,6 = 1.78; F0.1, 3,6 = 3.288; F0.05, 3,6 = 4.757; F0.025, 3,6 = 6.599; F0.01, 3,6 = 9.780.

3.3. Analysis of Cutting Force

The significance of turning parameters on cutting force is represented in Figure 5. It is understood
from the figure that the rise in cutting speed decreases the cutting force, which could be owing to a
temperature increase at the tool–work contact. Additionally, the shear strength of the material at the
cutting zone reduced at a higher value of spindle speed. The graph also shows that the increment in
feed rate raises the cutting force. This is caused by the increase in chip load per tooth and the increment
in feed rate [13]. The increment in the depth of cut for a specific value (0.1 to 0.2 mm) has resulted in a
higher value of cutting force, and further, an additional increment in the depth of the cut decreases the
force of cutting. Figure 6 depicts the interaction plot for cutting force.
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The ANOVA test for cutting force is presented in Table 6. Relating the F calculated and F standard,
it is confirmed that rotating speed and feed process parameters are significant to the 90% confidence
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level. However, the depth of cut parameter is substantial at the 75% confidence level. The percentage
contributions of the process parameters on cutting force are shown in Figure 7.

Table 6. Analysis of variance for cutting force (FC).

Source Degree of
Freedom

Sequential Sums
of Squares

Adjusted Sums
of Squares

Adjusted Mean
Squares F Value %

Contribution

RPM 3 310203 310203 103401 3.82 36
Feed 3 292275 292275 97425 3.60 34

ap 3 260099 260099 86700 3.20 30
Error 6 162572 162572 27095 - -
Total 15 1025148 - - - -

Standard value of F distribution: F0.25, 3,6 = 1.78; F0.1, 3,6 = 3.288; F0.05, 3,6 = 4.757; F0.025, 3,6 = 6.599; F0.01, 3,6 = 9.780.

Materials 2020, 13, 3137 10 of 16 

 

Table 6. Analysis of variance for cutting force (FC). 

Source 
Degree 

of 
Freedom 

Sequential 
Sums of 
Squares 

Adjusted 
Sums of 
Squares 

Adjusted 
Mean 

Squares 
F Value % Contribution 

RPM 3 310203 310203 103401 3.82 36 

Feed 3 292275 292275 97425 3.60 34 

ap 3 260099 260099 86700 3.20 30 

Error 6 162572 162572 27095 - - 

Total 15 1025148 - - - - 
Standard value of F distribution: F0.25, 3,6 = 1.78; F0.1, 3,6 = 3.288; F0.05, 3,6 = 4.757; F0.025, 3,6 = 6.599; F0.01, 
3,6 = 9.780. 

 
Figure 7. Percentage contributions of turning parameters on process response 

4. Adaptive Neuro Fuzzy Inference System (ANFIS)-Based Prediction Model 

ANFIS is a well-known hybrid model which was discovered by Jang in 1993 [13]. Indeed, it can 
set up a feasible rule, which coordinates with a robust neural network system to predict the output 
data, as it inherits those unique and efficient features from fuzzy logic and artificial neural networks. 
ANFIS is a five-layered system [14], which is based on the Takagi–Sugeno fuzzy interference system 
[1]. Every layer possesses a different function as mentioned below: 

Layer I: The most relevant layer of all the layers which converts the input set to fuzzy set takes 
place. The membership function plays a prime role to undergo a conversion of the input set to a fuzzy 
set. There are a set of adaptive nodes in a fuzzy layer whose functions are described as: 

A1,x = µBx (P) (x = 1,2) (1) 

A1,y = µCy (Q) (y = 1,2) (2) 

A1,z = µDz (R) (z = 1,2) (3) 

P, Q, and R are input variable nodes. x, y, z, B, C, and D are labels connected with variable input 
nodes having µ(P), µ(Q) and µ(R) as membership functions. Due to the versatility, Gaussian shape is 
selected in this case out of all membership function. 

Layer II: The output layer is a fixed function of input signal and the node function and is 
represented as: 

Figure 7. Percentage contributions of turning parameters on process response.

4. Adaptive Neuro Fuzzy Inference System (ANFIS)-Based Prediction Model

ANFIS is a well-known hybrid model which was discovered by Jang in 1993 [13]. Indeed, it can
set up a feasible rule, which coordinates with a robust neural network system to predict the output
data, as it inherits those unique and efficient features from fuzzy logic and artificial neural networks.
ANFIS is a five-layered system [14], which is based on the Takagi–Sugeno fuzzy interference system [1].
Every layer possesses a different function as mentioned below:

Layer I: The most relevant layer of all the layers which converts the input set to fuzzy set takes
place. The membership function plays a prime role to undergo a conversion of the input set to a fuzzy
set. There are a set of adaptive nodes in a fuzzy layer whose functions are described as:

A1,x = µBx (P) (x = 1,2) (1)

A1,y = µCy (Q) (y = 1,2) (2)

A1,z = µDz (R) (z = 1,2) (3)

P, Q, and R are input variable nodes. x, y, z, B, C, and D are labels connected with variable input
nodes having µ(P), µ(Q) and µ(R) as membership functions. Due to the versatility, Gaussian shape is
selected in this case out of all membership function.
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Layer II: The output layer is a fixed function of input signal and the node function and is
represented as:

A2,x = Gx = µBx (P). µCy (Q). µDz (R), (for x,y and z = 1,2) (4)

A2 represents the output of layer II, and Gx corresponds to the fuzzy strength rule.
Layer III: It has a defined function node network like layer II and layer strength III depicted as:

A3,x = Gl = Gx/(G1 + G2), (for x = 1,2) (5)

A3 represents the output of layer III, and Gl is the normalized strength rule for layer III.
Layer IV: The nature of this is layer is inconsistent and varies spontaneously. Due to the nature of

the layer node being adaptable, and the strength function is defined as:

A4,x = Glx.fx, (for x = 1,2) (6)

Here, Glx is the normalized weight of xth rule. fx is a fuzzy rule for x = 1,2. Therefore the fuzzy
rule setup is evaluated as:

Fx = (Uxl1 + Vxl2 + Wx) (7)

Ux, Vx, and Wx are the defined parameters.
Layer V: Total outcome is calculated in this layer. It has a fixed node, and the total output of the

total system is evaluated by:
A5,x = ΣxGnx.fx (8)

The training of input values was done by applying the backpropagation method and was tested
based upon the trained values.

The Gaussian membership function was selected and applied due to its versatility and reliability.
The root mean square error (RMSE), correlation coefficient (R), and mean absolute percentage error
(MAPE) of the predicted values were evaluated by using the following relations [1]:

MAPE =
100%
Tno

Tno∑
t=1

∣∣∣∣∣EV − PV

EV

∣∣∣∣∣ (9)

RMSE =

√√√√
1

Tno
×

Tno∑
j=1

(EV − PV)
2 (10)

R =
∑ ((EV −MPV)(PV −MEV))√(∑

(EV −MEV)
2
(∑

(PV −MPV)
2
)) (11)

Here EV is the experimental value, PV is the predicted value, MEV is the mean of the experimental
value, MPV is the mean of the predicted value, and Tno is the number of experiments.

The experimental results and predicted values of MRR, Ra, and Fc are represented in Table 7.
The comparative plot of predicted values based upon the ANFIS model and experimental values

is shown in Figures 8–10. It is witnessed from the plot that ANFIS-based predicted data show reliable
responses concerning experimental values for all three outputs. Hence, the proposed ANFIS model is
accurate for predicting the output values for varying parametric combinations.
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Table 7. Experimental and predicted results.

SR
Experimental Outcome Predicted Outcome

MRR Ra Fc MRR Ra Fc

1 0.0147 2.472 288.04 0.0147 2.471 281.20
2 0.0416 3.172 812.63 0.0416 3.058 810.00
3 0.0513 3.315 944.84 0.0512 3.202 941.00
4 0.04 3.385 706.32 0.0399 3.245 702.45
5 0.0217 1.954 305.58 0.0223 1.872 304.65
6 0.0303 2.278 353.28 0.0302 2.219 351.45
7 0.04 2.705 564 0.0403 2.595 558.00
8 0.05 2.779 1133.34 0.0500 2.704 1130.57
9 0.0385 1.145 267.93 0.0380 1.070 269.56

10 0.0476 1.657 441.84 0.0473 1.555 440.74
11 0.0625 1.95 373.61 0.0625 1.949 367.14
12 0.0856 2.15 487.07 0.0835 2.001 472.06
13 0.0492 3.528 311.26 0.0474 3.527 309.45
14 0.1958 0.927 442.69 0.1873 0.844 432.91
15 0.0875 1.158 296.1 0.0868 1.102 290.92
16 0.1217 1.724 345.38 0.1198 1.715 341.06
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Furthermore, Table 8 depicts the values of MAPE, RMSE, and R for all the experimental and
predicted values.
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Table 8. Absolute percentage error (MAPE), root mean squared error (RMSE), and correlation coefficient (R).

Error MRR Ra Fc

MAPE 1.18 3.67 3.62
RMSE 0.002 0.087 5.845

R 0.99 0.98 0.964

The parametric analysis was performed considering three process factors, namely, RPM, feed, and
depth of cut, and three process performance variables—MRR, Ra, and Fc. It was observed that the
cutting parameters influence the process characteristics. The RPM is the most promising factor for all
the performance parameters, namely, MRR, Ra, and Fc. The correlation coefficient suggested that the
prediction model is reliable and can be utilized for predicting the output responses, such as MRR, Ra,
and Fc [1].

The ANFIS-based prediction was undertaken in this research to predict the process response
values at different parametric combinations. The research concludes that the proposed ANFIS model
used for prediction is accurate at predicting the process responses at varying variable combinations.
The developed model is useful for predicting the values of performance criteria at different parametric
combinations in a turning operation. Machining of EN31 alloy steel, which is high carbon alloy steel,
has been a critical area of study in the of metal cutting domain in the past several years. Moreover, it is
related to a wide range of applications, such as round bars, necessarily, the connectors between pipes
in oil and gas systems, water supply systems, and plugs to resist pressure in pressure valves, which
are made available at lengths of 100 mm to 6000 mm with a diameter range from 5 mm to 500 mm.
Despite the wide range of applications, the machining of EN31 alloy steel has always been a challenge
due to its physical properties, especially the hardness.

5. Conclusions

The research presents an experimental investigation and ANFIS-based modelling during the
turning operation of EN31 alloy steel. The major findings of the research work are as follows.

1. The proposed model presents R values of 0.99, 0.98, and 0.964 for MRR, Ra, and Fc, respectively.
2. The RPM is the major contributing parameter for all performance responses, such as MRR, Ra,

and Fc.
3. The proposed ANFIS model is suitable for predicting the performance responses at all values of

parametric combinations.
4. Machining of EN 31 alloy steel, which is a high carbon alloy steel, has been an essential area

of research in the field of metal cutting in the past several years owning to its wide range of
applications, such as: round bars essentially as the connectors between pipes in oil and gas
systems, water supply systems, and plugs to resist pressure in pressure valves. Moreover, this
material is available at lengths from 100 mm to 6000 mm with a diameter range from 5 to 500 mm.
Despite the wide range of applications, the machining of EN 31 alloy steel has always been a
challenge due to its physical properties, especially the hardness. Therefore, machining parameter
optimization becomes a critical area of research and this research has contributed to the body of
knowledge in this area. The findings of this research may be useful for the manufacturers and
future researchers in this area.
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