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Abstract: The paper is devoted to the study of stress corrosion cracking phenomena in friction stir
welding AA-2024 T3 joints. Constant load (CL) cell and slow strain rate (SSR) tests were carried out
in aerated NaCl 35 g/L solution. During the tests, open circuit potential (OCP) and electrochemical
impedance spectroscopy (EIS) were measured in the different zones of the welding. The results
evidenced initial practical nobilty of the nugget lower compared to both heat-affected zone and the
base metal. This effect can be mainly ascribed to the aluminum matrix depletion in copper, which
precipitates in form of copper-rich second phases. In this zones, no stress corrosion cracking was
noticed, but well-evident stress-enhanced intergranular corrosion occurred. This is due to the uneven
distribution of platic deformation during the slow strain rate tests. Higher strain values are localized
at the heat affected zone, where softening occurs. On the contrary, stress values at the nugget are
not sufficient to favor both the initiation and propagation of stress corrosion cracks. In the range of
processing parameter studied in this experimental work, the stress corrosion cracking susceptibility
of the friction stir welding (FSW)-ed alloy is then similar to that of the base metal.

Keywords: stress corrosion cracking; slow strain rate test; constant load test; friction stir welding
(FSW); AA2024

1. Introduction

Friction stir welding (FSW) is a solid-state joining process that is gaining a lot of attention
especially for high-strength age-hardening aluminum alloys, in which mechanical properties are
strictly dependent upon heat treatments at relatively lower temperatures [1-4]. The joint is produced
by the friction generated between a rotating pin put directly in contact with the base metal. The
temperature of the material increases significantly in the contact zone without melting the material
itself [5]. The increase in temperature increases the material deformability, thus allowing the mixing
of the two sides of the joint [6]. The thermo-mechanical action causes the material recrystallization
that is localized in the central area of the weld, called nugget characterized by outstanding tensile
properties [7,8]. The zones close to the nugget, which has the microstructure altered both by the action
of the mechanical straining and the thermal effect, is called thermo-mechanically affected zone (TMAZ);
after this zone, moving away from the nugget toward the base metal, there is an area that has not
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undergone mechanical straining, but only heating and therefore it is called heat-affected zone (HAZ).
The microstructure and extension of these zone, nugget, TMAZ, and HAZ, depend on the size and
shape of the pin, the thickness of the sheet, and the welding parameters, in particular the force exerted
on the pin, its rotation speed, and feed rate [9,10]. Depending on the tool rotation side, “advancing
side” and “retreating side” are defined [11]. Lot of efforts have been paid to study the effect of the tool
rotation on both the extension of these zones and the effects on mechanical properties in function of
the process parameters, i.e., speed and feed rate [12-14]. Among all the aluminum alloys, series 2XXX,
6XXX [15], and 7XXX [16,17] are the most affected by the microstructure and mechanical properties
modification induced by FSW, because their resulting microstructure is a combination between the
original temper and the thermomechanical alterations induced by FSW process. Microstructural
modifications are relevant across the welding and both mechanical and corrosion behavior [18] at the
nugget, TMAZ, and the HAZ are strictly dependent upon the process parameters.

The combined action of applied stress and corrosive environment can also promote stress corrosion
cracking (SCC) in susceptible alloys [19-22] and the effect of the microstructural modification induced
by FSW on the intrinsic susceptibility of such alloys is yet far to be completely understood. The higher
number of works are on the SCC of alloy 7XXX but, in the knowledge of the authors, only few papers
reported the SCC behavior of FSW joints in AA-2024.

Wang et al. reported SCC insurgence on FSW AA-2024-T3 in the interface between the nugget
and the TMAZ in 3.5 wt.% NaCl solution. The stress corrosion cracks were nucleated by pitting. The
SCC susceptibility of the FSWed joints increases with increasing travel speed, owing to the increase of
the size of second phase particles. A SCC mechanism controlled by the metal anodic dissolution at
the OCP and hydrogen accelerated metal embrittlement in the active zones was suggested [23] In a
previous paper of the authors, no stress corrosion cracking was observed on four point bent beam
specimens after 1500 h of exposure in NaCl 35 g/L, but the intergranular corrosion attack became
penetrating in the presence of loading, giving rise to stress-enhanced intergranular corrosion of the
alloy [14].

The aim of this work is to study the stress corrosion cracking susceptibility of FSWed AA-2024 T3
aluminum alloy. Electrochemical tests and free corrosion potential measurements were carried out
during SCC test to assess corrosion phenomena occurring during exposure.

2. Materials and Methods

2.1. Preparation of the Welds

Aluminum sheets (size 200 mm X 80 mm X 4 mm thickness) were welded by using a tool with
smooth plane shoulder (16 mm diameter) and pin having a frustum of cone shape (pin maximum and
minimum diameters equal to 6 and 4 mm, height equal to 3.8 mm) (Figure 1). The rotational speed
(S) of the tool was fixed at 1500 rpm and feed rate (F) was 10 mm/min. The set-up of the welding
process was reported in previous works by authors [14,18,22,24]. The mechanical properties of the
base materials and the welded joints are shown in Table 1. For the FWSed specimens, only the ultimate
tensile strength (UTS) is reported, because it was not possible to evaluate the yield strength (YS) owing
to the localization of the plastic straining of the specimens in the TMAZ/HAZ zone. The decrease in the
mechanical properties at the thermomechanical and heat affected zones is the result of the modification
in the microstructure of the alloy, with solubilization and reprecipitation of the straightening second
phases, as reported in previous works by authors [10,14,18,22,24]. A good reproducibility was observed
in the tensile strength of the FSWed joints, thus confirming the absence of macroscopic defects alongside
the weld.
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Figure 1. Schematic representation of the friction stir welding (FSW) and the machining of the specimens.

Table 1. Mechanical properties (yield strength, YS and ultimate tensile strength, UTS) of the base
materials and the welded joint.

Base Material FSW Joint
Alloy YS UTS Max Strain YS UTS
[MPa] [MPa] [%] [MPal [MPal]
AA 2024-T3 345 459 17 - 315

2.2. Constant Load Tests

Constant load (CL) tests were carried out on dog bone shaped specimens with 8 mm width, 4 mm
thickness, and 82 mm gage length with the weld positioned at the center of the gage length (Figure 2).
The specimens were inserted in a double compartment cell with a window to expose about 50% of
the central area (Figure 3a,b). All the compartments were filled with aerated 35 g/L NaCl solution, at
25 °C. The solution was constantly recirculated by means of a pump. The configuration of the cell was
chosen in order to monitor one side the open circuit potential (OCP) and carry out the electrochemical
impedance spectroscopy (EIS) test on the other side at the same time.
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Figure 2. FWSed specimen used in constant load (CL) e SSR test; the specimens of the slow strain rate
(SSR) test on base materials have the same dimension without weld.

The OCP monitoring was done by means of homemade three Ag/AgCl references electrodes with
E =+0.200 V vs. NHE (normal hydrogen electrode). The results were presented after conversion as the
saturate calomel electrode (SCE-E = +0.240 V vs. NHE, Amel Instrument, Milano, Italy). The data
were registered by a Ivium CompactStat instrument; the sampling frequency was varied during the
experiment from one measurement per second in the initial instants and during the loading phases of
the specimen to a 10-h monitoring, with acquisition of one point per minute every 100 or 200 h, during
maintenance of the constant load of the specimens. The EIS tests were performed using an Ivium
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CompactStat instrument. Sinusoidal signal with 0.010 V amplitude in the frequencies range between
10 kHz and 1072 Hz was applied. EIS tests were carried out on the CL speciemens just dipped, after 24,
48 (before and after loading the specimen), 480, 504 (before anf after increase the load on the specimen),
552, and 650 h (before and after to un-load the specimen).

The specimens were loaded by means of a tensile testing machine with a double lever arm
(Figure 3c), according to NACE TM 0177-2005 Method A, the loads were imposed by adding weights
to the lever, the lever force had previously been calibrated through a calibrated load cell with 10 N
accuracy. The testing procedure is as following. The specimen was initially positioned in the cell, the
testing solution was inserted, and the first EIS spectrum was registered. The second EIS spectrum
was measured after 24 h, the third after 48 h; after the third EIS measurement, the specimen was
loaded at 50-55% UTS of the FSWed joints, and the EIS measure immediately repeated. This load
was chosen because it is practically in the correspondence of the deviation from the linearity of the
stress—strain curve of the weld; it could be assumed that, under this stress, the less resistance zone of
the gauge length becomes plastically deformed, while the other parts of the specimen remain in elastic
straining. The monitoring of OCP and EIS spectrum continued for 504 h, after these the load was
further increased in order to achieve a stress value of about the 80% of the ultimate tensile strength of
the weld, thus achieving uniform plastic deformation conditions along the gage length of the specimen.
The load was then maintained for 650 h.

(a)
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"I inlet solution
'
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(b) ) EIS Tests

Figure 3. (a) Image of the cell used for the CL tests. (b) Schematic illustration of the test apparatus and
(c) image of one specimen under the CL testing machine.

At the end of the exposure period, the specimens were unloaded, cleaned, and observed
under the scanning electron microscope (SEM, Zeiss EVO 40, Oberkochen, Germany) with energy
dispersive spectroscopy (EDS) Oxford X-Act in order to analyze the corrosion products morphology
and composition. Metallographic cross sections along the longitudinal direction were also analyzed.
The gauge length was cut from the specimen, then longitudinally sectioned using a metallographic
cutting machine (Metkon Servocut, Bursa, Turkey) in the central part. The section was embedded in
resin and grinded with emery paper and polished with colloid alumina until 0.1 um of roughness.
The metallographic section was observed by a Nikon optical microscope and the SEM without
metallographic attack and after attack with Keller reagent.

2.3. Slow Strain Rate Tests

The slow strain rate (SSR) tests were carried out by using specimens of the same dimensions as
for CL tests. The SSR tests were also performed on AA-2024 T3 base material for comparison.
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The tests were carried out by means of a homemade SSR testing machine with four independent
loading stations. The load is applied through an electric motor and reduction gears that can impose
displacement rates between 5 x 1077 and 5 X 1073 mm/s. The calibration of the cells is performed
independently. Acquisition system (spider 8 HBM Italy, Milano, Italy) read the load and a function of
time; the displacement of the tensile grip is evaluated multiplying the displacement rate for the time.
A displacement rate of 8.2 x 107* mm/s, corresponding to 107° s~! average strain rate along the gage
length, was chosen. SSR tests were carried out according to the ASTM 129-00 (2013), exception for the
specimen’s geometry that was changed to test all the weld. The cell was like those used for the CL
tests, with the same configuration of the electrodes, but smaller than that for CL tests, to be settled
under the SSR machine, filled with an aerated solution of 35 g/L. NaCl. No EIS spectra were obtained
during this test because the OCP did not remain constant. At the end of the tests, the specimens were
washed in distilled water and rinsed in acetone to permit the observation of the fracture surface under
the SEM. Then the specimens were longitudinally sectioned for the metallographic observation with
the same procedure illustrated for the CL test.

2.4. Electrochemical Characterizations of the Different Zones of the Weld

For comparison, EIS and OCP measurements were performed on the separated different zones
of the FSW joints: the nugget, the HAZ/TMAZ (it was not possible to cut the specimens separating
these zones), and the base material in unloaded condition. The weld was cut as illustrated in Figure 4;
the isolate specimens with the nugget, the TMAZ/HAZ zone, and the base material were connected
with an external wire and then cold mounted with epoxy resin. The exposed surface of the specimen
was 20 x 20 mm?. It was grounded with emery paper and then polidhed with colloidal alumina up to
0.3 pm. The specimens were dipped in separate glass cells in aerated 35 g/L. NaCl (Carlo Erba, RPA
grade, Cornaredo, Italy) solution. Standard saturated calomel electrode (SCE E = +0.240 V vs. NHE,
Amel Instrument, Milano, Italy) was positioned at the surface of the specimens by using a Luggin
capillary to compensate the ohmic drop in the electrolyte. Electrochemical impedance spectroscopy
(EIS) tests were performed with the same procedure used for on the CL test.

20mm b 20mm o 20mm 1 20mm ! I 20mm !
— E— ————> ————

20mm

Figure 4. Scheme of the sampling of the different areas of the welding and of the base metal for the
monitoring of open circuit potential (OCP) and electrochemical impedance spectroscopy (EIS).

3. Results and Discussion

Figure 5 shows the OCP measurements in aerated NaCl solution at the nugget, the HAZ/TMAZ,
and the base material with regard to exposure time.

Similar values of the OCP were measured on the three different zones just after dipping. The
nugget showed constant OCP values during all the exposure periods. Different behavior was observed
for the base material and the heat-affected zones (HAZ/TMAZ), which showed an initial increase of
OPC followed by a decrease of about 150 mV.

Figure 2 shows the EIS spectra for the specimens obtained from the different zones of the weld
with regard to exposure time. The spectra collected at the nugget are quite different compared to the
base material and TMAZ just after dipping. The Nyquist plot shows two overlapped capacitive loops,
and an inductive one at very low frequencies, whereas the base material and the TMAZ presented
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a capacitive loop and diffusive behavior at very low frequencies (Figure 6a). The Bode diagram
(Figure 6b) shows the highest value of the impedance modulus of the base materials, indicating a stable
passive condition. Conversely, the values of the impedance modulus of the nugget and the TMAZ
decrease at the low frequency, thus indicating activation of the metal surface during low frequency
measurements. All the specimens showed two phase constants, one at intermediate frequency and the
other at very low frequencies.
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OCP vs SCE (mV)

-800 —@—- AA 2024-T3 base material

—0—AA 2024-T3 TMAZ

-850

—0—AA 2024-T3 nugget

-900

0 20 40 60 80 100
time (hours)

Figure 5. OCP in function of exposure time of the different zones of AA-2024 T3 FSWed joint in aerated
NaCl 0.6 M at 23 °C.

After only 24 h of immersion, the shape of EIS spectra significantly changed (Figure 6¢,d). The
amplitude of the EIS loops in Nyquist plot decreased significantly for all the different zones of the weld.
Diffusive behavior was still observed for the base metal and the TMAZ, while a second capacitive
loop can be distinguished for the nugget—but flattened—and the inductive loop disappeared. All
the specimens showed only one phase constant, but the frequency range is lower compared to just
dipped conditions. An increase in phase can be noticed at very low frequency for the base material
and the TMAZ, thus indicating that a second phase constant could be present at very low frequencies.
The impedance modulus achieved the values of 10* Qcm? for all the zones of the weld, meaning that
activation occurred also on base metal and the TMAZ.

After 72 h of immersion, the EIS spectra became practically overlapped, with only a slight
difference between the impedance modulus of the nugget with respect to the base material and the
TMAZ (Figure 6e,f). Well evident diffusive behavior can be noticed at very low frequencies because of
the presence of corrosion products deposit.

These results seem to evidence an initial higher activity of the nugget with respect to the other
zones, but these differences become negligible at longer exposures. After the tests, all the specimens
showed general corrosion morphologies.

The behavior significantly modifies as loading is applied. The corrosion potential showed sudden
decrease at the application of monoaxial constant load, as reported in Figure 7. The effect is attributable
to the breakdown of the thick, porous, and not adherent scale of aluminum oxide formed on specimens
after prolonged exposures, which exposes the aluminum matrix directly to the aggressive environment.
The potential approached the steady state value—i.e., the value in unloading conditions—because of
self-healing effect of corrosion products of aluminum. The decrease in the corrosion potential is more
pronounced when the specimens are strained in the plastic field.
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Specimens failure was not observed under constant loading for 650-h exposure. The analysis of
the specimens after the tests showed an intergranular attack in the nugget near the zone of beginning
of the TMAZ (Figures 8 and 9).

The EIS spectra collected on CL specimens showed certain different behavior just after dipping
and after 24 h (Figure 10a,b). The spectra mainly approach that of the nugget (compare Figure 10a,b
with Figure 6a,b). It can then be stated that EIS tests carried out during CL tests are mainly affected
by the most active zone of the joint—i.e., the nugget. The specimen just after dipping presents two
overlapped capacitive loops and an inductive one (Figure 10a)—typical of non-stationary OCP values
during early exposures EIS tests (Figure 10b). After 24 h, the Nyquist diagram presented a well-evident
diffusive behavior (compare Figure 10c,d to Figure 6¢,d). The increase in the load does not modify the
EIS spectra, that are overlapped to the condition without applied load after 24-h exposure (Figure 10c—f),
thus confirming that the corrosion process at longer exposures is only limited by the presence of the
pseudo-passive film by corrosion products that are able to heal the cracks promoted by loading.
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Figure 6. EIS spectra (a), (c), and (e) Nyquist and (b), (d), and (e) Bode representation, of the separate
different zones of the weld; (a) and (b) just dipped; (c) and (d) after 24 h; (e) and (f) after 72 h of
immersion in aerated NaCl 0.6 M solution.
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Figure 7. OCP measurements during 720 h exposure of CL specimen of the FSWed AA-2024 T3 alloy in

aerated NaCl 0.6 M at 23 °C.
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Figure 9. Metallographic section of Figure 6: (a) Macro image of the nugget with several localized

attacks; (b) close-up of the red zone in (a).
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Figure 10. EIS spectra (a), (c), and (e) Nyquist representation, (b), (d), and (e) Bode representation of
the constant load specimen without load just dipped and after 24 h (a,b), after 48 h without load, and
after 175 MPa, and after 480 h loaded at 175 MPa (a,d) and after 480 h at 175 MPa and 650 h at 268 MPa
(e,f) in aerated NaCl 0.6 M solution.

These results are in agreement with those obtained in previous works [14,22,24]. It was observed
that the OCP did not change in four point bent beam (4PBB) specimens in un-loaded or loaded
conditions at the 80% of the ultimate tensile strength of the weld (Figure 11). The specimens were
loaded before the immersion. On the contrary, differences between the EIS spectra of un-loaded and
loaded specimens were observed only at very early exposures. This was mainly attributed to the
presence of corrosion products scale formed on the surface of the specimens, that hindered the EIS
signal response. On 4PBB specimens, the corrosion process was mainly localized at the nugget, with
wide and shallow deep morphology on the un-loaded specimens and stress-enhanced intergranular
morphology on loaded specimens [22]. The effect of the applied load on intergranular corrosion
initiation and propagation in alloy AA-2424 T3 was first highlighted by Zhang and Frankel [25,26].
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However, the entire surface of the specimens is covered with a continuous but porous layer of corrosion
products as the exposure time increases. This is well evident in the EIS spectra that are practically
overlapped as they are mainly governed by diffusive phenomena occurring at the corrosion products
scale [22].

-550
2024-T3 FSW Welded
-600
>
E 650
8 -700
17
& <750
Q
o
-800
—8—un-loaded specimens
-850
—&—loaded specimens
-900 L :
0 500 1000 1500

time (hours)

Figure 11. Effect of the time of immersion on the OCP of un-loaded and loaded 4PBB specimens of the
FWSed alloy AA 2024-T3 in aerated NaCl 0.6 M at 23 °C (data obtained by [22]).

The OCP of the FSWed AA-2024 T3 alloy under slow strain rate conditions, (Figure 12) modifies
in function of the applied monotonic tensile stress. A slight decrease in the values can be noticed as
the strain values lay in the elastic field. A sharp decrease was noticed—i.e., 100-250 mV—at the YS.
Exceeding the YS, the OCP increases up to the values recorded in the elastic field, until the rupture.
The specimen breaking did not occur at the nugget that is characterized by higher tensile strength, but
in the heat affected zone. Because of this consideration, it can be derived that the attack observed at
the nugget (Figure 13) did not reach sufficient depth to promote the specimen rupture, as the plastic
deformation mainly take place in the softened zones, typical of the HAZ/TMAZ. Consequently, the
effect of FSW on the alloy microstructure and on the mechanical properties significantly affect also the
stress corrosion cracking susceptibility of the alloy.

400 -680
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5 . , . . . 740
0 5 10 12

s 0 8
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Figure 12. Stress vs. strain and OCP FSWed AA 2024-T3 alloy during the SSR test in aerated NaCl 0.6
M solution at 23 °C.
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100 pm

© (@) (e

Figure 13. (a) Image of a FSWed specimen after the SSR test in NaCl 35 g/L; (b) close-up of the lateral
surface in the correspondence of the fracture surface; (c) close-up of the dimples in the fully ductile
fracture surface; (d) and (e) SCC microcracks in the nugget of the specimen of the FWSed AA 2024-T3.

SSR tests performed on commercial AA-2024 T3 alloy showed a completely different behavior
compared to FSWed. The OCP values are stable at more noble values compared to FSWed, without the
occurrence of stress corrosion cracks (Figure 14).

600 7 -550
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500 K oLt
S )
650 ~
400 %
E N
S 1m0 &
g ] .50 %
% air base material -9
200 NaC10.6 M base material e 3
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100 BF | | e OCP vs SCE during SSR bhse|material 1 -850
rseeene OCP vs SCE during SSR ]
0 L 1 1 L _%0
0 10 20 50 60

. 30 40
tm%e (hours)

Figure 14. Stress vs. strain and OCP of the base and FSWed AA-2024 T3 alloy during the SSR test in
aerated NaCl 0.6 M solution at 23 °C.

For both the weld and the commercial AA-2024 T3 alloy, the time-to-failure is longer in NaCl
solution compared to air. All the tests were twice repeated with similar results. It could be hypothesized
that active corrosion in NaCl solution is stimulated at the dislocations, thus generating vacancies able
to accelerate the intrinsic mobility and thus the plastic deformation, as already evidenced by other
authors that named this phenomenon as anodic attenuation of strain hardening [27,28].

FSW modify the microstructure of the alloy and its electrochemical and stress corrosion cracking
behavior, consequently. In the base material, both macro-precipitates and nanoprecipitates are present
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(Figure 15) [9,11]. The last ones are produced because of solution annealing and natural aging. The
macro-precipitates are mainly produced by primary solidification processes and are not solubilized
during heat treatment [29]. They are considered to be responsible of the short-term electrochemical
behavior of the alloy as it is well-known that the interface between these particles and the matrix is
particularly active because of its different practical nobility [30].

Figure 15. Microstructure of the AA 2024-T3 alloy (Keller attack).

The main second phases of AA-2024 T3 alloy are S phases (Al,CuMg) and Al-Cu-Mn-Fe [30,31].
Generally, the formers are anodic with respect to the aluminum matrix because of the presence of
magnesium, while the latter, consisting of more noble elements such as copper, iron, and manganese,
are cathodic. S phase is particularly active and higher amount of this phase is generally present. It
quickly reacts with the solution just after dipping, thus leading to the dissolution of magnesium. As a
result, the alloy surface becomes richer in copper and the corrosion potential tends to increase. At
longer exposures, corrosion initiation occurs in some areas, then propagate in the aluminum matrix.
Thick layer of insulating corrosion products then forms on the metal surface, which hinder the corrosion
process as a result of the settlement of pseudo-passivation conditions. EIS spectra well evidence
the formation of the corrosion products layer as a diffusive behavior at very low frequencies that is
compatible with the hypothesized mechanism. The rate-determining step of the corrosion process is
then mainly related to the diffusion processes inside the porous non-conductive scale. The phase peaks
at low frequencies can be related to the dissolution of the intermetallics at metal/particle interface [32].

During the welding process, recrystallization induced by the thermomechanical action occurs
mainly at the nugget. In these zones, dissolution of nanometric S phase precipitates occurs, which can
re-precipitate in form of micrometric particles, clearly detectable at the scanning electron microscope
(Figure 16). These precipitates are mainly located at the recrystallized grain boundaries. The presence
of copper in the supersaturated solid solution in the aluminum matrix gives rise to initially nobler
OCP values compared to the nugget and HAZ. The enriching in copper because of the preferential
dissolution of magnesium in S-phase, is responsible for the initial increasing of the OCP, but the rapid
activation of corrosion phenomena at precipitate-free zones causes the decrease in the OCP after a few
hours of immersion.

The anodic dissolution, catalyzed also by the presence of precipitates along the grain boundaries,
is considered to be the main SCC mechanism in high strength 2xxx (Al-Cu-Mg) series alloys [33].
The galvanic interaction between the particles and the surrounding matrix causes the preferential
dissolution of the anodic particles or the dissolution of the adjacent matrix surrounding nobler
particles. Evolution of hydrogen always occurs in actively growing localized corrosion sites and cracks.
The absorption of hydrogen into metals leads to the possibility of crack propagation by hydrogen
embrittlement (HE) [33-44]



Materials 2020, 13, 2610 13 of 16

Figure 16. SEM image of the nugget without metallographic attack: the bright zones are the macro and
micrometric precipitates of S-phase.

In this way, FSW modifies the microstructure of AA 2024-T3 alloy, thus making the nugget more
susceptible to SCC than the base material. However, the HAZ and TMAZ are characterized by lower
tensile strength compared to both the nugget and the base metal. The application of load causes
the occurrence of microcracks at the nugget which do not propagate as the fracture is localized in
zones with lower tensile strength, i.e., plastic deformation is significantly shifted in the HAZ/TMAZ.
Therefore, the strain at the nugget is limited and pseudo-passive film can be restored in such conditions,
as demonstrated by the increases in the OCP.

Similar effect was observed on the same alloy by Ferri et al. on 4PBB loaded in elastic field during
potentiodynamic tests [45]. This was attributed to dissolution mechanism assisted by the mechanical
stress, according to the chemomechanical theory of Gutman [46]. The weakening of the effect as load
levels approach the YS was ascribed to a barrier action of corrosion products film hindering the exit
of dislocations from the surface and thus inhibiting the creation of fresh surfaces [45,47]. The stress
enhanced intergranular corrosion at nugget is inhibited as the specimens are plastically strained in
TMAM/HAZ zones. In this way, the SCC phenomena cannot be observed, and the specimen fails in a
ductile way in the TMAZ/HAZ, similarly to the test in air.

In other words, the decreasing of tensile properties in TMAZ/HAZ caused a deformation in these
zones, counteracting the hypothetically higher stress enhanced intergranular corrosion susceptibility
of the nugget.

A similar SCC behavior for joint and base metal of FSWed AA2219-T87 through slow strain rate
tests (SSR) is reported by Paglia and Buchheit [48]. On the contrary, intergranular fracture in the
interface between the nuggets and TMAZ of welded joints tested in 0.6 M NaCl solution is reported by
Wang et al. [23]. The last authors reported that the tests in air showed ductile fracture in the same zone.
This different behavior could be attributed to the different welding parameters. The same authors
reported that the stress corrosion cracking (SCC) susceptibility of the FSW 2024-T4 aluminum alloy
joint increased with feed rate due to the increase of the second phases size.

4. Conclusions

The paper analyzed stress corrosion cracking phenomena in friction stir welding AA-2024 T3
joints. Constant load (CL) cell and slow strain rate (SSR) tests were carried out in aerated 35 g/L NaCl
solution. During the tests, open circuit potential and electrochemical impedance spectroscopy were
measured in the different zones of the welding.

The FSW process significantly modifies the microstructure of the alloy, and therefore, its corrosion
and stress corrosion cracking behavior.
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The applied load enhances the intergranular corrosion at the nugget of the AA 2024-T3 alloy
owing to the presence of micrometric copper-rich precipitates at the border of the recrystallized grains.
In this zones, no stress corrosion cracking was noticed, but well-evident stress-enhanced intergranular
corrosion occurred. Moreover, the applied strain is preferentially localized at HAZ/TMAZ zones which
are characterized by lower tensile strength compared to the nugget. Higher strain values are then
localized at the heat-affected zones, where softening occurs.

Because of these contrasting effects, it is possible to state that the stress corrosion cracking
susceptibility of the FSW-ed alloy is then similar to that of the base metal in the range of processing
parameter studied in this experimental work.
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