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Abstract: The detection of chemical messenger molecules, such as neurotransmitters in nervous
systems, demands high sensitivity to measure small variations, selectivity to eliminate interferences
from analogues, and compliant devices to be minimally invasive to soft tissue. Here, an organic
electrochemical transistor (OECT) embedded in a flexible polyimide substrate is utilized as transducer
to realize a highly sensitive dopamine aptasensor. A split aptamer is tethered to a gold gate electrode
and the analyte binding can be detected optionally either via an amperometric or a potentiometric
transducer principle. The amperometric sensor can detect dopamine with a limit of detection of
1 µM, while the novel flexible OECT-based biosensor exhibits an ultralow detection limit down to
the concentration of 0.5 fM, which is lower than all previously reported electrochemical sensors for
dopamine detection. The low detection limit can be attributed to the intrinsic amplification properties
of OECTs. Furthermore, a significant response to dopamine inputs among interfering analogues
hallmarks the selective detection capabilities of this sensor. The high sensitivity and selectivity, as well
as the flexible properties of the OECT-based aptasensor, are promising features for their integration in
neuronal probes for the in vitro or in vivo detection of neurochemical signals.

Keywords: aptamer; flexible organic electrochemical transistors; dopamine; femtomolar sensitivity;
biosensor

1. Introduction

The ability to detect small-molecule neurotransmitters is crucial for understanding neuronal
information processing, related neurochemical processes, and brain functions in general [1]. Dopamine,
as one of the most important neurotransmitters of the human central nervous system, is involved
in the regulation of many behavioral responses and brain functions [2], and abnormal levels
are symptomatic for several neuronal diseases, such as Parkinson’s, Alzheimer’s, Tourette’s
syndrome, and schizophrenia [3]. Therefore, the effective detection of dopamine in biological
systems is essential for disease identification and subsequent adequate treatment. Several methods
have been developed for monitoring or detecting this analyte, including electrochemical [4–9]
ultraviolet–visible spectroscopy [10], mass spectroscopy [11], and liquid chromatography [12]. Among
them, electrochemical approaches are versatile and promising due to their low fabrication costs,
fast response, high sensitivity, and their easy miniaturization [13–15]. Aptamer, as one of the target
recognition components of electrochemical sensors, has attracted plenty of attention because of its high
selectivity, flexibility, high affinity [16], low cost, and easy fabrication [17]. However, due to the variable
distribution of dopamine concentrations in different body fluids and tissues (in the range of fM [18] to
µM [19]), as well as the interference from some analogues or ascorbic acid and uric acid, which share
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similar oxidation potentials with dopamine [20], it is challenging for conventional electrochemical
methods to selectively detect dopamine at low concentrations.

Organic electrochemical transistors (OECTs) have emerged as robust alternatives to state-of-the-art
sensors, since they were introduced by White et al. in 1984 [21], due to their intrinsically amplifying
characteristics [22], biocompatibility, ease of fabrication, fast switching speed compared to standard
electrolyte-gated organic field effect transistors [23], and their operation in aqueous solutions as an
ion-to-electron converter [24]. Previously reported work has appreciated OECTs as an excellent platform
for the label-free and high-sensitivity detection of a wide range of targets, ranging from proteins [25],
cells [26], DNA [27], and glucose [28], etc. For example, a previous work used aptamer-modified
gate electrodes for the selective detection of an ATP target with extremely low detection limits,
which was four orders of magnitude lower than that of the corresponding amperometric aptasensor [24].
Liao et al. developed OECT-based dopamine sensors with Nafion or chitosan-modified Pt gate
electrodes, which showed a low detection limit (5 nM) and could effectively exclude interference from
uric acid and ascorbic acid [29]. Tang et al. compared the sensitivity of OECTs for the detection of
dopamine by using different gate electrodes and found that Pt enabled the lowest detection limit of
5 nM [30]. However, dopamine detection methods that are capable of simultaneously demonstrating
high sensitivity, selectivity, and a wide detection range are still lacking for clinical application.

In the present work, we embedded interdigitated OECTs (iOECTs) in a flexible polyimide substrate
and utilized aptamer-modified gold electrodes as gate electrodes. Split aptamers were employed to get
rid of the electrochemical response of the blank sample, in which one receptor fragment (aptamer1) is
covalently attached to the surface of a gold electrode, as described in our previous work [31], and the
other fragment (aptamer2) is used for signaling, labeled with a redox group (methylene blue) at the
distal end, as shown in Scheme 1. Once the analyte dopamine is administered, the target can, on the
one hand, induce the association of the two aptamer fragments into an aptamer1/dopamine/aptamer
2 sandwich structure, which may increase the concentration of the redox probe at the electrode
surface, and on the other hand, decrease the distance between the gold electrode and the redox group,
which therefore facilitates the charge transfer and generates a detectable electrochemical signal via an
amperometric transducer principle [32].
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Scheme 1. Schematic representation of the developed amperometric aptasensor for dopamine detection
based on the structural assembly using split aptamers labeled with a methylene blue redox group (MB,
green circle, split aptamer2) and surface tethered anchor strands (split aptamer1). A gold electrode is
modified by the label-free aptamer1 and backfilled with blocking molecules MCH. A charge transfer
occurs as a consequence of a molecular recognition event, resulting in the formation of an intact folded
aptamer1/dopamine/aptamer2 sandwich structure.

The same gold electrode can be also utilized as a gate in the potentiometric iOECT transducer
system and therefore shares the same recognition process as the amperometric transducer principle.
However, the iOECT transducer relies on a change in the gate potential caused by the binding events
between aptamer2/target and aptamer1 [24]. We found that the flexible iOECT-based aptasensor
exhibited an ultralow detection limit of 0.5 fM, which is lower than that of the corresponding
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amperometric sensor and all previously reported electrochemical sensors for dopamine detection.
At the same time, it conserves the high selectivity over analogues and its regeneration performance.

2. Materials and Methods

2.1. Reagents

Dopaminehydrochloride (DA) and its analogues, as well as the chromium etchant, were purchased
from Sigma (Sigma-Aldrich Chemie GmbH, Munich, Germany). Epoxy (302-3M, John P. Kummer
GmbH, Augsbur, Germany) and polydimethylsiloxane (PDMS, Dow Corning Corporation, Wiesbaden,
Germany) were used for the encapsulation of the flexible chip, which was described in detail in our
previous work [24,26]. Two split-dopamine aptamers with the sequences of

Aptamer 1: TTC GCA GGT GTG GAG TGA CGT CG-(CH2)6-SH
Aptamer 2: MB-(CH2)6-CGA CGC CAG TTT GAA GGT TCG

were purchased from FRIZ Biochem (Neuried, Germany). Ten micromolar TE buffer (pH 8.0)
was used to prepare the stock solutions of both DNA probes, whose concentrations were separately
determined by using UV–vis spectroscopy to obtain the average absorbances value at 260 nm.

2.2. Fabrication Processes Flexible Organic Electrochemical Transistors

Flexible OECTs were fabricated according to the previously reported methods [26], including the
deposition of a Cr/Au/Cr layer, metal, and Poly(3,4-ethylenedioxythiophene) doped with
poly(styrenesulfonate) (PEDOT:PSS) (Clevios PH1000, Heraeus Clevios GmbH, Leverkusen,
Germany). The PEDOT:PSS channel, consisting of 10% (v/v) dimethyl sulfoxide and 1% (v/v)
3-glycidoxypropyltrimethoxysilane with a channel area (polymer specifically between both electrodes)
of 30 µm × 22 µm were utilized, which had similar dimensions as individual cardiomyocyte-like HL-1
cells and could record action potentials from electrogenic cells [33].

2.3. Stepwise Preparation of Aptamer-Based Sensors

An Au macroelectrode (ME), which was used as the gate electrode for the iOECTs, was firstly
annealed with a hydrogen flame for ~10 s to remove the organic contaminations from the surface,
followed by immersing it into ethanol and Milli-Q water for further cleaning. Oxidation and reduction
scans were performed in a 50 mM H2SO4 solution over the potential range of −0.15 V to 1.55 V with a
scan rate of 1 V/s and a step width of 0.01 V for final electrochemical annealing and determining its
surface area (a scan rate of 0.1 V/s) [24,34]. Prior to incubation, the aptamer1 stock solution was mixed
with 10 mM Tris-(2-carboxyethyl) phosphine hydrochloride (TCEP) (Sigma-Aldrich Chemie GmbH,
Munich, Germany) for 1 h to reduce the disulfide bonds between the aptamer1 molecules. The clean Au
macroelectrode surface was incubated with 0.5 µM aptamer1 in 10 mM high-salt Tris buffer (Tris, 1.5 M
NaCl, pH = 7.4) overnight. A self-assembled monolayer was formed by thiol–gold bonding between
the aptamer1 molecules and the gold electrode surface. The modified electrode was rinsed gently,
first with 10 mM Tris buffer three times and consecutively with ethanol another three times to eliminate
the non-bonded aptamer. Afterwards, the electrode was immersed in 1 mM 6-mercapto-1-hexanol
(MCH)/ethanol solution for 1 h to completely block the electrode surface, which was then rinsed using
the abovementioned method, but in the reverse order. For the regeneration measurement, 2 M NaCl
solution was used by immersing the aptamer-modified electrode in the solution for 5 min to release the
aptamer2 and analyte molecules, followed by rinsing with 10 mM Tris buffer to remove the residues.

2.4. Electrochemical Characterization

A conventional three-electrode setup was used for the electrochemical characterization of the
amperometric sensors, including a platinum wire coil as a counter electrode, a micro Ag/AgCl electrode
saturated (Micro DRIREF-450, World precision instruments, Sarasota, FL, USA) as a reference electrode,
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and the modified gold electrodes described above as working electrodes. Cyclic voltammetry and
square wave voltammetry (SWV) were recorded by an Autolab potentiostat PGSTAT302 (Eco Chemie,
Utrech, Netherland) in a 0.5 µM aptamer2 solution dissolved in 10 mM Tris buffer. The potential for
SWV measurement varied from −0.6 V to 0.2 V (vs. Ag/AgCl) at a selected AC frequency (5 Hz, 10 Hz,
30 Hz, 50 Hz, 70 Hz, and 90 Hz). Dopamine hydrochloride powder (Sigma-Aldrich Chemie GmbH,
Munich, Germany) was firstly dissolved in 10 mM Tris buffer and then added to the 0.5 µM aptamer2
solution to obtain different concentrations of dopamine. Subsequently, the aptamer1-modified gold
electrode was incubated in the electrolyte for 10 min, which showed the highest current response to
10 µM dopamine (Figure S1), followed by rinsing with Tris buffer three times. Similar approaches
were applied for the investigations of cross-sensitivities to interfering molecules, such as ascorbic acid
(AA) and uric acid (UA), as well as other common neurotransmitters, such as gamma-aminobutyric
acid (GABA) and glutamic acid (Glu).

2.5. Characterization of Tranfer Properties of iOECTs

The measurements of the output characteristics of the flexible iOECTs and the transfer
characteristics for the detection of dopamine targets were performed using a Keithley 4200
semiconductor analyzer (Tektronix, Munich, Germany) [24]. Furthermore, the flexible iOECT-based
aptasensor was operated in an open cell system [24]. All data points and error bars representing the
average signals and standard deviations for dopamine detection were obtained from at least three
independent flexible iOECTs.

3. Results and Discussion

High background signals are a common problem associated with conventional amperometric
aptamer sensors where a redox tag is attached to the distal end of the aptamer. To this end,
an electrochemical sandwich assay, obtained by splitting a full aptamer into two fragments, is regarded
as an available platform to suppress the background signal and to enhance the potential change on the
gate electrode induced by analyte binding for potentiometric transducer [31,35]. In the present work,
two-fragmented aptamer strands were utilized for detecting the small molecule neurotransmitter,
dopamine. One strand (aptamer1) was covalently attached on the surface of a gold macroelectrode
via a thiol–gold bond and the other aptamer fragment (aptamer2) was modified with the redox
moiety methylene blue. In the absence of dopamine, no charge transfer was observed between the
aptamer and the gold electrode, even in Tris buffer containing 0.5 µM of the methylene blue-modified
fragment (Figure 1a, black curve), indicating that aptamer2 freely floated in the buffer solution and no
binding event between the two split aptamer parts occurred. The addition of the analyte dopamine,
with a concentration of approximately 1 µM, resulted in the occurrence of a distinct Faraday current
(Figure 1a, red curve), presumably due to the formation of sandwich assembly, which brought the
redox tag in close proximity to the electrode surface. The peak current of around −200 mV to −300 mV
(vs. Ag/AgCl) after target addition was generated by the redox conversion of methylene blue,
while the anodic signal (around 100 mV) was presumably caused by the oxidation and reduction of
dopamine directly. Both signals depended strongly on the concentration of dopamine. A sensitive
square wave voltammetry (SWV) technique was utilized to quantitatively record the response of the
split aptamer-based electrochemical sandwich assay (SAESA) to different concentrations of dopamine
molecules. The operation frequency of the SWV measurements was firstly optimized to obtain the
highest possible current response of the SAESA to the analyte (Figure S2) and a final frequency of
70 Hz was chosen as the operation frequency for all following SWV measurements. A negligible
background current was observed in the absence of dopamine (Figure 1b, black curve), while there
was an obvious increase in the Faraday current with rising dopamine concentrations registered at the
peak potential of around −250 mV (vs. Ag/AgCl) in the presence of the aptamer2 fragment. A control
experiment was performed to characterize the response of the aptamer1-modified gold electrode to
different concentrations of dopamine without the presence of aptamer2, where no current response
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was observed (Figure S3), indicating that the specific binding between the split aptamer and dopamine
causes the current response. The corresponding Faraday currents were plotted versus the concentration
of dopamine to obtain a calibration curve for the amperometric detection scheme (Figure 1c). A steep
and linear current increase was observed for the concentration range between 5 µM and 70 µM (limit
of linearity for the semi-logarithmic presentation). A further increase in the target concentration to
117.2 µM resulted in a decrease in the corresponding peak current. This observation can most likely be
attributed to the formation of polydopamine at high monomer concentrations (Figure 1c) which may,
on the one hand, have interfered with the formation of aptamer/analyte sandwich structures, and on
the other hand, hindered the charge transfer between the redox probes and the electrode by fouling
the electrode surface [36]. The detection limit of this amperometric sandwich assay for the detection
of dopamine was 1 µM, determined according to international union of pure and applied chemistry
(IUPAC) instructions.
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Figure 1. (a) Cyclic voltammetry curves and (b) square wave voltammetry (SWV) current responses
of split aptamer-based electrochemical sandwich assays for the detection of different dopamine
concentrations; (c) dependence of the electrochemical current on dopamine concentration.

Furthermore, the selectivity of the amperometric SAESA was evaluated by comparing the current
response of the aptasensor for dopamine relative to its analogues, which are in part also important
neurotransmitters or interfering sample species with redox characteristics similar to dopamine
(Figure 2a,b). A distinct current peak evolved with the presence of 5 µM dopamine, while no
peaks were generated for ascorbic acid (AA), uric acid (UA), gamma-aminobutyric acid (GABA),
and glutamic acid (Glu), even at concentrations (50 µM) 10-fold higher than that of dopamine
(5 µM), which demonstrated the high selectivity of the SAESA for dopamine. Regeneration tests
were carried out to characterize the reusability of the aptasensor by consecutively soaking it into
the regeneration agent containing 2 M NaCl (Figure 2c,d) which interrupted the aptamer–dopamine
complex without damaging the integrity of the surface tethered aptamer1 and permitted the recovery
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of the dopamine-binding aptamer quadruplex structure as soon as the regeneration solution was
replaced by the dopamine/aptamer2/Tris buffer [37]. After the regeneration treatment, the observed
current signal was around zero, which is same as the background signal without the administration of
dopamine, confirming the removal of aptamer2 carrying the redox probe (Figure 2c). The extremely
low background signal will lead to a large on-to-off ratio of the current signal, which make the SAESA
a promising alternative for detecting low concentrations of dopamine. The subsequent addition of
10 µM dopamine exhibited similar responses as for the original SAESA, indicating that the covalently
bonded aptamer1 remained functional. The SAESA responses exhibited ~116.7% recovery even after
experiencing three detection cycles, demonstrating the excellent reusability of the SAESA for dopamine
detection. However, the clinical concentrations of dopamine are very diverse, depending on the
considered location in a biological system, and can be as small as a few fM in single adrenal chromaffin
cells [38], 1 nM in human serum [39], or 10 nM in the brain [40]. Therefore, a detection limit of 1 µM
and a concentration range of approximately one order of magnitude strongly limits the applicability of
the amperometric aptasensor. To boost the detection performance, the described sensor was extended
by an interdigitated organic electrochemical transistor (iOECT) as an amplifying transducer.
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Figure 2. (a) SWV current responses and (b) column comparison graph of the corresponding current of
the split aptamer-based electrochemical sandwich assay for the detection of dopamine (DA) and its
analogues: ascorbic acid (AA), uric acid (UA), gamma-aminobutyric acid (GABA), and glutamate (Glu);
(c) SWV curves and (d) the corresponding current responses showing the regeneration of aptasensors
after repeated rinsing of the amperometric aptasensor with a 2 M NaCl solution.

In our previous work on flexible iOECTs, we proved their high flexibility and electrical performance.
In this work, flexible iOECTs were utilized as a transducer [24,26] to detect dopamine by means of the
same split aptamer-modified Au electrode, as described above, but now operated as a gate (Figure 3a).
The channel area (a polymer specifically between both electrodes) of the selected iOECT was 30 µm ×
24 µm (Figure 3b), which is comparable to the size of an individual electrogenic cell [33]. The general
output characteristics of the flexible iOECTs with a drain–source bias (Vds) varying from −1.0 V to
0.2 V, and a gate–source bias (Vgs) in the range of −0.5 V and 1.0 V, were measured by using a standard
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Ag/AgCl pellet as the gate electrode (Figure 3c). Depending on the applied organic channel materials,
OECTs can work in accumulation and depletion modes [41]. The output drain–source current (Ids)
increased with Vds following Ohm’s law [42] until the saturation was reached (Figure 3c) while it
decreased with increasing Vgs, especially for a Vgs higher 0 V. This observation can be attributed to the
depletion mode characteristics of PEDOT:PSS-based OECTs. Once a positive gate bias is applied at
the gate bias, anions from electrolytes accumulated around the gate electrode and cations inversely
penetrated into the PEDOT:PSS channel, which compensated the pendant sulfonate anions on the
PSS, resulting in a de-doping of PEDOT. As a consequence, the hole density in the channel decreases,
accompanied by the decline of the drain–source current. The transconductance, which represents
the capability to convert changes in the gate potential into variations of the source–drain channel
current [22], was determined (Figure 3c). The normalization of the maximum transconductance with
the applied Vds was 8 mS/V (Figure 3d), which is superior to other reported flexible OECTs [43,44].
Additionally, the output and transfer characteristics of the flexible iOECTs were measured using the
Au electrode as a gate electrode (Figure S4) exhibiting a similar response to that using a Ag/AgCl
pellet. As a consequence, the high transconductance endows the flexible iOECTs with outstanding
amplification capability [24], which is crucial to the following application of dopamine detection.
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Figure 3. (a) Schematic configuration of organic electrochemical transistors (OECTs) embedded in a
flexible substrate polyimide. (b) Digital photograph of the encapsulated flexible device. The SEM
image shows a magnified individual transistor. The scale bar is 10 µm. (c) The output characteristics of
the flexible OECTs obtained by using a Ag/AgCl pellet as a gate electrode at Vgs varying from −0.5 V to
1.0 V with a step width of 0.1 V. (d) The extracted transfer characteristics from (c) at Vds = −0.5 V.

To permit a direct comparison of the sensitivity between the abovementioned amperometric
aptasensor and the flexible iOECT transducer for the detection of dopamine, the aptamer1-modified
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Au electrode was used for both direct amperometric detection and utilization as a gate electrode
for the PEDOT:PSS transistor (Figure S5). The organic transistor demonstrated its performance by
recording the potential change in the gate electrode as a function of analyte concentration (Figure 4).
To compensate for possible instabilities in the electrical performance of iOECTs during long-term
measurements (Figure S6), at least four different iOECTs were used for the detection of dopamine with
the same concentration. In addition, the gate electrode was fixed in a micromanipulator of a probe
station and the iOECT chamber was kept dry during the incubation of the target on the gate. Instead,
a sacrificial encapsulated iOECT chip with completely the same configuration as the one used for
dopamine detection was employed for the incubation of the target to reduce the contact of the latter with
the electrolyte [24]. The transfer characteristics of the flexible iOECTs were measured before and after
the addition of different concentrations of dopamine targets in a 0.5 µM aptamer2/Tris buffer solution
at Vds = −50 mV. To evaluate the response of the iOECT-based transducer and exclude the influence
of variable initial source–drain currents caused by the electrical instability of the PEDOT:PSS film in
the electrolyte during the measurements of different target concentrations, the relative current change
Ids/Ids,on = 0.5 was determined before and after incubation with dopamine (Figure 4). Interestingly,
the addition of dopamine to the aptamer-modified gate electrode at a concentration as low as 0.5 fM
caused a shift in the transfer curve of the iOECT of approx. 6 mV to a higher gate potential (Figure 4a),
indicating an extremely low detection limit of the flexible polymer transducer. A significant change
in the gate potential of 103 mV was observed for a dopamine concentration of 10 pM (Figure 4b)
and the potential shift increased with further rising analyte concentrations. This shift to higher gate
potentials can be attributed to the introduction of negatively charged aptamer2 strands to the modified
Au electrode during the dopamine binding events [45], which thus reduced the surface potential of the
gate electrode [24]. The resulting changes of gate potential can be considered as offset voltage, which is
caused by the potential drop at the gate/electrolyte and electrolyte/organic channel layer. To maintain
the original effective source/gate bias applied on the organic channel material, a higher gate voltage
was required to compensate for the potential drop caused by the binding of dopamine and aptamer2,
resulting in the shift of the transfer curve towards higher potentials.

To permit a comparison of both transducers, the calibration curve was determined as well,
by plotting the shift of the gate potential versus target concentration (Figure 4c and Table S1). A typical
S-shaped curve was observed for the potentiometric sensor, which can be divided into three regimes.
At a target concentration lower than 5 fM (Cdopamine ≤ 5 fM), the gate potential exhibited weak
dependence on the target concentration. The rise in the target concentration from 5 fM to 1 nM resulted
in an almost linear increase in the potential shift. This regime was followed by the third region for
high analyte concentration (Cdopamine > 1 nM), where the potential change saturated. The detection
limits and the detection range of the flexible iOECT sensor are summarized in Table 1 for comparison
with other previously reported electrochemical sensors for dopamine detection. It is noteworthy that
an ultralow detection limit was obtained for the iOECT-based transducer, which was nine orders
of magnitude lower than that of the corresponding amperometric aptasensor (1 µM) and superior
to all other previously reported electrochemical sensors [30,46]. The extraordinarily low detection
limit of the flexible polymer transducer can be attributed to its high transconductance in combination
with a relatively low number of receptors bound to the surface of the gate electrode. In addition,
the analyte binding occurs in association with the aptamer2 strand, which further enhances the sensor
signal. In our previous study, a signal amplification of four orders of magnitude in comparison to
an amperometric transducer for the binding of ATP to a full aptamer, and a significant shift in Vgs

by the immobilization of ssDNA molecules on the gate electrode, were observed [21]. Additionally,
the obtained dissociation constant (KD) of the split aptamer sequences with dopamine targets for
the amperometric and potentiometric transducers using a Langmuir equation [47] were 5 µM and
7 pM, respectively (Supplementary Materials). These results, in combination with the high signal
amplification observed here, suggest that the incubation of the split aptamer2 strand together with the
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analyte is advantageous over full aptamer receptors for OECT sensors, where only the analyte itself is
bound to the surface-tethered receptor molecules.
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Figure 4. Transfer characteristics of flexible interdigitated organic electrochemical transistors (iOECTs)
versus gate voltage at Vds = −50 mV measured in 10 mM Tris buffer containing 0.5 µM aptamer2 before
and after the administration of different concentrations of the dopamine target. The target incubation
time was 10 min. The concentration of dopamine in the Tris buffer was (a) 0.5 fM and (b) varying
from 0 pM to 10 nM. (c) The logarithmic dependence between the shift in gate potentials (∆Vgs) and
target concentrations.

Table 1. Comparison of different types of biosensors for dopamine detection.

Biosensors Methods Detection Limit Linear Calibration Range Selectivity Ref.

Electrochemically preanodized
clay-modified electrode Square wave voltammetry 2.7 nM 3 No [48]

Graphene-modified electrode Differential pulse
voltammetry 5 µM 2 (5–175 µM) Yes [7]

PDMS/glass microchip
Hydrodynamic
voltammogram
catecholamines

2 µM 1 (20 to 100 µM) No [4]

MWCNTs, quercetin, and
Nafion-modified glassy

carbon electrode

Amperometric detection
(current density versus time) 4.72 µM 2 (5–500 µM) Yes [46]

Au nanoparticles decorated
polypyrrole/reduced graphene

oxide hybride sheets

Differential pulse
voltammetry 18.2 pM 4 (0.1 nM to 5 µM) No [2]

Polyvinylpyrrolidone/graphene
modified glassy carbon electrode

Amperometric detection
(current versus time) 0.2 nM 7 (0.0005–1130 µM) Yes [8]

Aptamer–field-effect transistors Transfer characteristics 1 fM 4 (1 fM–10 pM) Yes [6]

Split-aptamer sensor Square wave voltammetry 1 µM 1 (5 µM–50 µM) Yes Present work

Split aptamer-based OECT sensor Transfer characteristics 0.5 fM 5 (5 fM–1 nM) Yes Present work

Furthermore, the novel iOECT-based transducer exhibited an extremely wide detection range for
dopamine concentrations, varying from 5 fM to 1 nM. Since both amperometric and potentiometric
transducers are using the same gold electrode, they can be operated together to broaden the detection
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range of the combined sensor (5 fM to 1 nM potentiometric + 5 µM to 50 µM amperometric), and thus
extend its field of applications for the detection of dopamine in plasma, cells, and urine.

In addition to the sensitivity and detection range, the selectivity was evaluated as a crucial
parameter of the aptasensor performance. The response of the transfer characteristics of the iOECTs
to selected interfering substances such as ascorbic acid (AA), uric acid (UA), glutamate (Glu),
and gamma-aminobutyric acid (GABA) was characterized for this purpose (Figure 5). Five independent
iOECT devices were used for the detection of each target molecule to eliminate device-related variations.
The changes in gate potentials caused by the unspecific binding of dopamine analogues were quite
small (less than 15 mV) or even shifted towards the reverse direction in comparison with that of
the specific dopamine binding (approx. 85 mV) (Figure 5f) although the concentration (10 µM) of
the former was 100 times higher than that of the target analyte (100 pM). This observation confirms
firstly that the high selectivity of the split aptamer was also conserved for the iOECT transducer,
and secondly that neither the presence of dopamine nor aptamer2 in the analyte affects the integrity of
the iOECT device.
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4. Conclusions

In this work, flexible interdigitated organic electrochemical transistors (OECTs) were utilized for
detecting the small molecule neurotransmitter dopamine. The background signal of the amperometric
sensor significantly decreased by introducing split ssDNA aptamers with a resultant detection limit
of 1 µM. This sandwich assay, formed by two aptamer fragments plus the analyte, exhibited high
selectivity for the detection of dopamine among other neurotransmitters and excellent reusability.
In comparison, the iOECT transducer exhibited a significantly improved sensitivity for dopamine
detection with an ultralow detection limit, which was nine orders of magnitude lower than the
corresponding amperometric transducer and lower than all other previously reported electrochemical
sensors. The high sensitivity of the flexible iOECT-based aptasensor can be attributed to its intrinsic
amplification capability. Furthermore, the high selectivity of the aptamer receptor could be conserved
for the flexible iOECT transducer, where dopamine was distinctly distinguished from other important
neurotransmitters. The high sensitivity, selectivity, regeneration capability, and conformability of
the flexible OECT-based aptasensor pave the way for medical applications where excellent sensor
performance is required without limitations from motions or the shape of the target object.

Supplementary Materials: The following is available online at http://www.mdpi.com/1996-1944/13/11/2577/s1,
Figure S1: Optimization of the incubation time of amperometric aptasensor with target molecule dopamine
(50 µM), Figure S2: The optimization of operation frequency for SWV measurements at a concentration of
dopamine of 30 µM, Figure S3: The SWV response of amperometric aptasensor to different concentrations of
dopamine without the addition of the aptamer2 molecule, Figure S4: The output and transfer characteristics
of iOECTs by using a gold electrode as the gate electrode, Figure S5: The photograph of aptamer-modified
gold electrode integrated with flexible iOECTs, Figure S6: The variation of source–drain current with time
measured in 10 mM Tris buffer at applied Vds = −0.05 V and Vgs = 0.35 V, Table S1: The gate potential (Vgs)
and corresponding potential change ∆Vgs (mV) at Ids/Ids,on = 0.5 of transfer characteristics of an iOECT chip at
different dopamine concentrations.
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