

Supplementary Information Efficient Toughening of Short Fiber Composites Using Weak Magnetic Fields

Omri Goldberg, Israel Greenfeld and Hanoch Daniel Wagner

S1.Curing System

Left: A photograph of the concentration/alignment combined setup (setup 3)

Right: A photograph of the alignment setup, a home-made solenoid which supplies uniform and unidirectional magnetic flux (setup 2)

Figure S1. Photographs of the curing setups. 1-Pre-cured compact-tension sample sealed in an aluminum container, 2-Concentration Magnets H_c, 3-Bias Magnets H_b, 4-Solenoid, 5-Rotation Motor.

S2. Photographic Analysis

Contour maps of compact tension samples cured by means of various magnetic configurations with different ratios of H_d/H_b .

Figure S2. Contour maps of compact-tension samples

Rough estimation of the densest configuration (setup 1, $R = \frac{H_c}{H_b} \rightarrow \infty$): Total area of the composite = 136 – 16 = 120 (arb. unit)

Concentrated Area = 34 (arb. unit)

The upper limit for the concentration efficiency factor in the current system is thus:

$$\eta_c \approx \frac{120}{34} \approx 4 \tag{S1}$$

S3. Fracture-Toughness Results-Instron

EP-502/EPC-9, control: 0.86 ± 0.21 [MPa·m^{0.5}]

Table 01. I facture toughteds incasurentents of composites with unicient fiber country	Table S1	. Fracture	toughness	measurements	of com	posites	with	different	fiber	coating
---	----------	------------	-----------	--------------	--------	---------	------	-----------	-------	---------

	GFus	GFs	GFus-MAG	GFs-MAG
2 wt.%	0.86 ± 0.30	0.81 ± 0.34	0.76 ± 0.16	0.91 ± 0.33
10 wt.%	0.83 ± 0.20	0.98 ± 0.10	1.00 ± 0.08	0.99 ± 0.12
20 wt.%	1.20 ± 0.15	1.14 ± 0.09	1.35 ± 0.12	1.28 ± 0.09

S4. Model

Using the general relationship between the fracture toughness (K_{IC}), the elastic modulus(E) and the toughness (G_c) a general model was developed to examine the effect of fiber orientation and concentration. Note: The calculation is not a prediction, only a description of the behavior of different composites and their relationships with the volume fraction and the orientation.

The parameters specified in the model are specified in the following Table S2:

Symbol	Description	Units	Notes		
С	Crack geometry factor	-	Remains constant		
$G_{c,m}$	toughness of the matrix		Matrix surface energy per unit area		
$G_{c,f}$	toughness of the fiber	J/m ²	or <i>G_i</i> , fiber-matrix surface energy per interfacial unit area		
$\eta_{\theta}{}^{E}$	Krenchel factor	-	orientation of modulus		
η_l^E	Fiber lengths factor	-	According to Cox model ~0.25		
$\eta_c{}^E$	Modulus concentration factor	-	Designated in previous paper ¹ as χ_d where $V_f^{eff} = V_f \chi_d$		
$\eta_{ heta}{}^{G}$	Toughening orientation factor	-	Calculated as ² $\eta_{\theta}^{G} = cos(\theta)exp\left(\frac{\mu}{2}\theta\right)$		
$\eta_l{}^G$	Geometrical factor to translate fiber embedded area to composite cross-section area	-	l_f/d_f , fiber aspect ratio		
$\eta_c{}^G$	Toughening density factor	-	Analogous to modulus		
μ	Snubbing Friction Coefficient	Rad ⁻¹	<0.3		

Table S2. Model parameters.

Starting with these three basic relationships:

(a)
$$K_{IC} = C \sqrt{EG_c}$$

(b) $E = (1 - \eta_c^E V_f) E_m + \eta_\theta^E \eta_l^E \eta_c^E V_f E_f$
(c) $G_c = (1 - \eta_c^G V_f) G_{c,m} + \eta_\theta^G \eta_l^G \eta_c^G V_f G_{c,m}$

the following expression is obtained,

$$\frac{\kappa_{IC}}{\kappa_{IC,0}} = \sqrt{\frac{G_c \cdot E}{G_{c,m} \cdot E_m}} = \sqrt{\eta_{\theta}^E \eta_l^E \eta_c^E V_f \frac{E_f}{E_m} + \left(1 - \eta_c^E V_f\right)} \sqrt{\eta_{\theta}^G \eta_l^G \eta_c^G V_f \frac{G_{c,f}}{G_{c,m}} + \left(1 - \eta_c^G V_f\right)},$$
(S2)

The expression for $\frac{K_{IC}}{K_{IC,0}}$ contains three components: The contribution of the fibers, the contribution of the matrix and a cross-coupling factor.

$$\frac{K_{IC}}{K_{IC,0}} = \sqrt{\begin{bmatrix} (\eta_{\theta}{}^{E}\eta_{l}{}^{E}\eta_{c}{}^{E})(\eta_{\theta}{}^{G}\eta_{l}{}^{G}\eta_{c}{}^{G})\frac{E_{f}}{E_{m}}\frac{G_{c,f}}{G_{c,m}}\end{bmatrix}V_{f}^{2} + \\ \sqrt{\begin{bmatrix} \eta_{\theta}{}^{E}\eta_{l}{}^{E}\eta_{c}{}^{E}\frac{E_{f}}{E_{m}}(1-\eta_{c}{}^{G}V_{f}) + \eta_{\theta}{}^{G}\eta_{l}{}^{G}\eta_{c}{}^{G}\frac{G_{c,f}}{G_{c,m}}(1-\eta_{c}{}^{E}V_{f})\end{bmatrix}}V_{f} + \\ (1-\eta_{c}{}^{E}V_{f})(1-\eta_{c}{}^{G}V_{f})$$
(S3)

Focusing on the contribution of the fibers only, neglecting the matrix contribution (leaving only the first term), and reorganizing the equation we get:

$$\left[\frac{K_{IC}}{K_{IC,0}}\right]_{\text{fibers}} = \eta_{\theta}{}^{K}\eta_{c}{}^{K}\eta_{l}{}^{K}V_{f}\sqrt{\frac{E_{f}}{E_{m}}\frac{G_{c,f}}{G_{c,m}}}$$
(S4)

where the fracture toughness efficiency factors (η^{K} , given in the text simply as η) are defined as geometric averages of the efficiency factors of the modulus and the toughness ($\eta^{E}\eta^{G}$):

$$\eta_c{}^{\kappa} = \sqrt{\eta_c{}^{E}\eta_c{}^{G}} \cong \eta_c{}^{E} = \eta_c{}^{G}$$
$$\eta_{\theta}{}^{\kappa} = \sqrt{\eta_{\theta}{}^{E}\eta_{\theta}{}^{G}} = \cos^{2.5}(\theta) \times \exp\left(\frac{\mu}{2}\theta\right) \cong \cos^{2.5}(\theta)$$
$$\eta_l{}^{\kappa} = \sqrt{\eta_l{}^{E}\eta_l{}^{G}} \cong \sqrt{\eta_l{}^{E}l_f/d_f} \cong 1.85$$
(S5)

Finally, by transforming the weight fraction of the fillers to volume fraction,

$$V_f = \frac{m_f \rho_m}{m_f \rho_m + m_m \rho_f} , V_f(10 \text{ wt \%}) = 0.05$$
(S6)

the entire expression $\frac{\kappa_{IC}}{\kappa_{IC,0}}$ can be calculated for our system as a function of η_c and η_{θ} .

Concentration coefficient, nc

Figure S3. Comparison of modeled predictions and experimental results.

Calculation of the pullout energy, normalized by the pullout energy for aligned fibers ($\theta = 0^{\circ}$), as a function of the fiber orientation:

Figure S4. Effect of orientation angle on the pullout energy components

Total normalized pullout energy as a function of the snubbing coefficient μ (for epoxy $\mu \approx 0.3$)

Figure S5. Effect of snubbing coefficient on the pullout energy

- 1. Goldberg O.; Greenfeld I.; Wagner H.D. Composite Reinforcement by Magnetic Control of Fiber Density and Orientation. *ACS Appl. Mater. Interfaces* **2018**, *10*, 16802–16811.
- 2. Wetherhold R.C.; Jain L.K. The Effect of Crack Orientation on the Fracture Properties of Composite Materials. *Mater. Sci. Eng. A* **1993**, *165*, 91–97.

© 2020 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).