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Abstract: This paper presents the influence of thermal phenomena on areal measurements of surface
topography using contact profilometers. The research concerned measurements under controlled
and variable environmental conditions. The influence of internal heat sources from profilometer
drives and their electronic components was analyzed. For this purpose, a thermal chamber was
designed and built. Its task was to maintain and control environmental conditions and, at the
same time, separate the profilometer from external disturbances. Heat sources and temperature
values for elements and systems were determined. It further enabled for the calculation of the
displacements in axes as a function of temperature. The largest displacement in the probe due to
internal heat sources for the considered cases occurred in the X-axis direction. Its value reached
16.2 µm. However, the displacement in the probe in the Z-axis direction had the greatest impact on
the measured surface topography. These displacements for a thermally unstable profilometer reached
7.9 µm in Z, causing results even 90% greater than in the case of a device without such problems.
The time after which a proper topography measurement can be started was also determined basing
on obtained data. This time for tested profilometers was between 6 and 12 h. It was found that
performing thermal stabilization of the profilometer significantly reduced surface irregularity errors.
The stabilization time should be determined individually for a specific type of device.

Keywords: contact profilometry; surface topography; thermal disturbance; thermal expansion;
thermal chamber

1. Introduction

The improvement in the quality of manufacturing processes of machinery and equipment parts
is directly related to the development (advancement) of methods to control manufactured products.
This is associated with the simultaneous development of quality control departments and the use of
more and more advanced measuring devices. One of the most important factors determining the
quality of a product is the surface structure of the produced element. It is a consequence of production
methods and machining [1].

An important issue in the assessment of the structure condition is broadly understood surface
irregularities. They are one of the basic features determining the quality of manufactured parts that also
affect their performance, durability, and exchangeability in mechanical engineering [2]. The geometric
structure of the surface (GSS), known also as surface texture, is the set of all hills and dales on
the surface.

A surface irregularity consists of waviness, roughness, and shape deviation. These components
can be assigned to three main groups of deviation scale:
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• large scale—shape deviation,
• average scale—waviness,
• small scale—roughness.

There are many methods and devices for surface topography analysis [3], including tactile and
optical ones [4]. The stylus method is the oldest yet still the most often used in industry. In this method,
the surface texture is often analyzed on the basis of cross-sections—surface asperity profiles. However,
three-dimensional (3D) surface analysis provides more important information. There are also
sophisticated methods of filtration, enabling the separation of particular components, e.g., the
component of a shape deviation or waviness, which, as a result, enables the roughness analysis.
They often reach even more and more multiscale analysis for different purposes [5,6].

In contact methods, a measurement is carried out using a diamond measuring tip that moves
over the measured surface. These methods are well known, but they are also sensitive to some
interfering factors, such as vibrations, thermal phenomena, and geometrical errors of the measuring tip,
including the rounding radius and local changes in the tip. Errors in roughness measurements
resulting from the tip geometry have been the subject of a number of studies, e.g., performed
by Elewa and Koura [7], Bodschwinna [8], Trumpold and Heldt [9], Smith and Chetwynd [10],
and Anbari et al. [11]. The shape of the measuring tip changes the actual geometry of asperity.
An additional source of error in spatial measurements is the linear displacement of the measuring tip
in one axis of the profilometer, causing path synchronization error [12,13], as well as too high a velocity
of the tip, causing the detachment of the tip from the measured element [14], for which various options
were investigated [15].

Modern-quality control requires the use of devices that correctly return information about the
measurement of the selected quantity while maintaining the required accuracy parameters. When the
measurement is performed using typical measuring devices, solutions are sought to eliminate the
influence of disturbing factors after the test. This is one of the issues related to information-rich
metrology [16]. The data set covering many aspects of the measurement, e.g., environmental factors,
device status, and signal processing algorithms, allows the most advantageous analysis of the obtained
values and their possible correct interpretation.

2. Problem Statement

There are generally a lot of sources of errors in surface topography measurements using optical
and tactile techniques [17,18]. In optical techniques, they are mainly connected with non-measured
points [19] or sampling intervals [20], in stylus—with the geometry of a probe tip or vibrations
and noise. Their impact is described in the references, e.g., work by Haitjema and Morel [21]. In the
case of profilometric measurements, this is often associated with the way the environment affects the
measuring device. Thermal disturbances are often not considered as an important source of error,
which, particularly in the case of 3D measurements, is not true. They may have a form of changes
in amplitude and/or frequency. Research on this type of disturbance was carried out, among others,
by Miller et al. [22] and Krawiec et al. [23].

When measuring a single profile, provided the time of temperature change is long compared to
the measurement time, low-frequency temperature changes do not influence the measurement results.
In the case of long-term spatial measurements with a large number of measuring probe traverses,
the influence of temperature changes on the measurement system can be significant, particularly when
the temperature change occurs directly during the measurement procedure. According to the thermal
expansion law, both the specimen and the measuring device undergo geometrical deformations in
three dimensions.

The most frequent source of thermal errors is a commonly used, two-step air conditioning
(cooling) system. Such a system turns on when the upper temperature limit is reached and turns off

when the lower threshold is achieved. Such an operation of the air conditioning system is usually
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periodic. It also causes the direct influence of cold air (gas) on a device, which may, in turn, result in
different temperature gradients. Zhou et al. investigated these phenomena in their work [24].

Furthermore, there are also internal thermal disturbances coming from electronic components,
drives, and friction of the moving elements. Disturbances of these types are asymptotic and decrease
with time during stabilization of the profilometer. The temperature stabilization process, which may
take several hours, should be performed before the beginning of the measurement. Regardless of the
nature of the disturbance, thermal phenomena cause errors in the image of the surface and values of
parameters, calculated from the measured surface.

Currently, no thermal diagnostics and disturbance compensation are used in practical solutions
for contact profilometers; they are carried out only for coordinate measuring machines (CMMs).

A way of compensation of certain errors related to the device geometry when a coordinate
measuring technique is involved was proposed by Zha et al. [25]. Errors related to both displacement
and deformation of the device components are most often associated with thermal expansion of
the device. Thermal errors may also cause residual stress, particularly when construction elements are
designed as multilayer ones [26]. Usually, measurements of deformation of this type are performed
simultaneously with infrared thermal diagnostics. The methodology of thermal diagnostics of CMMs
is presented in the works of Abdulshahed et al. [27], as well as Chenyang et al. [28]. Hao et al. [29]
and Muniz et al. [30] also worked on similar issues related to thermal errors. On the contrary,
Schwenke et al. tried to compensate these errors [31]. A similar attitude can be found in a publication
by Ma et al. [32]. Sladek et al., on the other hand, were modeling the uncertainty changes caused
by temperature for CMMs [33]. There are different additional devices used for calculating errors.
The use of laser interferometry in deformation measurements of the CMM structure has been discussed
by groups directed by Balsamo [34] and Stejskal [35]. Furthermore, the use of thermometry and
laser interferometry is also applicable to other types of numerically controlled machines and devices,
which makes their application much more versatile. The research concerning this topic has been
described by Enming et al. [36], Lo et al. [37], and Miao et al. [38].

The recognition of issues related to temperature changes during measurements causes the need
for compensation and thermal conditions control. The first attempts were made by Baird quite a long
time ago [39]. Kruth et al. [40] presented the compensation of Thermal Errors on CMMs, dividing them
into static and transient ones. Similar works for more generally considered devices were made by
Sartori and Zhang [41]. Ge and Ding elaborated a method for thermal error control for precision
parts of machine tools [42]. This method was based on the principle of thermal deformation balance.
Tang, Xu, and Wang also conducted analyses in order to predict thermal deformations and the impact
of environmental conditions on the measuring device using a neural network [43], while Milov et al.
created an algorithm and software to identify errors in measuring equipment during the formation of
permanent joints [44].

After analyzing the literature, it was decided to carry out the research on the influence of thermal
disturbances on the surface asperities using contact profilometers, which will eventually enable
compensation of this effect. Additionally, the authors intended to determine the time, after which
thermal and geometrical stabilization will take place. The topic is an important issue as it is generally
believed that there is no thermal influence on performance of a profilometer, which is commonly used
for tactile (and not only) surface topography measurements.

3. Materials, Methods, and Results

The research on the influence of the internal heat sources of a profilometer on the expansion
of its structure and elements was based on two types of measurements. First, a static measurement
was made in which the measuring head of the profilometer remained stationary. Second, a dynamic
measurement was performed, in which surface topography points were collected (measuring head
was moving).
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3.1. Static Measurement

Test methodology of the static measurement procedure (i.e., measurement without movement
of a measuring head) was based on temperature verification of the profilometer components using
two independent methods. The temperature measurement started with the moment the device was
turned on (with no movement of the measuring probe in direction of X-axis). The power supply
influenced the heating of electronic components, drives, and other heat-generating parts placed inside
the profilometer structure. Simultaneously to the temperature measurement, the displacement of the
measuring head was investigated using a laser interferometer. Temperature values were correlated
with displacements, which allowed for the determination of the resultant thermal expansion coefficient
of a particular element.

The first method of measuring temperature involved the use of semiconductor temperature
sensors DS18B20+ (Maxim Integrated Products, Sunnyvale, CA, USA) localized as close as possible to
the drives of individual axes of the profilometer. Sensors allowed to monitor changes in temperature
as a function of time during the heating of the profilometer from the moment the device was turned
on. A sensor of this type has a measuring range from −55 ◦C to +125 ◦C and a maximum permissible
measurement error of ±0.5 ◦C in the measuring range from −10 ◦C to +85 ◦C.

The second method of temperature measurement involved the use of a diagnostic thermal imaging
camera FLIR T620 (FLIR Systems, Inc., Wilsonville, Oregon, USA) which enabled detection of heat
sources (profilometer components) in the entire system, presented in the form of a colored thermal map.
The thermal imaging camera provided possibilities of monitoring the temperature distribution over
time on all the profilometer surfaces and measuring the temperature in a certain point on a surface.

The use of the thermal imaging camera enabled the collection of more information about the
thermal condition of the profilometer and very precise determination of heat sources.

The spatial (geometric) resolution of the T620 camera in the sense of the instantaneous field of
view (IFOV) was 0.62 mrad and the thermal resolution in the sense of noise-equivalent temperature
difference (NETD) was less than 0.05 ◦C. The maximum permissible measurement error of the camera
was equal to ±2 ◦C or ±2% of the temperature readings (the greater of these two values is taken as the
respective value).

During testing of the profilometer, a laser interferometer LASERTEX LSP30-3D (Lasertex Sp. z o.o.,
Wrocław, Poland) with a measurement resolution of 0.1 nm was used. Its task was to measure the
displacement of the measuring head, caused by changes in the geometrical dimensions of the device
structure due to temperature variations from internal heat sources. The reference mirror (stationary) of
the interferometer was located on a granite slab. The mobile mirror was attached to the fixing holder
of the measuring head of the profilometer. The measurement head displacement was performed for
each axis of the profilometer while maintaining the same experimental conditions. A similar method
of determining geometrical deviations for coordinate measuring was reported by Hemming et al. [45],
Echerfaoui et al. [46], and Schwenke et al. [47]. A scheme of the measuring setup is shown in Figure 1.

Research on the influence of internal heat sources was carried out on three contact profilometers,
differing from each other in design and type of drives used for particular axes: T8000 (A), TOPO L50 (B),
and S8P/PRK (C). The same measuring equipment settings and the same measurement methodology
were used for each of these devices. During testing of the profilometers, the greatest attention was paid
to the measurement of the elongation of the Z column. This was due to the direct possibility of a thermal
deformation of the column affecting the correctness of the spatial imaging of surface topography.

The distribution of thermal fields on the surface of each device after thermal stabilization, as well as
the location and type of internal heat sources, is presented in Figures 2 and 3, respectively. The thermal
stabilization state of the device is based on the criterion for which the change in temperature values in
the measuring points (column of the profilometer, fixtures of drives, and electronic components) during
3 h does not change more than 0.5 ◦C. This criterion was adapted from other research conducted for
thermal stability for machine elements performed using the same temperature measuring devices [48].
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Figure 1. Scheme of the positions of interferometer mirrors for measuring displacements of X-, Y-,
and Z-axes of profilometer, being under the influence of internal heat sources.

Figure 2. View of tested profilometers: 1—column, 2—drive Z, 3—traverse unit, 4—base.
(a) Profilometer Hommel T8000; (b) Profilometer TOPO L50; (c) Profilometer Perthen S8P/PRK.

Figure 3. Distribution of thermal fields on the surface of profilometers: 1—part of the column above
the traverse unit X, 2—part of the column below the traverse unit X, 3—traverse unit X. (a) Profilometer
Hommel T8000; (b) Profilometer TOPO L50; (c) Profilometer Perthen S8P/PRK.
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The temperature changes during testing of profilometer A are shown in the graph (Figure 4).
The elongation of mechanical components for individual axes is illustrated in the next graph (Figure 5).

Figure 4. Temperature changes during heating of profilometer A drives.

Figure 5. Comparison of elongation of individual axes of profilometer A during heating of its drives.

The graph (Figure 4) shows a rapid increase in the temperature of the stepper motor located
in the Z column. Thermal stabilization of the drive and of the rest of the column can be observed
after 6 h, counting from the moment the profilometer was turned on. The Z column increased its
temperature by 4.3 ◦C and the traverse unit of the X-axis by 2.4 ◦C. At the same time, the growth of
ambient temperature reached 0.4 ◦C.

The graph (Figure 5) shows displacements in the direction of individual axes due to elongation.
The biggest change in the position during heating of the profilometer was observed in the direction
of the X-axis. This is caused by a closed design of the traverse unit (X-axis), location of electronic
modules inside it, and, due to this, practically no heat dissipation. The temperature inside the traverse
unit directly affects the moving element of the measuring probe (pick-up), as well as the intermediary
elements causing thermal expansion of all mentioned components. The smallest displacement was
observed in the direction of the Y-axis of the profilometer. This is due to the design of the device. The
traverse unit and its thermal deformability mostly affect moving parts and long elements (in accordance
with the law of thermal expansion). There are no components in the Y-axis that can change their position,
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and the cross-section of the Y-axis has the smallest dimensions among all considered cross-sections
(cross-section of the Z-column and traverse unit X).

The temperature changes during testing of the profilometer B are shown in the graph (Figure 6).
The elongation of mechanical components along individual axes is illustrated in the next graph
(Figure 7).

Figure 6. Temperature changes during heating of profilometer B drives.

Figure 7. Comparison of elongation of individual axes of profilometer B during heating of its drives.

The graph (Figure 6) also shows a rapid increase in the temperature of the stepper motor located in
the Z column. The temperature becomes stable after 2 h and increases 4.87 ◦C. However, the real thermal
stability can be observed after 6 h from the moment the profilometer was turned on. A difference of
5.34 ◦C from the initial temperature was achieved. The Z column increased its temperature by 0.7 ◦C
and the traverse unit of the X-axis by 0.4 ◦C. At the same time, the growth of ambient temperature
reached 0.2 ◦C. The location of the drive outside the body of the profilometer limits the thermal
influence on other components. Still, some heat is distributed through the metal base connecting the
column with the drive.

The graph (Figure 7) illustrating the displacement of the measuring probe presents changes in
position due to elongation, during the heating of the profilometer. The largest displacement reaching
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3.6 µm was observed in the direction of the Z-axis. It is caused by heat transfer from the stepper motor
located in the Z column, which is mounted on a steel connecting plate, which is attached to a granite
plate and to the base of the column. The displacement of the measuring probe in the X- and Y-axes
shows a much smaller value that does not exceed 1 µm. These displacements can be a consequence of
thermal interaction of individual components occurring in particular axes, as well as an effect of Z
column deformation.

The temperature changes during testing of the profilometer C are shown in the graph (Figure 8).
The elongation of mechanical components toward individual axes is illustrated in the next graph
(Figure 9).

Figure 8. Temperature changes during heating of profilometer C drives.

Figure 9. Comparison of elongation of individual axes of profilometer C during heating of its drives.

The temperature changes presented in the figure (Figure 8) show that the thermal stabilization of
the traverse unit is reached about 4 h after switching the device on. The maximum temperature was
recorded on the traverse unit X and was equal to 23.5 ◦C. The temperature increase of the Z column
did not exceed 1 ◦C. The measurement was made in stable thermal environment conditions.

In the case of this device (profilometer C), column Z was not heated, which can be observed in the
thermal image (Figure 3). For this reason, the temperature (drive Z) was not represented in the graph
(Figure 8). It was measured by means of the semiconductor sensor located inside the housing, yet the
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readout was the same as ambient temperature. No heating effect is caused by a DC motor used to
move the whole traverse unit in the Z direction. This kind of motor does not generate heat when the
traverse unit is not moving vertically in contrast to stepper motors, where switching on the power
supply already generates heat (as it was in profilometers A and B).

The results presented in the graph (Figure 9) show the change in the position of the measuring
probe during the heating of the profilometer caused by its internal heat sources in relation to the
starting point. The values of displacements in the X and Z are smaller than 3 µm and monotonic.
The measuring probe shows the largest changes in position during the heating of the device in the
direction of the Y-axis in a characteristic non-monotonic way. This situation is not typical and is
caused by uneven heating of the component and its location on the positioning prisms (Figure 10a,b),
which enabled displacement associated with the rotation around the apparent axis Z (Figure 10c).

Figure 10. View of the supporting structure of X traverse unit of profilometer C: (a) Traverse unit
cradle with positioning prisms marked; (b) traverse unit of the profilometer with locating pins marked;
(c) deflection of the measuring probe of profilometer C relative to the apparent axis of rotation Z’.

Expanding elements—beginning from the location of the X-axis drive—cause this part of the
traverse unit to expand and move on the positioning prism. The heat is distributed to the remaining
part of the unit. This causes elongation due to thermal expansion and, consequently, displacement on
the next prisms and rotation around the apparent Z-axis.

Data collected from each test were analyzed and presented in the form of a graph (Figure 11).
The displacement in the measuring head in the Z-axis of the tested profilometers can have a direct
impact on the correctness of spatial imaging of surface topography. Further analysis contained
deformation of a column.
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Figure 11. Comparison of elongation in Z-axes of profilometers during the heating of drives—internal
heat sources.

Profilometer A has the highest Z-axis elongation value equal to 7.9 µm. Profilometer B has
elongated by 3.58 µm, whereas profilometer C has elongated by 2.61 µm.

In general recommendations given by many manufacturers, it is suggested to turn the device on
about 15 min before a measurement can be taken. Time determined experimentally, after which the 3D
measurement of surface topography could be initialized, significantly varies from that information. It
depends on the particular device and is about 6 h from the moment of turning the profilometer on
(according to previously adopted criteria). After this time (in the case of tested devices), the temperature
of the whole systems becomes stabilized, and no significant changes in geometric dimensions
are expected.

In order to eliminate additional disturbances related to thermal aspects caused by, e.g., friction or
traverse unit operation, it is recommended to perform a preliminary measurement, before starting a
topography measurement. During this preliminary measurement, its time and conditions should be
the same as during the real measurement. The only difference is a measuring tip that does not need to
be in contact with the tested surface.

Based on the above presented results, it was found that profilometer A is characterized by the
greatest susceptibility to the influence of internal heat sources. Therefore, further research should be
concentrated on that device.

3.2. Dynamic Measurement

The research methodology of the dynamic measurement (measurement with movement of a
measuring probe), similar to the static measurement, was based on monitoring the temperature
of the profilometer components using two independent methods. These methods involved using
temperature sensors located in places of heat sources occurrence and using a thermal imaging
camera. The temperature measurement began from the moment the device was turned on and surface
topography measurement (scanning the measured surface with the measuring tip) started. Turning on
the power supply of the device caused passive power consumption, while movement of mechanical
elements resulted in the heating of profilometer components located inside its structure, causing an
expansion of the whole device structure. The increase in temperature was correlated with results of the
simultaneous measurement of the distance between the measuring probe and the base on which the
tested specimen was placed. The distance measurement was performed using a laser interferometer.
One of the mirrors (reference one) was placed on a sliding table. The second mirror was placed on a
rigid ABS (acrylonitrile butadiene styrene terpolymer) handle, attached to the housing of the device
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(Figure 12a). The distance between the measuring head and the measured specimen was additionally
verified during the measurement by reading the position of the measuring probe of the profilometer in
relation to the sample. Information about the current position of the probe is registered and can be
displayed in dedicated software.

Figure 12. (a) Scheme of the interferometer mirrors during measurement of displacements in Z-axis;
(b) graphic representation of measurement methodology.

The measured element was a standard optical flat—a parallel glass plate with known surface
parameters and a flatness defined by the λ/20 parameter. In order to determine the influence of internal
heat sources on the fidelity of surface topography imaging, the same profile was measured 600 times
(to avoid influence of geometrical errors, the y table movement was switched off, ∆y = 0). Then,
the image of a surface was created from these profiles. This test, in the case of nearly ideal measuring
conditions, was intended to provide an undisturbed, straight transverse profile from the generated
surface. The measurement principle is presented in the figure (Figure 12b).

Before the beginning of the measurement, the measuring probe was levelled in relation to the
plate being measured. The height deviation of a 20 mm-long distance from the starting point to the
end point did not exceed 0.1 µm.

Two types of tests of the dynamic measurement were performed. The first involved measurement
of the surface topography from the moment the device was switched on. During that measurement
procedure, the profilometer and its components were heating up.
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The second test of the dynamic measurement involved measurements after thermal stabilization
of the profilometer. The measurement was made on the same surface (the measured specimen was
fixed and the table motion was turned off).

The illustration (Figure 13) shows the surface generated from the measurements of the same track
during heating of the device.

Figure 13. View of the surface generated from the measurements of the same track during heating of
the profilometer: (a) A color map; (b) 3D image.

The graph (Figure 14) shows the correlation between the increase in temperature of the Z-axis
drive and elongation of the profilometer column. The graph shows the displacement value of the
measuring probe, which was measured with the laser interferometer and the measured surface
transverse profile.
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Figure 14. Elongation in Z-axis of profilometer A and temperature against time - dynamic measurement.

The cross-profile curves and the elongation values are inverted. This should be interpreted in
such a way that the measuring tip, which was permanently in contact with the specimen, as an effect
of elongation (due to the thermal expansion of the Z column), moved below the zero line, and the
elongation of the column had a positive value in relation to the measured surface (Figure 15).

Figure 15. Probe movement due to heating of profilometer column.

The thermal conduction mechanism, concerning heat coming from power supplies or moving
elements mounted inside a profilometer, influences the surface topography representation, particularly
when changes in temperature take place within a column (Z direction). This results in displacement
of the whole drive unit in relation to the base. Thus, the change in geometrical dimension due to
the thermal expansibility of the column (elongation and shrinkage) results in the movement of a
measuring tip being in contact with a measured surface. This movement is an error, which changes the
representation of a surface and gives wrong values of topography parameters, a reason of workpiece
malfunctioning and improper classification of manufactured parts.

The data presented above show the correlation of the temperature increase of the Z-axis drive
(and the profilometer column) with the value of the Z-axis elongation. The maximum displacement
of the measuring point placed on the measuring probe in the Z-axis reaches 8.3 µm in relation to the
initial position, while the temperature of the Z column increased by 5.58 ◦C. These data correspond
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to the readings directly from the probe, presented in the form of a transverse profile. The maximum
value of the probe displacement was 7.9 µm.

In the second test of the dynamic experiment, the profilometer performed the same profile
measurement after thermal stabilization of its drives and structure. This test was intended to indicate
differences in the fidelity of surface imaging when the influence of internal heat sources of the
profilometer was significantly reduced.

The illustration (Figure 16) shows the surface generated from the measurements of the same
profile after thermal stabilization of the profilometer.
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The generated surface presented in the illustration (Figure 16) shows 90% less noise than in the
case of an unstable profilometer. The signal amplitude illustrated in the figure is 0.8 µm, which is
about 10 times less than in the case of a thermally unstable profilometer.

It is considered that regardless of the type of drives and electronic components used in a
profilometer, if possible, they should be placed outside the profilometer housing so that the heat
generated by them would be freely radiated to the environment. Motors should be separated
from lead screws/linear guides to reduce heat transfer to essential elements of a measuring device,
and connection with lead screws should be made with flexible toothed belts. This solution should
protect the profilometer against vibrations coming from the drives while eliminating engine-lead screw
clearances and, above all, reduce thermal conductivity between individual components.

4. Conclusions

After analyzing results of the research, a direct influence of thermal phenomena on surface
imaging errors becomes clearly visible. These errors are especially evident during the initial phase of
surface topography measurement, immediately after turning the device on.

There is a relation between the increase in temperature of drives and electronic components
installed in contact profilometers (internal heat sources) and the deformation of the device structure
in its individual axes. This directly affects the imaging of surface asperities, particularly when the
measurement was started immediately after turning the profilometer on.

• The value of elongation in individual axes of the profilometer is different and it very much depends
on the construction of the device, type of drives used, and their location. This might indicate that
a change in design can limit the influence of thermal disturbances on the measurement results.
Thus, it would improve the metrological characteristics of the device.

• The largest value of the displacement of the measuring tip occurs in the direction of the X-axis.
This value (in the considered cases) reaches 16.2 µm.

• The largest impact on the imaging of the surface topography has the displacement of the probe in
the direction of the Z-axis. This displacement directly translates into the obtained value of the
height of the measured surface.

• The thermal and geometrical stabilization times should be precisely determined before beginning
a 3D surface measurement. The stabilization time should be determined individually for a specific
type of device in order to make a measurement correctly. Performing thermal stabilization of the
tested device has reduced surface imaging errors by 90%.

• The comparison of analyzed constructions and drives of the contact profiler (based on Figures 4, 6
and 8) showed that DC motors working uniformly during the whole measurement are characterized
by the best thermal properties. Change in feed should be executed by an electromagnetic clutch.

• Profilometers in which electronic systems and drives were located outside of the device body
were characterized by lower values of displacement resulting from thermal deformation than the
profilometer with drives inside its structure.
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20. Pawlus, P.; Reizer, R.; Wieczorowski, M.; Żelasko, W. The effect of sampling interval on the predictions of an

asperity contact model of two-process surfaces. Bull. Pol. Acad. Sci. Tech. Sci. 2017, 65, 391–398. [CrossRef]
21. Haitjema, H.; Morel MA, A. Noise bias removal in profile measurements. Meas. J. Int. Meas. Confed. 2005, 38,

21–29. [CrossRef]
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