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Abstract: Solid particles immersed in a fluid can be found in many engineering, environmental
or medical fields. Applications are suspensions, sedimentation processes or procedural processes
in the production of medication, food or construction materials. While homogenized behavior of
these applications is well understood, contributions in the field of pore-scale fully resolved numerical
simulations with non-spherical particles are rare. Using Smoothed Particle Hydrodynamics (SPH) as
a simulation framework, we therefore present a modeling approach for Direct Numerical Simulations
(DNS) of single-phase fluid containing non-spherically formed solid aggregates. Notable and
discussed model specifications are the surface-coupled fluid–solid interaction forces as well as
the contact forces between solid aggregates. The focus of this contribution is the numerical
modeling approach and its implementation in SPH. Since SPH presents a fully resolved approach,
the construction of arbitrary shaped particles is conveniently realizable. After validating our model for
single non-spherical particles, we therefore investigate the motion of solid bodies in a Newtonian fluid
and their interaction with the surrounding fluid and with other solid bodies by analyzing velocity
fields of shear flow with respect to hydromechanical and contact forces. Results show a dependency
of the motion and interaction of solid particles on their form and orientation. While spherical particles
move to the centerline region, ellipsoidal particles move and rotate due to vortex formation in the
fluid flow in between.

Keywords: DNS; SPH; solid body motion; contact models; contact forces; repulsive force

1. Introduction

Solid bodies immersed in Newtonian fluids can be found in many fields of mechanical, civil and
environmental engineering. Coarse-graining and therefore simplifying the multi-phase response of
the mixture, suspensions are often constitutively described on a continuum-scale as non-Newtonian
fluids with either shear-thinning or shear-thickening behavior [1,2]. Such continuum models present a
good approximation when it comes to general investigations of fluid flow of suspensions on length
scales significantly larger than the characteristic particle diameter. However there is no information
about the microscopical influence of solid–solid contacts as well as hydro-mechanical fluid–solid
interactions which could lead to well-known phenomena like de-mixing [3], particle formation like
hydroclusters [4,5], shear-wall migration [6,7] and shear-induced particle migration [8]. Theoretical
approaches in the field of motion of solid particles immersed in a fluid are presented for example by
Jeffery [9–11] and Guazzelli and Morris [12], who consider pore-scale effects (microhydrodynamics) as
well as continuum approaches. However, to overcome limitations of classical macroscopic continuum
formulations, we present a multi-scale modeling approach for fully resolved solid particles immersed
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in a fluid. The model takes into account a Newtonian carrier fluid coupled with a repulsive force
model for the solid–solid contact (calculated from a potential).

Various numerical methods to investigate suspended particles flow in Computational Fluid
Dynamics (CFD) exist. Often either a fully or coupled Discrete Element Method (DEM) is
used. Thus contributions exhibit Lattice-Bolzmann-DEM approaches [13], Smoothed Particle
Hydrodynamic (SPH)-DEM approaches [14,15], Finite-Element-DEM approaches [16–18] or
Particle-Finite-Element-Method approaches (PFEM) [19] to name only a few. All of these methods
have in common, that they are either Eulerian grid-based methods (FEM, LB) which are limited when
large deformations are involved or free surface flow is dominant or else are not able to discretize
the surrounding fluid without a coupling algorithm (DEM). Thus, streamlines in the vicinity of
spherical and especially non-spherical particles can not be analyzed. To overcome these limitations,
we present a quasi-incompressible Smoothed Particle Hydrodynamics (SPH) approach. SPH as a
meshless Lagrangian method presenting remarkable advantages when it comes to fully resolved
solid–fluid interfaces and interactions [5,20]. Thus SPH is the ideal choice to model suspended solid
bodies since the carrier fluid as well as the immersed solid particles can be discretized with SPH
particles. Therefore, SPH is leading to the possibility of investigating the physical properties of the
single particle-fluid interaction and the solid–solid contacts individually. As an example, streamlines
in the vicinity of a solid particle can be determined. In addition, the fully resolved modeling approach
allows to build rigid solid aggregates of arbitrary forms using solid SPH particles and to discretize the
fluid phase with fluid SPH particles. Therefore, in contrast to continuum mixture-theory approaches,
each material point P(x, t) is either occupied by the fluid or the solid phase. This renders usage
of surface-coupled hydromechanical forces easy and allows to simulate aggregates with complex
non-spherical forms. For the implementation of the presented model we use the highly scalable
software library HOOMD-blue [21,22] which we extended for SPH and recently validated in terms of
scalability on CPU and GPU clusters [23]. A quite similar method for the simulation of suspensions
using SPH was presented by Vázquez-Quesada et al. [5,24,25]. They show simulations of dense
suspensions and present an analysis of the rheological behavior in terms of shear-thickening and
-thinning. However, a detailed analysis of micro-scale effects, related to contact between the solid
particles is missing. Further, their investigations are restricted to spherical particles.

Considering solid particle motion in a fluid, suspensions are one possible application.
In this case, the Péclet number which represents the ratio of mechanical to Brownian forces
characterizes non-colloidal suspensions [26,27]. Simulating only large Péclet numbers, we assume
that hydromechanical forces dominate the flow process and Brownian forces, and further colloidal
phenomena, can be neglected. Moreover, the non-colloidal character can be defined by larger particle
diameters (d ≥ 1 µm) and a low aspect ratio between particle volume and particle surface. Therefore,
we focus on diameters larger than 1 µm and aspect ratios between 0.5 and 0.95.

Similar to Tanner [26,28] and Vázquez-Quesada et al. [5,24,25], most publications consider high
concentrated, i.e., dense suspensions using the ideal case of monodisperse spherical particles and
neglecting the effect and impact of contact between single solid particles. As discussed by Jeffery [9]
and Mueller [29], shape and size of solid particles can have significant influences on the flow behavior
of suspensions. Within the present approach, we therefore investigate the close environment of
non-spherical solid particles immersed in a carrier fluid. With fully resolved simulations we determine
the impact of hydromechanical and contact forces on the motion of particles and the interaction with
the fluid phase in the vicinity of particles.

2. Theory of Solid Particle Motion in Single-Phase Newtonian Fluid

In general, a suspension can be discretized as a Newtonian or a non-Newtonian carrier fluid with
immersed solid particles influencing the flow behavior [1]. The particle (number) volume fraction
φs is a macroscopical quantity which takes into account the amount of solid particles related to the
total volume. It can be computed using the number of entities (e.g., SPH particles) of a constituent ns
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divided by the total number of SPH particles N or, in case of a homogeneous particle discretization,
by using the volume dVs occupied by the solid particles divided by a finite control volume dV

φs =
ns

N
=

dVs

dV
. (1)

Considering small (suspension-like) systems with only a few number of solid particles and
therefore with a particle volume fraction φs < 0.05, hydromechanical forces as well as contact forces
can be observed at each solid particle individually. We therefore derive underlying balance equations,
i.e., conservation of mass and momentum, with a constitutive equation for the Cauchy stress tensor.

2.1. Balance Equations for Single-Phase Fluid Flow

Suspensions consist of a carrier fluid with immersed solid particles. Using fully resolved
numerical simulations, hydromechanical forces are evaluated for both, the solid and the fluid
phase, individually. Taking into account solid–solid contact forces as well, a coupled formulation
of the momentum conservation including an extra part for solid–solid contact is used. Underlying
conservation equations are the balance of mass and the balance of momentum, i.e., the Navier–Stokes
equations for quasi-incompressible single-phase bulk fluid flow in local form

ρ̇f + ρf div vf = 0 , (2)

ρf v̇f = div T + ρf g , (3)

where ρf is the fluid density, vf is the flow velocity and ρf g are the body forces. T denotes the Cauchy
stress tensor which is split into an extra or non-equilibrium part and into a pressure or equilibrium
part T = Teq + Tneq. While the equilibrium part is given by

Teq = −p I, (4)

the non-equilibrium part of the stress tensor is referred to as viscous extra stress

Tneq = µf (grad vf + gradT vf) , (5)

assuming a divergence-free velocity field vf. This leads to the updated form of the balance of linear
momentum for a homogeneous quasi-incompressible fluid with constant dynamic viscosity µf

ρf v̇f = µf div(grad vf)− grad p + ρf g . (6)

Since the fluid phase is considered to be barotropic, the fluid pressure p can be computed as a
function of the fluid density ρf using an equation of state in form of Tait’s equation

p =
ρf0c2

γ

[(
ρf

ρf0

)γ

− 1

]
+ p0, (7)

where ρf0 is the initial fluid density, c the (numerical) speed of sound and p0 is a constant background
pressure to avoid negative pressures in the system. Moreover γ = 7 is a common choice for
quasi-incompressible flow [30,31].

2.2. Introduction to Motion of Solid Particles Immersed in a Fluid

When considering solid particles immersed in the fluid phase, underlying conservation equations
(Equations (2) and (3)) are also valid for the fluid–solid interaction. Since we consider a surface-coupled
approach, no mass exchange between bulk phases at solid–fluid interfaces exist (Figure 2). However,
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solid–solid interactions, i.e., contact forces between two solid particles are described by a repulsive
force approach [32]

Frep
ab = F0

τ e−τs

1− e−τs xab. (8)

This commonly used constitutive equation for solid–solid interactions computes a force acting
alongside the vector xab that connects the center of masses of solid bodies Pa and Pb. F0 denotes the
magnitude of the repulsive force (dependent on the considered boundary value problem), τ−1 sets
the active range of the force and s is the distance between the surfaces of solid bodies Pa and Pb.
The repulsive force Frep

ab is independent of the surrounding fluid and considered by an additional term
in the balance equation of linear momentum (Equation (6)) which therefore can be expressed by means
of a whole-domain formulation

ραv̇α = µα div(grad vα)− grad p + ραg + Frep (9)

with α = {s, f} for the solid and the fluid phase, respectively.

3. Numerical Modeling of Fluid Flow with Suspended Particles Using SPH

For the purpose of studying the effects of heterogeneous particles in a single-phase fluid,
we employ Direct Numerical Simulations (DNS). Our method of choice is Smoothed Particle
Hydrodynamics (SPH) [33,34] using an implementation that has previously been shown to accurately
reproduce effective hydraulic properties of porous media [35–37]. In particular, our implementation
incorporates the SPH scheme proposed in [20] together with the boundary conditions proposed
in [38]. It is implemented using the highly optimized Molecular Dynamics tool HOOMD-blue [21,22].
The implementation targets both CPU and GPU (cluster) computation and was verified for several
representative test cases performed on the supercomputers Hazel Hen (HLRS, Germany) and BinAC
(Tübingen, Germany) [23]. The use of SPH is motivated by the fact that we consider suspended solid
bodies of arbitrary form instead of spherical solid particles. The meshless nature of SPH renders
the discretization of this heterogeneous solid particles comparatively trivial. Moreover, the meshless
particle character gives the opportunity to handle interfaces between different phases, i.e., solid and
fluid bulk phases, and evaluate forces (contact forces) directly where they appear. Given the Lagrangian
nature of SPH, implying that nonlinear convective terms are not required to be modeled, SPH is rather
stable at finite Reynolds numbers. Therefore simulations up to Re = 1000 are feasible. Since a detailed
study of the numerical scheme is beyond the scope of this contribution, the reader is referred to [33,39]
for technical details concerning details of the implementation.

The numerical implementation and therefore discretization of introduced equations results in
four cases of SPH particle interaction, which will be dealt with further below: A. Fluid particle with
fluid particle, B. Fluid particle with a non-moving solid particle, C. fluid particle with a moving solid
particle and D. Moving solid particle with moving solid particle.

3.1. SPH for Single-Phase Fluid (Case A and B)

In SPH [40], the discretization of governing partial differential equations gives rise to a set of
interacting collocation points (referred to as SPH particles). At each unstructured integration point,
every field function f (x) can be represented by local interpolation using convolution with the Dirac
delta function

f (x) =
∫

Ω
f (x′) δ(x− x′)dv. (10)
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The Dirac delta function δ(x− x′) is replaced by a kernel function W with compact-support and
smoothing length h (Figure 1) leading to an approximation of the field function f (x)

f (x) ≈
∫

Ω
f (x′)W (x− x′, h)dv. (11)

Since SPH is a particle method, the kernel representation is converted into a spatial discretization
and therefore every field function transforms into a particle property fi = f (xi). At point Pi the
property fi is computed by summation over function values of all neighboring particles Pj with
particle volume Vj

fi =
N

∑
j

f j W (xi − xj, h)Vj . (12)

Figure 1. Representation of the kernel function W with compact support κh and dependent on particle
distance rij.

Moreover continuous differential operators can be discretized in the same way and hence
transform into viscous and pressure short-range interaction forces FV

ij and FP
ij, respectively.

Following this, the local force balance resulting from the discretization of the local balance of
momentum (Navier–Stokes Equation (6)) can be expressed as

miv̇i = FSPH
i = ∑

j
FV

ij −∑
j

FP
ij + FB

i . (13)

The shown discretization applies to discrete integration points xi, referred to as SPH particles Pi,
of mass mi and subject to the advection particle velocity vi. All forces acting on SPH particle Pi can
be considered as a combined force FSPH

i . This contains the volumetric force on a particle FB
i = mig as

well as the pairwise dissipative viscous interaction forces FV
ij and the pairwise conservative pressure

interaction forces FP
ij both acting between particle Pi and its nearest neighbor particles Pj. They are

discretized by [41]

FV
ij =



[
1

n2
i
+ 1

n2
j

]
2µiµj
µi+µj

vi−vj
rij

∂Wij
∂rij

if xj ∈ Ω f and ∀xi ∈ Ω f ,[
1

n2
i
+ 1

n2
j

]
2µiµ

∗
j

µi+µ∗j

vi−v∗j
rij

∂Wij
∂rij

if xj ∈ ΩP
G and ∀xi ∈ Ω f[

1
n2

i
+ 1

n2
j

]
µi

vi−v∗j
rij

∂Wij
∂rij

if xj ∈ ΩD
G and ∀xi ∈ Ω f

(14)

and

FP
ij =


[

pi
n2

i
+

pj

n2
j

]
∂Wij
∂rij

xi−xj
rij

if xj ∈ Ω f and ∀xi ∈ Ω f ,[
pi
n2

i
+

p∗j
n2

j

]
∂Wij
∂rij

xi−xj
rij

if xj ∈ ΩG and ∀xi ∈ Ω f .
(15)
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In Equations (14) and (15), the particle number density ni, which satisfies ni = 1/Vi, is used.
The effective viscosity is represented by the harmonic mean of two neighboring particles Pi and Pj,
while the pressure interaction forces, which approximate the pressure gradient, are calculated by
an antisymmetric gradient stencil to satisfy the conservation criterion FP

ij = − FP
ij. The equations

are evaluated for different cases in which the neighbor particle Pj either is a fluid particle (xj ∈ Ω f ,
case A) or ghost particle (xj ∈ ΩG, case B) and therefore part of a periodic boundary or part of a (solid)
Dirichlet boundary. For the latter case (xj ∈ ΩG), a replicated viscosity µ∗j , a fictitious particle velocity
v∗j (both Equation (14)) and a fictitious particle pressure p∗j (Equation (15)) is used to ensure no-slip
and no-penetration boundary conditions. Further details are again out of the scope of the presented
publication and can be found in [38,42,43].

3.2. SPH for Suspension Flow (Case C)

After introducing the discretization for single-phase fluid flow, the solid–fluid interactions (case
C) will be derived for the usage of SPH. Every solid particle Ps can be discretized by a rigid collection
of solid SPH particles with a no-slip and no-penetration boundary condition at all fluid–solid interfaces
Γfs (Figure 2).

Figure 2. Discretization of the fluid (blue) and solid (dark grey) phase using Smoothed Particle
Hydrodynamic (SPH) particles and occurring short-range particle interaction forces related to the four
introduced cases (A–D).

Doing so, earlier introduced particle forces (FB
i ) and short-range interaction forces (FV

i , FP
i ) can be

calculated for all solid SPH particles with fluid neighbors (see also blue arrows in Figure 3). Since solid
bodies are rigid, containing solid SPH particles Pi can not move independently. Therefore one can
examine a total force Fs (based on the balance of momentum in Equation (13)) and a total torque Ms

acting on every solid particle Ps arose by the surrounding fluid particles.

Fs = FSPH
i =

ns

∑
i

FV
i +

ns

∑
i

FP
i + FB

i (16)

and

Ms =
ns

∑
i

ri × FSPH
i . (17)
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Viscous and pressure interaction forces, FV
i and FP

i , respectively, are summed up for the amount
of containing SPH particles ns inside a solid body and ri = xi − xM is the distance of each solid SPH
particle to the body’s center of mass (see Figure 3). Using the moment of inertia JM of a solid body

JM =
∫

M
[(x̄ · x̄)I− (x̄⊗ x̄)] dm (18)

= Jij ei ⊗ ej =
[
(x̄2

1 + x̄2
2 + x̄2

3) δij − x̄i x̄j

]
mi ei ⊗ ej (19)

where the translational and angular acceleration (v̇a, ω̇a) and velocity (ṽa, ω̃a) of a solid particle Ps
a

can be calculated by

v̇a = Fa
s/ma , ṽa = v̇a ∆ t , (20)

ω̇a = (Ja
M)−1 ·Ma

s , ω̃a = ω̇a ∆ t , (21)

and finally the total velocity vi of each SPH particle Pi of the solid body can be updated to

vi = ṽa + ω̃a × ri . (22)

The implementation generally provides no-slip and no-penetration boundary conditions at all
fluid–solid interfaces Γfs. Thus fluid velocity components (vf = 0) as well as the relative velocity
between solid and fluid phase states to be zero (vf = vs) on Γfs.

Figure 3. Forces acting on solid body Ps and resulting force Fs and moment Ms.

3.3. Solid–Solid Interactions in SPH (Case D)

While simulating solid particles immersed in a fluid, also solid bodies Ps
a and Ps

b will interact with
each other. To regard this, an additional term was included into the momentum balance Equation (9).
The repulsive force is discretized as presented in Equation (8) taking into account xab = (xb − xa)/xab.
Based on that, the discrete balance of momentum (Equation (13)) is updated to

miv̇i = FSPH
i = ∑

j
FV

ij −∑
j

FP
ij + FB

i + Frep
ab . (23)

Moreover the computation of the total force Fs is extended by the addition term of the repulsive force

Fs = FSPH
i =

ns

∑
i

FV
i +

ns

∑
i

FP
i + FB

i + ∑
a 6=b

Frep
ab , (24)
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while the calculation of the total torque Ms remains the same as in Equation (17).

4. Validation of Flow with Suspended Particles

4.1. Details of the Implementation

As already mentioned, the presented SPH approach is implemented using the HOOMD-blue [21,22]
library where packages like particle initiation and neighbor search algorithms were efficiently implemented.

The implementation was validated and underwent a scalability study for a variety of
representative test cases for single phase flow in porous media running on massive parallel CPU-
and GPU-clusters [23]. Figure 4 shows the workflow of the SPH implementation in HOOMD-blue.
After initiating the system, the implementation starts with generating neighbor lists using a cell list
algorithm. Afterwards, the implemented SPH scheme computes values for the kernel, density rates,
pressure and finally acceleration for each SPH particle. All here presented simulations use a fourth
order Wendland kernel representation with compact support κh = 3.4 dx [44], where dx is the initial
particle distance. The model introduced in Section 3 and underlying equations (Equations (13) and
(23)) are evaluated in the force computation step, i.e., by computing the acceleration of each SPH
particle. To update particle properties, a Velocity Verlet algorithm [45] is used for time integration,
since it has been employed in particle methods before and exhibits good stability properties. The time
step size ∆t is limited by stability conditions shown in Equation (25) (following Morris [20]) to ensure
stable time integration in the presence of pressure waves, viscous diffusion fronts or gravity waves.
The index i for the max and min operators apply to all containing fluid SPH particles.

∆t ≤ min

{
0.25h

maxici
,

h2miniρ0,i

8maxiµi
,

√
h

16 ‖ FB
i ‖

}
(25)

Figure 4. Workflow of SPH implementation. Blue background indicates own implementation within
the HOOMD-blue library [23].

4.2. Validation of Immersed Particle Flow

While simulating suspended solid particles, objects move translational and rotational.
As presented in the work of Jeffery [9], non-spherical objects with a rotational symmetry, which are
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immersed in a fluid under shear flow, perform rotational motion around the axis perpendicular to the
shear direction. This movement is periodic and therefore Jeffery derived the tumbling rate ϕ̇ as well
as the period of rotation T. Following Mueller et al. [29], who gives a good overview of the derived
equations and the rheology of suspended solid particles, one can reduce any rotational symmetric
body to an equivalent spheroid with an aspect ratio of the rotaional half-axis la to the perpendicular
half-axis lb that can be calculated by re = la/lb (originally showed by Brenner [46]). Using this, Jeffery’s
orbit can be computed by

ϕ̇ = γ̇
1

r2
e + 1

(r2
e cos2 ϕ + sin2 ϕ), (26)

and the related period of rotation by

T =
2π

γ̇
(re +

1
re
), (27)

where ϕ ∈ {0, 2π} is the vorticity (orientation) of the particle and γ̇ is the shear rate.
This benchmark should be the basis of the validation of the presented SPH approach for suspended

objects. In contrast to Jeffery’s original assumption, we choose a small but finite Reynolds number in
our numerical simulation, cf. Table 1. Simulations for moderate Reynolds numbers are still rare but
show the predictive power of Direct Numerical Simulations even for single non-spherical particles
immersed in a fluid. We simulate three different spheroids under shear flow. The initial particle
orientation is described by angles θ and ϕ. θ is the angle between the a-axis and the ey-axis and ϕ is
the angle between the plane containing the a-axis and the ey-axis and the plane that contains the ey-
and ez-axis as it is shown in Figure 5.

Figure 5. Sketch of validation test case with definition of half-axis and rotation angles as presented by
Mueller [29].

Details of the simulation input as the aspect ratio, initial orientation (θ0, ϕ0) and Reynolds
number (Re) are listed in Table 1. The three investigated cases (also shown in Figure 6) present both,
oblate (re < 1) and prolate (re > 1) spheroids with initial states of the a-axis in ey-direction (θ0 = 0)
and ez-direction (θ0 = π/2). Simulations are performed with an initial shear rate of γ̇ = 0.2 s−1 due
to motion of upper and lower wall particles with a constant velocity vx,0 = 0.001 m/s. We choose
a discretization of 50 fluid SPH particles over the height h = 0.01 m. This leads to a discretization
between 10 and 15 particles over the a-axis of the spheroid and approximately 190,000 SPH particles.
Initial density was chosen to ρf0 = 1000 kg/m3 and initial viscosity is computed as a function of the
Reynolds number by µf = ρf0 vx,0 h/Re.

Simulation results are analyzed in terms of motion, especially rotation, around the ey-axis. Jeffery’s
approach [9] (resumed by Mueller [29]) from Equations (26) and (27) considers spheroids as in case c.
Thus, the rotation of the spheroid over its angular velocity is plotted in Figure 7. As displayed there,
the measurement of the rotation in our simulation starts at a point with an angle of ϕ = π/2 and then
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rotates towards ϕ = 0 which equals ϕ = 2 π. After that, the particle continues to rotate to an angle of
ϕ = π. Even in one single period, the simulation results are in good agreement with the theoretical
solution. Differences, especially in the first quarter of rotation (0 < ϕ < π), are expected with regard to
transient, i.e., instationary phenomena, and due to the fact that the solid particle does not only rotate
but also moves translatoric due to solid–fluid interaction at the beginning of the process. Moreover,
considering the factor of time (indicated by black arrows), the simulation starts at ϕ = π/2 and the
particle is accelerated first until it reaches the theoretically rotation velocity.

Table 1. Summary of parameters of spheroids for the three different simulation scenarios.

re Re θ0 ϕ0

a 0.2 10.0 0 undefined
b 5.0 10.0 0 undefined
c 0.3 1.0 π/2 0

ey

ex

ez

(a) Case a

ey

ex

ez

(b) Case b

ey

ex

ez

(c) Case c
Figure 6. Initial configurations and rotation axis and direction of the three considered cases (a–c).

0.0 0.5 1.0 1.5 2.0
particle orientation [ ]

0.0

1.0

2.0

3.0

4.0

5.0

6.0

a
n

g
u

la
r 

ve
lo

ci
ty

 
[T
/2

]

Jeffery (re=0.3)

SPH (re=0.3)

Figure 7. Normalized angular velocity ϕ̇ over rotation angle ϕ. Comparison of SPH results (simulation
c) with analytical solution by Jeffery [9] for re = 0.3. Black arrows additionally show the parameter of
time from the start of the simulation at t0 to the end tn.

For cases a and b we observe a rotational motion as well (see Figure 8). Since Jeffery’s approach
does not map particle rotation, when the rotation axis of the object is perpendicular to the shear
direction (θ = 0), a different representation of the rotation was used. Thus, the evolution of the
coordinate in ez-direction (z) of a surface point normalized by the channel height h was plotted over
the time t. As solid particles were not placed right in the center of the channel, the particles move
translatoric as well. Figure 8 shows not only the (harmonic) motion of the material point at the surface
of the particle, but also the (subtracted) translatoric motion of the center of mass. It could be clearly
observed, that there is a stable periodic motion for spheroids with different aspect ratios where the
initial state sets the a-axis parallel to the ey-axis (θ = 0). In addition to (stationary) Jeffery orbits,
the numerical simulations predict also transient effects if moderate Reynolds number have been
chosen and the reference configuration of the center of mass of the immersed particle is not in the
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vertical symmetry plane.

0 50 100 150
t [s]

0.04

0.02

0.00

0.02

0.04

0.06
z/

h
surface point (re = 0.2)
center of mass (re = 0.2)

0 25 50 75 100 125
t [s]

0.2

0.0

0.2

0.4

z/
h

surface point (re = 5.0)
center of mass (re = 5.0)

Figure 8. Motion of ez-coordinate over time t for two different aspect ratios (case a: re = 0.2, case b:
re = 5.0).

Additionally, simulations with initial states where the a-axis of the spheroid is aligned to the
ex-axis were performed using as well a Reynolds number Re = 10. Again, we therefore expect an
influence regarding to inertia effects. Indeed, the solid particle stays in the centerline region and does
not perform any rotation (see Figure 9). This confirms the effect of shear induced particle migration
where particles tend to move to regions with lower shear rates [6,7].

ey

ex

ez

Figure 9. 3-dimensional view of the simulation results showing streamlines of the velocity vx in the
channel. Prolate spheroid is aligned with ex-axis and does not perform any rotation for a Reynolds
number of Re = 10.

Aim of this section was to show first numerical results which are comparable to low-Reynolds
number solutions validating the proposed numerical model. Due to the finite size of the computational
domain, the chosen finite Reynolds number and the restricted computational time, we could not expect
to get limit values of Jeffery. Nevertheless, we show a good agreement with Jeffery’s solution for the
simulation with the lowest Reynolds number (Re = 1, case c). A detailed investigation of the Reynolds
number-dependent motion of particles would be computationally challenging for Re < 1 regarding to
the explicit nature of the presented SPH code.

5. Numerical Analysis of Solid Particles Immersed in a Fluid

The presented model is used to perform 3-dimensional, fully resolved Direct Numerical
Simulations of a boundary value problem (BVP) of fluid flow containing various solid particles
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in a channel as shown in Figure 10. The scope of this contribution is the presentation and discussion of
the chosen constitutive equation for particle-particle interactions and the related motion of a particle
immersed in a fluid as well as its implemementation in SPH.

In order to investigate the effect of particle-particle interactions, we discuss the near-field solution
of solid particles, e.g., of the velocity field of the fluid phase, and discuss the influence of the shape of
particles as well as of the presence of other particles (with and without contact). The investigated
BVPs present examples for a first numerical analysis of hydromechanical forces and contact forces.
i.e., how does fluid flow and solid–solid contact influence the particle motion and vice versa.

Figure 10. Sketch of simulated boundary value problem (BVP) of shear induced suspension flow in
a channel of height h in ez-direction. The simulation domain contains periodic boundary conditions
in direction of ex and ey. Upper and lower wall particles are moved with a constant velocity vx =

0.005 m/s corresponding to an input shear rate of γ̇ = 2|vw|/h = 0.5 s−1.

The simulation domain consists of the fluid sub-domain which is periodic in ex- and ey-direction.
It is limited by solid particle layers (walls) in direction of ez. The channel has a height h = 0.02 m
which is chosen to be the characteristic reference length Lref. We select a fourth order Wendland
kernel representation with a resolution of 60 particles over the channel height. Thus, this results in
an initial particle distance dx = Lref/60. In our numerical investigations, wall particles are moving
with a constant velocity vx = 0.005 m/s such that the Reynolds numbers stay constant as Re = 100.
Initial viscosity of the fluid phase is chosen to be µf = 0.001 Pa/ s. The initial density of the fluid is
ρf0 = 1000 kg/m3.

Since we are interested in investigating the flow behavior dependent on a small number of
immersed and interacting particles, we perform simulations with various numbers of solid aggregates
(two or four solid bodies) as well as with various aggregate forms (spherical and ellipsoidal).
As presented in Table 2, diameters vary between 0.05 Lref and 0.20 Lref (corresponding to a number of
200–800 solid SPH particles per solid particle).

Table 2. Summary of parameters of solid aggregates for the four different simulation scenarios.
Spherical solids are defined by their radius r while ellipsoidal solids are defined by their half-axes a,
b and c (dimension in ex-, ey- and ez-direction, respectively).

Simulation with Parameter of Aggregates [mm]

2 spherical solids r = 3.0 r = 4.0

2 elliptical solids a = 3.0 b = 2.0 c = 1.0 a = 2.2 b = 4.0 c = 3.0

4 spherical solids r = 2.6 r = 2.6 r = 3.0 r = 3.0

4 elliptical solids a = 2.0 b = 1.0 c = 3.0 a = 3.0 b = 4.0 c = 2.0 a = 3.0 b = 2.0 c = 1.0 a = 2.0 b = 1.0 c = 3.8
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6. Discussion of Relevant Model Parameters

The simulation results are analyzed in terms of resulting (steady state) velocities and motion of
the solid bodies. Additional to a whole domain analysis, we consider fluid flow around solid bodies
more closely and discuss influence of hydromechanical forces and contact forces.

Figure 11 presents the resulting velocity in ex-direction over coordinate ez for the shear induced
flow of a suspension. The simulation results in general show a good agreement with the analytical
solution for the steady state of simple shear flow of a single phase fluid (dashed black line). Since the
analytical solution represents the flow of a fully Newtonian fluid, the best approximation is given in
the simulation without solid bodies (red line). Simulations containing solid bodies exhibit a plateau of
zero velocity in the centerline region of the simulation domain due to the there accumulated solid
aggregates. Simulation results show that the numerical model is capable of reproducing the effect of
shear wall migration, where solid aggregates move to regions with lower shear rates [6,7].

Figure 11. Resulting profile of velocity in ex-direction over coordinate ez for spherical solids (left)
and ellipsoidal solids (right). While the black line represents the analytical solution for simple shear
flow of a Newtonian fluid, the red line represents the mean velocity of a simulation of shear flow
without solid aggregates (only fluid). Colored markers and and the same colored line represent SPH
particle velocities and mean particle velocity, respectively. Investigated cases are shear flow with two
spherical (pink, top left), two ellipsoidal (brown, top right), four spherical (blue, bottom left) and four
ellipsoidal (green, bottom right) solid bodies.

For an better overview, results of spheres and ellipsoids are considered in seperate plots (Figure 11
left and right respectively). Nevertheless, comparing both sides, it can be observed that the region
of zero velocity remains to be wider for spherical aggregates compared to ellipsoidal aggregates.
From our point of view, one reason for that is the form of the solid aggregates. While the spherical
particles rotate and move due to shear induced flow, even when they already reached the centerline
zone, ellispoidal particles move to the centerline wihle rotating until their longest half axis is parallel
to the ex-axis and then stay in this mode (as discussed in Section 4).

Additionally, to the flow velocity, the motion of the center of mass (COM) of solid bodies is
considered and analyzed. In Figure 12 we compare the motion of the COM for simulations with two
solid aggregates and with four solid aggregates (spherical vs. ellipsoidal) where the initial position
remains the same and only the form changes. Simulations are performed until suspensions are almost
in a stationary regime (approx. 20 s), while simulations without solid particles reach a steady state
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much faster. We observe an oscillation around the centerline region (z = 0) in the motion of all solids
until they arrange themselves in this line. The motion is influenced by inertia as well as contact forces.
Due to that, spherical particles (straight line) move to the centerline region and and then move with
the fluid without oscillating, since their profile presents more resistance than the ellipsoidal profile.
Thus, ellipsoidal particles move while rotating to the position with smallest drag. Nevertheless the
results show that even with only a small number of solid bodies effects like shear-induced particle
migration (as observed in experiments [47]) become visible. The fully resolved SPH simulations of this
simple application examples are used to reproduce and investigate phenomena like de-mixing and
migration processes. Nevertheless we do not aim to perform a full analysis of the flow regimes as for
example done by Vázquez-Quesada et al. [24,25].

Figure 12. Motion of the center of masses over time for simulations containing two and four solid
particles. Solid and dashed lines represent spherical particles and non-spherical particles, respectively.

Even in systems with a low number of solid bodies, particle collisions occur. However,
the influence of solid–solid contact is attenuated by hydromechanical forces in lubrication layers
between the solid particles. Since in SPH a small layer of fluid SPH particles is mostly available
between solid particles, a direct particle-particle contact does not occur. This was the main reason
for choosing a repulsive force model, where the contact force scales with the distance. Therefore,
an influence of hydromechanical forces during the simulation containing four ellipsoidal particles and
the influence of contact forces during the simulation containing four spherical solids is analyzed.

Figures 13 and 14 show streamlines of the velocity in ex-direction (vx) in the ey-ez-plane and, for a
better visualization, as a perspective view, respectively. Induced by surface coupled hydromechanical
forces, fluid motion causes motion and rotation of solid particles until they are aligned in the centerline
region and their main (largest) axis is aligned to the ex-axis. Using moderate Reynolds numbers
(Re = 100), also chaotic motion including vortex formation takes place. In this example, no direct
contact between solid aggregates occur. However, motion of the non-spherical particles influence the
fluid flow as well, since they stay in the center with zero velocity and therefore slow down fluid flow
different to flow without or with spherical bodies (compare as well Figure 11).

Additional to hydromechanical forces, simulations with four spherical aggregates show the
impact of contact between two solid particles. In Figure 15 the beginning of motion, induced by
hydromechanical forces is shown. A subsequent motion towards each other, as arrows at time step
t = 1.28 s and t = 1.54 s can be observed. Following this, the first contact takes place at time t = 1.91 s.
Comparing this and the next time step (t = 1.97 s), one can observe the change in the flow field in
the vicinity of the particles. This occurs for example at the left side of the left particle and at the
lower right side of the right particle, where velocity trajectories turn in opposite directions after the
contact. Nevertheless, the contact force is not high enough to separate solid bodies as they stay close
to each other during the following time steps until there is a second contact recognized at t = 2.60 s.
Again velocity trajectories react due to the solid body motion and change their direction (t = 2.70 s).
Finally hydrodynamical forces enforce fluid flow around both bodies as a unit and not forming
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recirculation zones between and separating them as observed in Figure 13. From our point of view
this is a result of the difference in the form of the solid particles, since at least in this simulation with
bi-disperse spherical particles, they stay closer together than ellipsoidal particles, where due to larger
aspect ratios and related flow profile, vortexes form much faster.

Figure 13. Streamlines of the velocity vx-direction at various time steps considering the ex-ex-plane for
simulation containing four ellipsoidal solid particles.

Figure 14. 3-dimensional view of streamlines at timestep t = 8.5 s.
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Figure 15. Velocity trajectories of vx for the evolution of contact between two solid particles over time
(top left to bottom right). Contact occurs at t = 1.91 s and again at t = 2.60 s. Due to hydromechanical
and hydrodynamical forces, particles stay close to each other even after contact.

7. Conclusions

The current contribution presents a mesh-less Lagrangian approach aiming for Direct Numerical
Simulations of the motion of immersed solid particles (grains) in a Newtonian carrier fluid. Underlying
conservation equations for linear momentum of single phase flow were derived and a contact force
was included into the model. In contrast to established DEM-CFD models, the fluid–solid momentum
exchange is captured via interfacial forces between the solid and the fluid SPH particles. The model
was implemented in an explicit quasi-incompressible SPH scheme and validated in terms of periodic
motion of single non-spherical solid particles in shear flow at moderate Reynolds numbers. Boundary
value problems of spherical and ellipsoidal solid particles were investigated. Resulting velocity
profiles of dominating velocity vx have been analyzed and compared with each other and, additionally,
with solutions of single-phase fluid flow. The numerical results predict that flow with immersed
solid particles differs to single-phase fluid flow mainly in the centerline region (z = 0) where the flow
velocity is zero. Due to hydromechanical forces the aggregated particles are accelerated and migrate to
this region where they stick. A detailed analysis of the flow field in the vicinity of solid particles shows,
that dependent on the aggregates form, vortexes form between the aggregates influencing further
motion, while ellipsoids promote the formation and spherical particles tend to build formations so
that no vortexes occur in between.

Concentrating on microhydrodynamical effects, we simulate only a small number of immersed
particles. Well known effects, like the movement of solid aggregates towards regions with
lower shear rates, reported by Chun [6] and Shauly [7] as well as general shear-induced particle
migration, as reported by Husband [47], are reproduced. However, the number of solid particles
is to small to investigate larger scale phenomena phenomena like de-mixing as observed in [3].
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Therefore future investigations will include simulations with more solid particles to analyze these
effects in further detail.

To come closer to technical applications, like for example concrete pumping processes, we will
investigate larger-scale BVPs, where fluid-flow is induced by a volumetrical force corresponding to
a pressure difference. Interesting details are the migration of particles dependent on their form and
size as observed by Fataei et al. [8] as well as the evolution of flow profiles dependent on the volume
fraction of solid aggregates as discussed by Ivanova et al. [48]. Ongoing research moreover includes
the implementation of a lubrication correction to stabilize the model by correcting hydro-dynamic
forces acting between two solid particles as proposed by Vazquez-Quesada and Bians [4,5].
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