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Abstract: This study proposes a new damage identification method based on topology optimization,
combined with visualized ultrasonic wave propagation. Although a moving diagram of traveling
waves aids in damage detection, it is difficult to acquire quantitative information about the damage,
for which topology optimization is suitable. In this approach, a damage parameter, varying Young’s
modulus, represents the state of the damage in a finite element model. The feature of ultrasonic
wave propagation (e.g., the maximum amplitude map in this study) is inversely reproduced in the
model by optimizing the distribution of the damage parameters. The actual state of the damage was
successfully estimated with high accuracy in numerical examples. The sensitivity of the objective
function, as well as the appropriate penalization exponent for Young’s modulus, was discussed.
Moreover, the proposed method was applied to experimentally measured wave propagation in an
aluminum plate with an artificial crack, and the estimated damage state and the sensitivity of the
objective function had the same tendency as the numerical example. These results demonstrate the
feasibility of the proposed method.

Keywords: non-destructive inspection; damage identification; topology optimization; ultrasonic wave
propagation; ultrasonic visualization

1. Introduction

Quantitative non-destructive inspection is important to ensure the reliability and safety of
structures such as aircraft and automobiles [1]. Among the non-destructive inspection techniques,
ultrasonic inspection has been widely used because ultrasonic waves are highly sensitive to a damaged
part and propagate over long distances. The importance of quantitative ultrasonic inspection has been
described for more than 30 years [2].

To undertake quantitative evaluation by ultrasonic inspection, it is essential to develop both the
measurement techniques and data analyses. In general, ultrasonic signals contain reflected waves,
diffracted waves, and mode-converted waves, and some kinds of ultrasonic waves such as Lamb waves
and Love waves have dispersive nature [3–5], which makes ultrasonic waveforms challenging to interpret.
Consequently, evaluation of the damage is dependent on the skills of engineers, making misreading
signals and false recognition of defects inevitable. Furthermore, the conventional ultrasonic inspection
process is not automated; thus, the inspections require a lot of time and labor to scan the whole
structure. Numerous studies [4,6–13] have been reported about new techniques and data analyses to
overcome these difficulties. For example, ultrasonic arrays [6] have improved the inspection quality
and have reduced the inspection costs by performing beam steering with a wide viewing angle
through controlled transmission of multiple elements. Acoustic emission detection using a fiber-optic
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sensor and mode analysis [7–9] has also been developed to achieve a quantitative evaluation of the
damage in composite laminates. The wavelet-transform has frequently been incorporated with the
signal processing to analyze dispersive waves [4,10,11]. Furthermore, some inverse analyses [4,12,13]
have been presented to estimate the damage quantitatively using the artificial neural network and
genetic algorithm.

Aiming at further damage visibility and operability, a visualization method of ultrasonic wave
propagation [14–29] has been developed. In this method, ultrasonic waves are generated by illuminating
a specimen surface with a pulsed laser and are received by a fixed transducer [14]. Based on the
reciprocity of wave propagation [15], the amplitude of each waveform at a particular time plotted in a
contour map yields a moving diagram of the wave propagation from the receiver. The feasibility of this
method was demonstrated by applying it to a crack and an artificial hollow in metallic materials [15],
delamination in carbon fiber reinforced plastic (CFRP) laminates [16–20], a crack in welded steel
plates [21], and disbonds in adhesively bonded CFRP/aluminum joints [22]. Frequency and/or
wavenumber domain analysis using the Fourier- or wavelet-transform was introduced into ultrasonic
propagation imaging to easily interpret the visualized results of wave propagation by isolating a
specific frequency mode [23–25]. Moreover, a fully non-contact ultrasonic inspection [26–28] was
demonstrated by replacing a fixed transducer with a laser Doppler vibrometer, and this method
removed ringing due to the resonance of the piezoelectric transducer and made it easy to interpret
scattered waves [28].

Although the visualization method of ultrasonic propagation has high damage visibility and
excellent operability, it is difficult to evaluate the damage quantitatively. An efficient automatic
ultrasonic image analysis has been presented using deep learning [29], but at the moment, the main
target of this method is automated damage detection, not quantitative evaluation. A moving diagram
of wave propagation includes wave signals at all illuminating points. Therefore, appropriate analysis
for all wave signals will have the potential to acquire quantitative information about the damage.

Topology optimization [30] will be suitable for that purpose, but to our knowledge, there are few
studies that apply it to damage identification. In topology optimization for structural design [31–33],
a design domain is discretized by finite elements, and the material density distribution is assigned
as design variables. Similarly, in damage identification problems, the damage severity is the design
variable instead of the material density, and the damage distribution is inversely estimated by
reproducing an input phenomenon of focus. Based on this idea, Lee et al. [34] demonstrated numerical
examples for estimating damage in thin plates and beam models, taking resonant and anti-resonant
frequencies as an objective function. Some numerical examples that focused on natural frequencies
were also reported [35–37]. Niemann et al. [38–40] estimated the approximate location of the damage
in CFRP laminates after impact tests. However, this damage identification focusing on frequency
characteristics was not very accurate. The reason for this is the fact that frequency characteristics are
not sufficiently sensitive to damage.

This study proposes a damage identification method using the visualization technique of ultrasonic
wave propagation. To this end, we incorporate topology optimization with a moving diagram of wave
propagation, having high sensitivity to damage. The feature of wave propagation is reproduced in the
analytical model by optimizing the distribution of the damage parameters. As a result, quantitative
information about the damage is estimated. This study is the first attempt to integrate the inverse
analysis based on topology optimization with the ultrasonic imaging inspection. The method is first
proposed, and its feasibility is then verified using a two-dimensional case of known damage location
and size.
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2. Damage Identification Procedure

2.1. Concept of Damage Identification

Figure 1 presents the sequential process flow of the proposed damage identification method.
The proposed method estimates the damage distribution that reproduces a moving diagram of ultrasonic
wave propagation through the following steps. (1) Ultrasonic imaging inspection is conducted, and an
ultrasonic feature in the moving diagram is adopted as target data. A potential damaged site is extracted
from an extensive inspection area as the design domain. (2) An analysis model of the extracted domain is
discretized into finite elements, and the initial damage parameter is assigned to each element. (3) Finite
element analysis of ultrasonic propagation is performed, and the ultrasonic feature is evaluated at the
present damage distribution. (4) The error between the estimated ultrasonic feature and the target
data is calculated. Then, (5) the correct number of damage parameters is explored by mathematical
programming. (6) The damage parameters are updated, and the process is repeated from step (3) until
convergence. As a result, the position, size, and shape of damage are obtained on a per-element basis.
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Figure 1. The conceptual flowchart of damage identification based on topology optimization.

2.2. Setup of Optimization Problem

The design domain D is discretized into finite elements, and the damage parameter di is assigned
to element i:

di =

{
0
1

for i ∈ Ωd
for i ∈ D\Ωd

damage
no damage

(1)

where Ωd is the damaged domain, and D\Ωd is the intact domain. The solid isotropic material with
penalization (SIMP) method [31] is used to relax the damage parameter, and a continuous value from
0 to 1 represents the severity of the damage. With this setting, the damage identification problem is
translated into a distribution problem of the damage parameter in the design domain D.
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The Young’s modulus of element i is expressed as a function of the damage parameter di as:

Ei(di) = (E1 − E0)di
p + E0, (2)

where E1 and E0 are Young’s modulus of a solid (i.e., perfectly intact) and in a void (i.e., perfectly
damaged), and p is the penalization exponent for intermediate damage. Although E0 is initially zero,
elimination of an element (i.e., modification of the model) is cumbersome in the optimization process;
therefore, a small stiffness (E0 = 0.001 MPa) is assigned to perfectly damaged elements.

The topology optimization problem is defined as the minimization of the square error between
the estimated ultrasonic feature and the target data as follows:

min
d

f (d) =
m∑

j=1

(
U j(d) −U j,target

)2
subject to 0 ≤ di ≤ 1 for i = 1, · · · , n (3)

where U j(d) is the analytically obtained ultrasonic feature at node j with the present damage state
d, U j,target is the ultrasonic feature of target data at an illuminating point, and m and n are the total
number of nodes and elements in the design domain D. The ultrasonic feature in the objective function
should be selected appropriately, depending on the problem. Although a few studies [38–40] used
the summation of damage parameters as a constraint condition, no constraint conditions other than
Equation (3) provided better results in the preliminary investigation.

3. Numerical Examples

To verify the feasibility of the proposed method, this section applies it to numerical examples
with known damage. The target data ultrasonic feature U j,target in Equation (3) is obtained by forward
analysis of ultrasonic wave propagation in a target model. To simplify the problem, a penetrating crack
in a metal plate is considered here, and all the analyses are two-dimensional.

3.1. Numerical Models

Figure 2a shows the analysis model. The target plate model was 100 × 100 mm, and a penetrating
crack 6 mm long and 1 mm wide was introduced at the center. Four-node quadrilateral solid (plane-stress)
elements were used, and the size of each element was 1 × 1 mm. There were 10,000 elements and
10,201 nodes. The crack was expressed as damaged elements with a small Young’s modulus E0.
Five period-sinusoidal wave loads multiplied by the Hanning window function were applied to all
nodes on the lower surface; their amplitude and frequency were 1 N and 1 MHz. A non-reflective
boundary condition [41] that removes one reflection was set on the upper, left, and right surfaces.
The material was assumed to be stainless steel, and its Young’s modulus, Poisson’s ratio, and density
were 186.6 GPa, 0.306, and 7.86 g/cm3, respectively.

Figure 3 depicts the analyzed ultrasonic wave propagation. The ultrasounds propagated from the
bottom to the top and were diffracted and scattered at the crack. The waves propagating from the
bottom corners were reflected waves. Figure 3b shows the distribution of the maximum amplitude of
the mean stress. The maximum amplitude had a characteristic distribution near the crack (e.g., high in
the lower area and low in the upper area to the actual crack). Therefore, the crack will be reproduced
by focusing on the maximum amplitude distribution.

The inverse analysis model (i.e., design domain D) was a 10× 10 mm domain (including 100 elements
and 121 nodes), which was extracted from the center of the target model, as illustrated in Figure 2b.
Topology optimization defines the same number of design variables as elements in the design domain.
Therefore, the size of the inverse analysis model and the calculation cost are in a trade-off relationship.
Input loads, similar to those in the forward analysis, were applied to the lower surface of the inverse
analysis model. A non-reflective boundary condition [41] was set on the upper, left, and right surfaces.
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3.2. Damage Identification for Numerical Results

The maximum amplitude of the mean stress was adopted as the ultrasonic feature in the objective
function. Thus, the optimization problem is defined as follows:

min
d

f (d) =
m∑

j=1

(
σ j,max(d) − σ j,max,target

)2
subject to 0 ≤ di ≤ 1 for i = 1, · · · , n (4)
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where σ j,max(d) is the maximum amplitude of the mean stress estimated at node j with the present
damage state d, and σ j,max,target is that of the target data at node j obtained by forward analysis
(Figure 3b right) in this section. A constant value of the damage parameter, dini, was initially assigned to
all the elements, and ten inverse analyses were performed using dini from 0.1 to 1.0, with an increment
of 0.1. The penalization exponent p of 3 was used as in previous studies [31,34–36,38]. Sequential
quadratic programming in the MATLAB Optimization Toolbox (R2019a, MathWorks, Inc, Natick, MA,
USA) was used for exploration and updating of the damage parameters. The gradient of the objective
function was calculated by the finite-difference method.

Figure 4a depicts typical damage distributions estimated by the proposed method. The estimated
damage parameters of the elements in the actual damaged domain (T) were smaller than that of most
elements in the actual intact domain (D\T) in all of the ten cases of the initial damage parameter dini

distribution. This result suggests that the damage in the target can be estimated by the proposed
method; however, the estimated damage states were different depending on the initial damage
parameter dini in the upper area of D\T. Moreover, for example, in the case of dini = 0.5, the damage
parameters smaller than its maximum in T (0.2016) were estimated in nine elements in D\T, which were
erroneously determined to be damaged. Such elements were concentrated in the upper region of D.
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The reason for this false identification is caused by the low sensitivity of the objective function in
the area above the crack. The objective function was evaluated at various damage states depicted in
Figure 5a. Damaged elements were added to the lower area of D\T in #1–#5 and to the upper area in
#7–#10. Figure 5b presents the value of the objective function obtained by forward analysis in these
damage states. The gradient of the objective function within #6–#10 was smaller than that within #1–#6.
Moreover, the maximum amplitude in the area above the actual crack was smaller than that in the
other areas, as shown in Figure 3b, because the diffracted ultrasonic waves propagated with a small
amplitude above the crack as a result of the high directivity of ultrasound. Therefore, the maximum
amplitude hardly changed in the area above the actual crack even if the damage state in that area was
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altered. Consequently, the damage identification results depended on the relationship between the
crack geometry and the direction of ultrasonic wave propagation, and it was difficult to estimate the
right damage state in the area above the crack with the objective function (4).Materials 2020, 13, 33 7 of 14 
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To improve the sensitivity of the objective function, the wave propagation from the top to bottom
(superscript: upper) was considered in addition to that from the bottom to the top (superscript: lower);
thus the optimization problem is re-defined as follows:

min
d

f (d) =
m∑

j=1

(
σlower

j,max(d) − σ
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(
σ
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upper
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(5)

In ultrasonic visualization experiments, ultrasonic propagation data from two directions can easily
be recorded.

Figure 4b depicts the estimated damage states based on Equation (5). The damage parameter
in D\T was always greater than its maximum in T, and thus, the actual damage T was successfully
identified. However, the difference of the damage parameter in T and in D\T was small, and this
issue will be discussed in the following section. The sensitivity of the objective function was high in
both the upper and lower areas of the target crack, as shown in Figure 5c. Thus, when the sensitivity
was enhanced in the entire design domain, the proposed method provided the damage identification
results closer to the target damage state.

The above results and discussion demonstrate the feasibility of the proposed method. This study
used the maximum amplitude distribution as the ultrasonic feature, and two sets of ultrasonic
propagation data were required in the objective function to enhance its sensitivity. However, considering
the cost of inspection, it is recommended to estimate damage using a single set of wave propagation data.
To that end, the objective function should be improved and will be investigated in our future study.

3.3. Effect of the Penalization Exponent

The penalization exponent p in Equation (2) has been discussed in previous studies, because the
relaxation of the design variables yields an intermediate density called a gray-scale element,
which cannot be interpreted physically in structural design problems. To clarify the physical meaning
of the gray-scale element, Bendsøe et al. [42] discussed the range of p based on Hashin-Shtrikman (HS)
bounds [43] and proved that the SIMP method is physically permissible as long as p is greater than a
certain value (e.g., p ≥ 3 for two-dimensional problems with Poisson’s ratio of 1/3). In previous studies
of damage identification based on topology optimization, Nishizu and Neumann et al. [35,38–40] set
p = 3, Reumers et al. [36] set p = 1, and Eslami et al. [37] changed p gradually from 3 to 1. An element
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(i.e., microscopic area) will have various Young’s modulus depending on the severity of the damage.
Therefore, unlike structural design problems, the intermediate damage parameters are acceptable in
the damage identification problem. Instead, it is essential to set a threshold to distinguish a damaged
from an intact region.

Damage identification using various penalty exponents and the HS upper bound was performed.
Here, the problem is defined by Equation (5) and Figure 2; the initial value of the damage parameter,
dini, was 0.5 in all the cases. Figure 6a depicts the estimated damage states, and Figure 6b shows a
variation of Young’s modulus normalized by E1. The inverse analysis did not converge when p was
less than 0.5 or greater than 3. In all converged results, the maximum value of the damage parameter
in T was smaller than its minimum in D\T, and the damage state was estimated appropriately.
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When p was greater than 1 (including the HS upper bound), the damage parameters were almost
uniform in D\T. Furthermore, as p increased, the damage parameters in D\T approached 1, and the
number of gray-scale elements decreased. This is because the gradient of Young’s modulus in damage
parameters close to 1 is large when p = 2 or more, as shown in Figure 6b. Therefore, p should be greater
than 2 to interpret the elements as undamaged physically.

On the other hand, when p was 1 or less, the difference of the damage parameter in T and in
D\T was larger than that with p greater than 1. Furthermore, the damage parameter in T became
almost 0. As shown in Figure 6b, when the damage parameter is close to 0, Young’s modulus changes
significantly with a small variation in the damage parameter. Therefore, the damage parameter tends
towards 0 in T, and it hardly approaches 0 in D\T. The penalization exponent of 0.5–1 enables setting a
threshold to distinguish between damaged elements from intact ones. For example, when using p = 0.8
and the threshold dth = 0.1, the damaged and undamaged elements were distinguished in all initial
values of the damage parameter. The above discussion indicates that the penalization exponents p of
0.5–1 are suitable for damage identification.

4. Application

In this section, the feasibility of the proposed method is verified by applying it to the measured
wave propagation in an aluminum plate with an artificially generated crack whose position, length,
and width are known. Therefore, the experimentally measured maximum amplitude was used as the
target data σ j,max,target in Equation (4).

4.1. Experiment

Figure 7 presents a schematic of the test configuration. The test piece was an aluminum plate
with dimensions of 500 × 500 × 5 mm. A crack 4 mm long and less than 0.3 mm wide was introduced
at the center of it. A 40 × 40 mm region, including the crack, was scanned by an Nd:YAG pulsed
laser (DIVA II, Thales Laser Co., Ltd) at a constant illumination spacing of 0.25 mm (160 × 160 points).
The pulse duration was 10 ns with 5 mJ energy per pulse, and the diameter of the beam spot was 2 mm.
The ultrasonic wave generated by each illumination was received by a transducer placed 40 mm apart
from the crack. Its resonance frequency was 5 MHz, and a 70◦ wedge was used. The received signals
were recorded in a computer through an amplifier and a digital oscilloscope.
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Figure 7. Schematic of an aluminum plate with a crack and the pulsed laser scanning area.

Figure 8a depicts the visualized results of the ultrasonic wave propagation in an aluminum plate
with a crack. The traveling waves were reflected at the crack, and the amplitude below the crack was
high due to the interference of the traveling and reflected waves, as shown in the maximum amplitude
map (Figure 8b). In contrast, the diffracted waves propagated with a low amplitude because of the high
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directivity of ultrasound, hence the maximum amplitude above the crack was lesser than that in other
regions. The approximate location of damage was found from the sudden amplitude change; however,
it was difficult to quantitatively evaluate the length because the maximum amplitude distribution was
rounded off near the crack tips, as shown in Figure 8b.
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Figure 8. Inspection results by the visualization method of wave propagation on an aluminum plate
with a crack: (a) Visualized results of ultrasonic waves; (b) Distribution of the maximum amplitude.

4.2. Damage Identification for Experimental Results

Figure 9a shows the two-dimensional analysis model. The dimension of the analysis domain was
50 mm long and 50 mm wide. Four-node quadrilateral solid (plane-stress) elements were used, and the
size of each element was 1 × 1 mm. There were 2500 elements and 2601 nodes. Five period-sinusoidal
wave loads multiplied by the Hanning window function were applied to the center point of the
lower surface (i.e., the position of the receiver); their amplitude and frequency were 1 N and 5 MHz.
A non-reflective boundary condition [41] that removes one reflection was set on the upper, left, and right
surfaces. Young’s modulus, Poisson’s ratio, and density of the aluminum plate were 69.0 GPa, 0.34,
and 2.70 g/cm3.

The design domain D was a part of the analytical model located 40 mm from the bottom, as shown
in Figure 9b. Its size was 10 × 10 mm, including 100 elements. The damage parameters only in the
design domain D were updated, and those in the other areas remained constant at unity. The size of the
element was 1 mm square, and therefore, the location and length of the crack could be identified, but the
width could not be estimated. Equation (4) was used as the optimization problem setting, and the
maximum amplitude distribution on the right of Figure 8b was used as the target data. The initial
value of the damage parameter dini was 0.5. The penalization exponent p = 0.8 was adopted based on
the discussion in Section 3.3.

Figure 10a depicts the estimated damage state. The maximum value of the damage parameter
in T was 0.2950, and there were five elements in D\T that had a damage parameter smaller than that
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value. Most of these elements were in the area above the actual crack, and this pattern was similar to
Figure 4a. The sensitivity of the objective function above the damage was evaluated in Figure 10b
in the same manner as in Figure 5. The curve had the same tendency as in Figure 5b, and the low
sensitivity in the area above the actual crack caused the misestimation. Nonetheless, as shown in
Figure 10c, when using the threshold dth = 0.1 for distinguishing between the damaged from the intact
region, three elements out of the actual damage region T (four elements) were estimated as damaged,
and all the other elements were estimated as intact.

Materials 2020, 13, 33 11 of 14 

 

in the same manner as in Figure 5. The curve had the same tendency as in Figure 5b, and the low 
sensitivity in the area above the actual crack caused the misestimation. Nonetheless, as shown in 
Figure 10c, when using the threshold th 0.1d =  for distinguishing between the damaged from the 
intact region, three elements out of the actual damage region T (four elements) were estimated as 
damaged, and all the other elements were estimated as intact. 

 
Figure 9. Numerical models with the same configuration as the experiment: (a) Ultrasonic wave 
propagation analysis model; (b) Inverse analysis model. 

 
Figure 10. Results of applying the proposed method to experimentally measured wave propagation: 
(a) The optimal solution of the damage state; (b) The objective function values in the various damage 
states as with Figure 5; (c) The estimated damage state when using the threshold th 0.1d = . 

10 mm

10
 m

m
F(a) (b)

50 mm

50
 m

m

40
 m

m

Figure 9. Numerical models with the same configuration as the experiment: (a) Ultrasonic wave
propagation analysis model; (b) Inverse analysis model.

Materials 2020, 13, 33 11 of 14 

 

in the same manner as in Figure 5. The curve had the same tendency as in Figure 5b, and the low 
sensitivity in the area above the actual crack caused the misestimation. Nonetheless, as shown in 
Figure 10c, when using the threshold th 0.1d =  for distinguishing between the damaged from the 
intact region, three elements out of the actual damage region T (four elements) were estimated as 
damaged, and all the other elements were estimated as intact. 

 
Figure 9. Numerical models with the same configuration as the experiment: (a) Ultrasonic wave 
propagation analysis model; (b) Inverse analysis model. 

 
Figure 10. Results of applying the proposed method to experimentally measured wave propagation: 
(a) The optimal solution of the damage state; (b) The objective function values in the various damage 
states as with Figure 5; (c) The estimated damage state when using the threshold th 0.1d = . 

10 mm

10
 m

m
F(a) (b)

50 mm

50
 m

m

40
 m

m

Figure 10. Results of applying the proposed method to experimentally measured wave propagation:
(a) The optimal solution of the damage state; (b) The objective function values in the various damage
states as with Figure 5; (c) The estimated damage state when using the threshold dth = 0.1.



Materials 2020, 13, 33 12 of 14

The feasibility of the proposed method was thus demonstrated, though these results were obtained
in simple and ideal model cases. A more detailed investigation will be required for the application of
the present method to real problems.

5. Conclusions

This study proposed a damage identification method of incorporating topology optimization
with the visualization of ultrasonic wave propagation. The distribution of the damage parameter in a
design domain was estimated by reproducing the ultrasonic maximum amplitude map of the target
data. The proposed method was verified by applying it to numerical and experimental examples with
known damage. The conclusions are summarized below:

1. The actual damage state was successfully estimated in the numerical examples. The damage was
identified with high accuracy using ultrasonic propagation data from two directions to increase
the sensitivity of the objective function in the whole design domain.

2. The effect of the penalization exponent p for determining Young’s modulus and the efficiency
of the damage identification was investigated. The standard value (p = 3) in the structural
design problems resulted in moderate damage severity in the actual damaged area. In contrast,
a penalization exponent less than unity resulted in higher damage severity in that area, and the
difference between the damage parameter value between ‘damaged’ and ‘intact’ regions was
greater than that in the case of p = 3. The penalization exponent within the range 0.5 ≤ p ≤ 1
enabled setting a threshold to distinguish between damaged elements from intact ones.

3. The proposed method was applied to experimentally measured wave propagation in an aluminum
plate with an artificial crack. The actual damaged area was estimated, and the estimated damage
state and the sensitivity of the objective function had the same tendency as a similar numerical
example. This demonstrated the feasibility of the proposed method.

Damage identification in simple and ideal model cases was demonstrated as the first attempt.
In our future research, potential of the proposed method will be explored in general cases such as
oblique incident to an embedded crack.
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