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Abstract: The strengthening energy or embrittling potency of an alloying element is a fundamental
energetics of the grain boundary (GB) embrittlement that control the mechanical properties of metallic
materials. A data-driven machine learning approach has recently been used to develop prediction
models to uncover the physical mechanisms and design novel materials with enhanced properties.
In this work, to accurately predict and uncover the key features in determining the strengthening
energies, three machine learning methods were used to model and predict strengthening energies
of solutes in different metallic GBs. In addition, 142 strengthening energies from previous density
functional theory calculations served as our dataset to train three machine learning models: support
vector machine (SVM) with linear kernel, SVM with radial basis function (RBF) kernel, and artificial
neural network (ANN). Considering both the bond-breaking effect and atomic size effect, the nonlinear
kernel based SVR model was found to perform the best with a correlation of r2 ~ 0.889. The size
effect feature shows a significant improvement to prediction performance with respect to using
bond-breaking effect only. Moreover, the mean impact value analysis was conducted to quantitatively
explore the relative significance of each input feature for improving the effective prediction.

Keywords: grain boundary embrittlement; machine learning; strengthening energy; support vector
machine; artificial neural network

1. Introduction

Segregation-induced changes in grain boundary (GB) cohesion are often the controlling factor
limiting the mechanical properties of metallic alloys. A small amount of solute atoms may significantly
alter fracture toughness and corrosion of metallic alloys by orders of magnitude [1–3]. To evaluate the
strengthening or weakening effect of segregants on GB cohesion, one prevalent approach is to calculate
the so-called strengthening energy or embrittling potency, ∆ESE, of a particular segregated impurity,
which is the segregation energy difference between a GB and a fracture free surface (FS) using the
Rice-Wang model [4,5]. The value of ∆ESE plays a key role in the GB embrittlement or strengthening
because there is a positive correlation between ∆ESE and the experimental shift of ductile-to-brittle
transition temperature (DBTT) that could be used for the design of new alloys [6]. During the last
few decades, based on accurate first-principle calculations, an intensive effort has been focused on
quantification of the segregation-induced changes of GB cohesion and a large amount of quantitative
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computational data have been accumulated in different materials, such as Fe [7–13], Al [5,14,15],
Ni [1,8,16–18], W [19], and Mo [20–22].

On the other hand, a few phenomenological models have been developed to understand and
predict the solute-induced changes in GB cohesion. An earlier simple bond-breaking model was
proposed by Seah to describe ∆ESE of different solutes in Fe GBs [23]. Geng et al. related ∆ESE in Fe and
Ni GBs via a modified bond-breaking model with an added elastic mismatch term, and proved the
predictions with rigorous first-principles results [8]. A recent study by Gibson and Schuh reviewed the
existing data of 400 calculations and found that the simple bond-breaking model is robust to describe the
solute-induced changes in GB cohesion [24]. The values of ∆ESE show a strong and positive correlation
with the difference in cohesive energies (∆C), while the contribution to embrittlement from other factors
such as atomic size effects and charge transfer are secondary [24]. In addition, Lejcek et al. also reviewed
the interfacial segregation and GB embrittlement in Ni and Fe and found that ∆ESE could be determined
by the difference of sublimation energies of the solute and solvent (∆H), which is in accordance with
the analytical work of Seah [25,26]. The strengthening energy generally increases with increasing ∆H
albeit in individual cases some exceptions can be found [25,26]. Very recently, Gibson and Schuh
developed a quantitative model for ∆ESE under conditions of equilibrium segregation and proposed a
GB cohesion map to predict whether a given solute–solvent pair will exhibit weakening or strengthening
of GBs [27]. Except the similar common feature of ∆C or related quantities with previous modes,
the ratio of bonding energies between the solute and solvent, captured by the ratio of their surface
energies (RS), was emphasized in their model [27]. Instead of the traditional one-factor bond-breaking
model that relates ∆ESE with relative cohesive energy, Tran et al. used a simple two-factor linear model
described by the relative metallic radii and the relative difference in cohesive energy, and found it is
able to account for most of the variations in the ∆ESE with a value of r2 > 0.79 [28].

The above semi-empirical models and accurate first-principles calculations significantly advance
the understanding of solute-induce changes of GB cohesion undoubtedly. However, these methods are
limited either in terms of their accuracy or high computational cost. Furthermore, the identification
of key features in determining ∆ESE is far from trivial. Thus, the underlying mechanism in ∆ESE of
solutes in different metallic GBs is not well understood. As there exists a quite extended amount of the
accurate values of ∆ESE in the literature from density functional theory (DFT) calculations, it could
enable us to make such a broad, quantitative analysis and prediction of ∆ESE using machine learning
methods. The machine learning is one kind of statistical analysis method to capture the complex
internal relationships by learning from empirical data [29] and gradually becomes a significant tool in
the physics and material research [30]. Some common methods of machine learning include Support
Vector Machine (SVM) [31,32], Artificial Neural Network (ANN) [33,34], Random Forest [35], and so on.
The machine learning has been widely used to predict fundamental properties such as the formation
enthalpy [36], solid solubility [37], solute diffusion [38], and lattice thermal conductivity [39] from DFT
calculations and experimental vales [40]. Recently, the structures and energies of clean GBs in Cu and
Al by using machine learning methods [41–43]. Zhu et al. reveal new ground states and multiple
GBs in Cu by unsupervised machine learning post-processing analysis [41]. Gomberg et al. applied
machine learning to connect the GB macro degrees of freedom and energy in asymmetric tilt GBs in Al
and the models show a good prediction for GB energies [42]. Tamura et al. proposed a new scheme
based on machine learning to predict atomic energies and GB energies in Al symmetric tilt GBs [43].
However, to date, no report has addressed the prediction of GB embrittlement in metals by solute
segregation using machine learning methods.

In this work, we apply machine learning to predict ∆ESE of solutes in different metallic GBs
including Ni, Fe, Al, W, Mo, W, and Zr, using easily available atomic and elemental properties of
the constituting atoms, known as features or descriptors. Three machine learning algorithms are
considered, including support vector machine (SVM) with linear kernel, SVM with radial basis function
(RBF) kernel, and artificial neural network (ANN). We use standard statistical analysis methods to



Materials 2020, 13, 179 3 of 11

determine the factors and predict ∆ESE of solutes in different host metals. Our purpose is to develop
fast and accurate models for prediction of ∆ESE and uncover the key features.

2. Methods

The dataset we use for training and testing contains 142 data points by DFT calculations collected
from literature [8,19,25] and first principles calculations, see Supplementary Table S1. The set contains
5 hosts which are Ni, Fe, W, Al, and Mo. To build accurate and reliable machine learning models,
it is important to include relevant features that collectively capture the trends in the ∆ESE across the
different metals. Based on the input parameters of the above models and by taking into account the
accessibilities of the parameters, we select the difference of cohesive energies (∆C) between the host and
the segregated solute atoms, the ratio of their surface energies (RS), and the difference of sublimation
enthalpies (∆H) as chemical input parameters. For structural input parameters, the difference of atomic
radii (∆R) between the hosts and solutes is adopted. The values of chemical and structural features
are provided in Table S1 of the Supplementary Material. Note that all the chemical and structural
parameters can be obtained without performing any first principles calculations. A scatter-plot of the
relationship between ∆ESE and ∆C, RS, ∆H, and ∆R is shown in Figure 1. It is clear from the figure that
∆ESE is positively correlated with ∆C, RS, and ∆H, indicating that the bond-breaking effect plays an
important role in GB embrittlement. In addition, the atomic size effect also plays a non-negligible role
because it is also well correlated with ∆ESE.
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Figure 1. Trend of strengthening energies ∆ESE plotted against (a) difference of sublimation enthalpies
∆H, (b) ratio of the surface energies RS, (c) difference of cohesive energies ∆C, and (d) difference of
atomic radii ∆R between the host and the segregated solute atoms. Data are from the aggregated data set.
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As discussed above, the correlation between bond-breaking effect and size effect in the context
of GB embrittlement motivate the use of machine learning models to analyze the extent to which
each of these phenomena is correlated with ∆ESE, once the other is taken into account. To asses this
question, and to see if other variables are associated with ∆ESE, three machine learning models are
constructed including SVM with linear kernel, SVM with RBF kernel, and ANN [31,44]. For SVM,
there are many types of kernel function that can affect the performance of predictions and what we
use in this work are two common ones, linear and radial basis function (RBF) [31,32]. To realize the
SVM modeling, we consider the ε-SVR method using the LIBSVM package in MATLAB (version
9.3.0.713579, R2017b, MathWorks, Inc., Natick, MA, USA) [45]. For ANN, the type of network model we
use in this work is the common one based on the back-propagation learning algorithm with Bayesian
regularization [46,47], and operated via the toolbox called “nntool” in MATLAB.

The prediction performance of these methods is evaluated by four metrics, which are generally
used as the error statistical parameters, mean absolute error (MAE), root mean square error (RMSE),
standard deviation of error (SDE), and square correlation coefficient (r2). MAE is defined as

MAE =
1
l
∑i=1

l

∣∣∣ f (xi) − yi
∣∣∣. (1)

RMSE is defined as

RMSE =

√
1
l
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Square correlation coefficient r2 is defined as
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)
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(
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where l is data size, yi is the value of DFT calculations, and f (xi) is the predicted value of corresponding
input. f (x) = 1

l
∑l

i=1 f (xi) (analogously for y) and r is Pearson correlation coefficient [48].

3. Results and Discussion

Figure 2 shows the fitted results from each of three machine learning methods compared against
the DFT calculations using the above four features. These results are from using the entire dataset as
the training data for each machine learning method. For the prediction using SVM with linear kernel in
Figure 2a, a grid optimization method is used to optimize C, and the values of C range from 2−10 to 210

and the step size is 0.5. The SVM model of the best prediction performance was found when C = 23.5.
The linear regression results are given by ∆ESE = −0.238980475 + 0.024468378 ∆H + 0.033997136 RS
+ 0.223070248 ∆C +1.05643494 ∆R. For the prediction using SVM with RBF kernel in Figure 2b, two
parameters, C and γ, can be changed to optimize the model. Similarly, the grid optimization method is
adopted to optimize C and γ ranging from 2−10 to 210, respectively. The best parameters are found
when C = 24 and γ = 20.5. For the prediction using ANN in Figure 2c, we use one input layer, one
hidden layer including 4 hidden units and the output layer through the pre-test. The results of RMSE
and r2 for three models are summarized in Table 1. It can be seen that the SVM model with RBF kernel
and the ANN model show better performances than the SVM model with a linear kernel.
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Figure 2. Comparison of ∆ESE from the density functional theory (DFT) calculations and the full-fit
results from the three machine learning models with four input features. (a) Support vector machine
(SVM) model with linear kernel, (b) SVM model with radial basis function (RBF) kernel, and (c) artificial
neural network (ANN).

Table 1. Values of mean absolute error (MAE), root mean square error (RMSE), square correlation
coefficient (SDE) and r2 from full fit and 10-fold cross validation predictions of three machine learning
models with four input features. SVM: support vector machine; RBF: radial basis function; ANN:
artificial neural network.

Methods Metrics SVM with Linear Kernel SVM with RBF Kernel ANN

Full fitting

MAE (eV) 0.286 0.233 0.265
RMSE (eV) 0.406 0.359 0.367
SDE (eV) 0.288 0.274 0.254

r2 0.843 0.876 0.870

10-fold CV

MAE (eV) 0.300 0.280 0.288
RMSE (eV) 0.424 0.414 0.409
SDE (eV) 0.300 0.305 0.290

r2 0.827 0.835 0.839

Note that a good prediction for the training dataset does not suggest that the model has good
prediction ability for the unknown dataset. Thus, to increase reliability of method, the data is randomly
divided into 10 groups and during 10 iterations one group is set as the testing dataset, while the
remaining nine groups are set as the training dataset. This process is called the 10-fold cross validation
that can eliminate the chance of over-fitting [48,49]. For the SVM models with linear kernel and
RBF kernel, we follow the similar optimization of model parameters for every group predictions.
The values of parameters C and γ are listed in Table 2. For the stochastic nature of ANN model,
the prediction procedure of every group is repeated 30 times and an average of 30 times predictions is
taken. The prediction results of three models with all four features are shown in Figure 3. A comparison
of MAE, RMSE, SDE, and r2 from the three models is also displayed in Table 1. Generally, the error of
cross-validation procedure should always be higher than the error of fitted procedure and this is this case
here. It can be seen from Table 1 that, for all three models, the values of MAE, RMSE, SDE, and r2 are in
the range of 0.280–0.300 eV, 0.409–0.424 eV, 0.290–0.300 eV, and 0.827–0.839, respectively. This indicates
that the cross-validation errors from three methods using the four features are comparable. Moreover,
to increase the accuracy of the models, the 14-fold cross validation tests are also performed, and the
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Table 2. The values of parameter C for SVM model with linear kernel and parameters C and γ for SVM
model with an RBF kernel.

Group SVM with Linear Kernel SVM with RBF Kernel

C C γ

G1 11.3137085 11.3137085 22.627417
G2 11.3137085 16 2
G3 8 8 2
G4 64 16 11.3137085
G5 11.3137085 2 4
G6 32 11.3137085 2
G7 362.038672 2.82842712 4
G8 16 11.3137085 2
G9 11.3137085 11.3137085 11.3137085

G10 4 32 8

To analyze the effect of features on the ∆ESE, the SVM models with RBF kernel are used with
different combinations of input features. For each set of features, the SVM models are optimized with
full fitting. The values of RMSE and r2 of the SVM models with different input features are displayed
in Figure 4. The nonlinear SVM model including ∆H, ∆C, and ∆R is found to be the best description for
∆ESE, with RMSE of 0.339 eV and r2 of 0.889, while the worst performance is obtained using ∆H and
RS, with RMSE of 0.423 eV and r2 of 0.828, respectively. The correlation among ∆H, RS, and ∆C can be
inferred from the fact that the values of RMSE and r2 do not add to one another when the regressors
are combined in the same model. However, the bond breaking effects reflected by ∆H, RS, and ∆C
are clearly demonstrated as significant in GB cohesion. It should be noted that, when removing the
feature ∆R from the groups of ∆H + RS + ∆C + ∆R, ∆H + ∆C + ∆R, ∆H + RS + ∆R, and RS + ∆C +

∆R, the performance becomes poorer in different degrees. The analysis shows that ∆R is a significant
feature to the contribution of ∆ESE. Therefore, the statistical conclusion shows that bond-breaking and
atomic size effects are independent and substantial contributors to GB cohesion.
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with RBF kernel for different input features.

To quantitatively explore the relative significance of each input variable for improving the
prediction performance, the mean impact value (MIV) analysis was conducted using the similar
method previously by Jiang et al. [50] and Liu et al. [51]. The MIV values for each input variable on
each output variable are calculated and shown in Figure 5. It can be found that the important sequence
of the factors for the strengthening energies is 4C > 4R > 4H > RS. 4C and 4R are the two most
important factors to influence the strengthening energies. This may explain why the two-factor model
is able to account for most of the variation in the strengthening energies in Mo GBs [28]. As shown in
Figure 5, the features 4H, 4C and 4R show a positive correlation with grain boundary embrittlement,
while RS appears a negative correlation. According to the MIV analysis, it can be found that 4H,
4C, and 4R have a high correlation with grain boundary embrittlement. This is consistent with the
above conclusion that the SVM model with these three features yields the best results amongst all the
test models.
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The aggregation of ∆ESE in different host metals from so many sources should be expected to
lead to significant scatter due to the different computations such as potential selection and relaxation
standard [52]. Here, the relative good performance of nonlinear SVM model using ∆H, ∆C, and ∆R is
thus interpreted to be highly physically meaningful. The present model could not only be used to
understand GB strengthening or embrittlement and its underlying physical origins, but also serves as
a quantitative prediction of the strengthening energies by solute segregation in other systems that have
not yet been studied experimentally or computationally, which is helpful for the rational design and
screening of novel materials with desired mechanical properties for specific applications.

4. Conclusions

In this work, we have trained three separate machine learning models to infer the driving forces for
GB embrittlement and predict strengthening energies for impurities in different host metals. The readily
accessible features (i.e., difference of sublimation enthalpies ∆H, ratio of surface energies RS, difference
of cohesive energies ∆C and difference of atomic radii ∆R) are chosen as descriptors. It was shown
that the energetics of embrittlement is quantitatively described by two simple effects: bond-breaking
and atomic size. A nonlinear kernel based support vector regression model with features ∆H, ∆C,
and ∆R shows the best performance prediction for the aggregated set of strengthening energies,
with RMSE of 0.339 eV and r2 of 0.889. The feature of the size effect was found to exhibit considerable
importance to the model prediction. Additionally, the MIV based analysis has been carried out for
evaluating the features’ importance. Results show that the important sequence of the factors for the
GB embrittlement is: ∆C > ∆R > ∆H > RS. The methods employed in the present work, i.e., clarifying
the physical mechanism and extracting the key feature quantities as descriptors by first principles
calculations and then predicting material properties via machine learning, can be extended to predict
other material properties.

Supplementary Materials: The data related to this article are available in the http://www.mdpi.com/1996-1944/
13/1/179/s1. Figure S1: Comparison of ∆ESE from DFT calculations and 14-fold cross validation prediction results
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predictions of three machine learning models; Table S2: Database on ∆ESE of solutes in different host metals for
the training and test of the machine learning models; Table S3: Statistical parameters for the SVM model with
RBF kernel with different features; Table S4: Statistical parameters for three machine learning models with best
performance using different features.
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