

Article

Copper Iodide Interlayer for Improved Charge Extraction and Stability of Inverted Perovskite Solar Cells

Danila Saranin ¹, Pavel Gostischev ¹, Dmitry Tatarinov ¹, Inga Ermanova ¹, Vsevolod Mazov ¹, Dmitry Muratov ¹, Alexey Tameev ², Denis Kuznetsov ³, Sergey Didenko ⁴, and Aldo Di Carlo ^{1,5*}

- ¹ L.A.S.E. Laboratory for Advanced Solar Energy, National University of Science and Technology "MISiS", Leninskiy prospect 6, Moscow 119049, Russia; saranin.ds@misis.ru (D.S.), gostischev.pa@misis.ru (P.G.), tatarinov_dmitry1994@mail.ru (D.T.), ermanova.io@misis.ru (I.E.), mazov.v@misis.ru (V.M.), muratov@misis.ru (D.M.).
- ² Laboratory "Electronic and photon processes in polymer nanomaterials", Russian Academy of Sciences A.N. Frumkin Institute of Physical chemistry and Electrochemistry, Leninskiy prospect 31k4, Moscow 119071, Russia; a.tameev@gmail.com
- ³ Department of Functional Nano Systems and High-Temperature Materials, National University of Science and Technology "MISiS", Leninskiy prospect 4, Moscow 119049, Russia; dk@misis.ru
- ⁴ Department of Semiconductor Electronics and Device Physics, National University of Science and Technology "MISiS", Krymskiy val 3, Moscow 119049, Russia; sdi13@mail.ru
- ⁵ CHOSE—Centre for Hybrid and Organic Solar Energy, Department of Electronic Engineering, University of Rome Tor Vergata, via del Politecnico 1, 00133 Rome, Italy
- * Correspondence: aldo.dicarlo@uniroma2.it; Tel.: +39-320-439-18-61

Supplementary material for the paper:

Table S1. Thicknesses of films used in devices fabrication measured by stylus profilometer.

Layer	Thickness, nm
NiO	10 (±3.8)
CuI 0.05 M	23 (±19.2)
CuI 0.10 M	47 (±23.3)
CuI 0.20 M	74 (±32.1)
MAPbI ₃	472 (±25.2)
PCBM	28 (±5.2)
BCP	8 (±2.1)
Ag	99 (±3.0)

We performed SEM imaging of perovskite films crystalized on NiO film and NiO/CuI stack with 0.10 M and 0.20 M concertation (Figure S1). Pin-hole free perovskite films with ~200–450 nm grain size was obtained without meaningful difference in morphology quality changes.

Figure S1. SEM images of MAPbI₃ films crystallized on the top of (**a**) NiO film; (**b**) NiO/CuI (0.10 M) film and (**c**) NiO/CuI (0.20 M).

Statistical spread of output JV performance for fabricated solar cells presented on Figure S1.

Figure S2. Statistical spread of output JV performance for fabricated devices (**a**) Voc range, (**b**) Jsc range, (**c**) FF range and (**d**) PCE range.

To quantitively compare the hysteresis effect we calculated H_{index} for JV curves measured at 23.5 mV/s scan rate (as for all devices) with Equation (S1):

Figure S3. Hysteresis JV curves for the PSCs with different HTL types (**a**) NiO, (**b**) CuI (0.05 M), (**c**) CuI (0.10 M), (**d**) CuI (0.20 M) and (**e**) NiO/CuI (0.10 M).

To compare hysteresis effect quantitively by numbers we calculated H_{index} for JV curves measured at 23.5 mV/s scan rate (as for all devices) with Equation (S1):

$$H_{index} = \frac{PCE_{forward\ scan} - PCE_{reverse\ scan}}{PCE_{forward\ scan}}$$
(S1)

where PCE reverse scan - efficiency calculated from reverse scan of JV curve, %; PCE forward scanefficiency calculated from forward scan of JV curve, %.

Table S2. Hindex calculated for PSCs with single HTL configurations and best performing NiO/CuI
(0.10 M) double layer.

Hindex, a.u.
0.002
0.288
0.322
0.294
0.089

Figure S4. Transient photo voltage measurements for the reference cell with single NiO HTL and double NiO/CuI (0.10 M) HTL in rise mode (**a**) and fall mode (**b**).