

Supplementary Materials: Old Molecule, New Chemistry: Exploring Silicon Phthalocyanines as Emerging N-Type Materials in Organic Electronics

Nathan J. Yutronkie, Trevor M. Grant, Owen A. Melville, Benoît H. Lessard and Jaclyn L. Brusso

Figure S1. Normalized absorbance spectra of (345F)₂-SiPc via Routes A (black), B (blue) and C (red) in toluene solutions.

Figure S2. ¹H-NMR spectra of DIII from Route B at 400 MHz in MeCN-d₃. Spectrum referenced to solvent residual peak at 1.94 ppm.

Figure S3. ¹H-NMR spectra of [H₂DIII][OTf]₂ at 300 MHz in MeCN-d₃. Spectrum referenced to solvent residual peak at 1.94 ppm.

Figure S4. ¹H-NMR spectra of DIII from commercial source (blue) and from Route B (red) in DMSOd₆ at 400 MHz. Spectra referenced to residual solvent peak at 2.50 ppm.

Figure S5. ¹⁹F-NMR spectra of $[H_2DIII][OTf]_2$ at 300 MHz in MeCN-d₃. Spectrum referenced to F₃CCOH at -76.55 ppm.

© 2019 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).