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Abstract: The mechanical characterization of textile composites is a challenging task, due to
their nonuniform deformation and complicated failure phenomena. This article introduces a
three-dimensional mesoscale finite element model to investigate the progressive damage behavior of
a notched single-layer triaxially-braided composite subjected to axial tension. The damage initiation
and propagation in fiber bundles are simulated using three-dimensional failure criteria and damage
evolution law. A traction–separation law has been applied to predict the interfacial damage of fiber
bundles. The proposed model is correlated and validated by the experimentally measured full field
strain distributions and effective strength of the notched specimen. The progressive damage behavior
of the fiber bundles is studied by examining the damage and stress contours at different loading
stages. Parametric numerical studies are conducted to explore the role of modeling parameters and
geometric characteristics on the internal damage behavior and global measured properties of the
notched specimen. Moreover, the correlations of damage behavior, global stress–strain response, and
the efficiency of the notched specimen are discussed in detail. The results of this paper deliver a
throughout understanding of the damage behavior of braided composites and can help the specimen
design of textile composites.

Keywords: braided composites; mesoscale model; notched specimen; damage evolution

1. Introduction

Carbon fiber reinforced composite materials has some distinctive features in physical, mechanical,
and thermal properties, such as high stiffness and strength to weight ratio, excellent resistance to
fatigue, and corrosion. Traditional carbon fiber composite structures have layers of unidirectional fiber
lamina and each layer can have a different direction of fiber lay-up, which is able to produce desired
specific mechanical properties. However, a weak interlaminar plane where damage can initiate and
cause delamination as in case of foreign object impact has limited the use of fiber composites in a
variety of structures [1,2].
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Textile composites such as braided or woven composites are known to have excellent damage
tolerance and impact resistance and are increasingly used in aircraft structures [3]. For example,
the two-dimensional triaxially-braided composite is introduced to fabricate the engine fan case
structure, which is mainly designed to contain the fan blade and its fragments during a blade failure
event. Apart from its superior impact resistance property [4], the two-dimensional triaxially-braided
composite also shows excellent specific energy absorption property and is considered as an alternative
material system for front rail structures of vehicles [5,6]. Two-dimensional triaxially-braided fabrics are
made by three distinct sets of yarns, which are intertwined to form a single layer of fabrics. Figure 1c
shows the architecture of a typical 0◦/± 60◦ braided fabric, bias fiber bundles undulate over and
under each alternatively, while 0◦ yarns are straight and define the axial direction of the composite.
The rectangle in Figure 1c indicates the size of a unit cell, which is considered as the smallest repeating
element of a composite that can represent the composite’s geometric features in particular and its
mechanical response as a whole. The length of a unit cell is the axial distance between center lines of
two neighboring bias yarns, and the width is twice the transverse distance between the center lines of
two neighboring axial yarns.
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Due to the more complicated mesoscopic structure, the complexity of deformation and damage
process for textile composites is greatly increased compared to that of laminates. Thus, the
determination of mechanical properties for textile composites has drawn a lot of attention and raised
significant challenges on the experiment techniques [7–9]. This paper focuses mainly on the tension
failure behavior of triaxially-braided composite and investigates specifically the progressive failure
process of a notched tensile specimen.

Waas and coworkers [7,10,11] studied extensively the compressive properties of a 0◦/±
45◦ triaxially-braided composite using experimental, analytical, and numerical approaches.
Goldberg et al. [12] identified that a 0◦/± 60◦ braided composite offers improved impact resistance
because of its quasi-isotropic nature (properties are balanced in all directions). Littell [13] and
Kohlman et al. [14] studied experimentally the mechanical performance of a 0◦/± 60◦ triaxially-braided
composite using different kinds of experimental methods. Littell [13] conducted comprehensive tests
to measure the quasi-static responses of triaxially-braided composites, including tension, compression,
and shear. Littell’s results led to the conclusion that there were different damage mechanisms affecting
the material response, including inherent damage accumulations (fiber bundle cracking and interface
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delamination) and geometry-induced premature failure behaviors (free-edge effect induced edge
delamination). The presence of premature edge damage behavior in the standard straight-sided
coupon specimen results in lower measured mechanical properties of the material.

For composite materials, it is difficult to avoid the possible premature failure caused by
interlaminar stress concentration at the free edges of the specimen, which is more thought-provoking
to accurately test the textile or braided composites. One major limitation is the local variation of
properties for the fabrics since the methods for calculating lamina properties rely on the assumption
of homogeneous strain and stress distribution in a uniaxial specimen [14]. For the triaxially-braided
composite, the internal damage and its propagation depend significantly on the mesoscopic architecture
of the material; the initiation of new damage will cause redistribution of internal loads, resulting
in an inhomogeneous stress state. Through a combined experimental and numerical approach,
Zhang et al. [15] investigated the mechanism of free-edge effect and the size-dependent mechanical
properties of triaxially-braided composites. It was identified that the free-edge effect is an elastic
behavior resulting from the termination of bias fiber bundles and affecting continuously the material
response. Kueh et al. [16] identified the relationship of effective elastic properties of triaxially-braided
composite against specimen size using an analytical approach.

To examine the realistic effective strength properties of the triaxially-braided composite,
Kohlman et al. [14] designed several kinds of improved specimens to measure the mechanical
properties of 0◦/± 60◦ triaxially-braided composite, including both tube and notch geometries.
The results further prove the sensitivity of measured properties to specimen shape and the significance
of free-edge effect in triaxially-braided composites. It was also concluded that the notched coupon
specimen produces higher measured strength values because of the enforced tensile failure of fiber
bundles at the notched gauge section. Compared with the straight-sided coupon specimen, the damage
behavior of notched specimens is more complicated, due to the presence of stress concentration in
the notched zone. Thus, it is necessary to develop representative numerical models to analyze and
elucidate the progressive failure behavior of notched tensile specimen. Using a numerical model as
a virtual testing tool of composites can also provide insights in revealing the localized mechanical
response and exploring damage mechanism at meso and microscopic scale, which can then facilitate
the development of experimental techniques.

Mesoscale finite element (FE) is known for its capability in predicting the local response and
damage events of textile composite [17–19]. Lomov et al. [20] conducted a comprehensive study on
the mesoscale finite element modeling approach of textile composites. Especially for triaxially-braided
composites, Zhang et al. [15,18] established a mesoscale finite element framework, with emphasize
on imposing representative loading/boundary conditions against an experimental set-up; Zhao [21]
utilizes the mesoscale FE model to study intensively the failure behavior under transverse tension
and compression, and its damage behavior under high-speed impact has been exactly captured by
proposing a multiscale modeling framework based on a fully validated mesoscale FE model [22]. Apart
from these, the fracture process of triaxially-braided composite for straight-sided coupon specimens
also can be simulated by means of the mesoscale FE model [23,24].

However, there is no reported work applying the mesoscale FE model to the analysis of specimens
with more complicated shapes, e.g., notched specimen, tube specimen, and specimen with hole.
This limits the confidence of the community on the feasibility of meso-FE model for virtual testing.
On the other hand, the presence of challenges in characterizing the mechanical properties of 2DTBC
requires further efforts in investigating the failure mechanism and optimizing the test specimens.
Thus, in this work, the mesoscale finite element method with three-dimensional damage model is
introduced to investigate the progressive failure behavior of notched specimen of the triaxially-braided
composite under axial tension. The presented model intends to simulate the damage initiation, damage
propagation, and ultimate fracture of the notched specimen, as well as to predict the effective strength
of the triaxially-braided composite. The results demonstrate the accessibility of using mesoscale
finite element model as virtual testing for textile composites, which can significantly enhance the
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design efficiency of composite structures. This research paper firstly describes the material system and
experimental details followed by the progressive damage model of the composite (which consists of
damage initiation criteria and its subsequent evolution). Then, the mesoscale finite element model
is introduced. The Section 5 of this paper examines the capability of the mesoscale model through
correlation with experiments conducted by Kohlman et al. [14] and presents the predicted results
of local initiation and progression of damage. Additionally, the parameters study and geometric
characteristic analysis of notched specimen are also discussed in this section. The conclusions are listed
in the last section of this paper.

2. Materials and Experiment

The 0◦/± 60◦ triaxially-braided composite studied in this paper was fabricated with Toray 24 K
T700 s axial tows and Toray 12 K T700 s bias tows. Epon’s 862 epoxy resin was chosen as matrix
material, which is a thermoset resin with low viscosity. The composite panels were processed through
resin transfer molding (RTM). Table 1 presents the properties of each component, which are obtained
from Littell [13].

Table 1. Properties of composite components.

Property Fiber Matrix

Material type T700 s E862 epoxy
Density (g/cm3) 1.8 1.2
Axial modulus (MPa) 230,000 2700
Transverse modulus (MPa) 15,000 2700
Shear modulus (MPa) 27,000 1000
Tensile strength (MPa) 4900 61
Poisson’s ratio 0.2 0.363

The sample considered in the present study is a single-layer panel (a composite containing only
one braided ply through thickness) with double edge notches (shown in Figure 1b), which was designed
and tested by Kohlman [14] to address deficiencies of straight-side tension coupons. The thickness of
the single-layer specimen is 0.65 mm. Other dimensions of the notched and straight-sided coupon
specimens are shown in Figure 1. A diamond saw was used to cut the notches and kept the
same width of gauge region to compare with the test results of straight-sided coupon specimens.
Tensile tests were performed using a servohydraulic tension/torsion test frame capable of loading
to 220KN (MTS Systems Corporation, Eden Prairie, MN, USA). The specimens were stretched under
displacement-controlled load until fracture of the specimen. 3D digital image correlation (GOM,
Braunschweig, Germany) technique was used to obtain the full field displacement and strain data on
the surface of the notched specimens.

3. Progressive Damage Model of Braided Composite

The fiber bundle of textile composites is generally considered as a transversely isotropic
unidirectional lamina in numerical simulation [25–27]. In this part, a progressive damage model
of the unidirectional lamina is formulated in terms of damage initiation and damage evolution. This
research aims to investigate the internal damage initiation and propagation of a notched specimen,
therefore material failure (element deletion) is not introduced in this damage model.

3.1. Damage Initiation

A three-dimensional failure criterion for the fiber bundle was adopted based on Hashin’s [28]
and Hou’s [29] criteria and was incorporated with continuum damage laws. Four distinct failure
modes are considered: fiber tensile failure, fiber compression failure, matrix tension failure, and matrix
compression failure. The damage initiation criteria are formulated below.
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For fiber tension failure (σ11 > 0),

f1t =

(
σ11

S1t

)2
+ α

(
σ12 + σ31

S12

)
≥ 1 (1)

For fiber compression failure (σ11 < 0),

f1c =

(
σ11

S1c

)2
≥ 1 (2)

For matrix tension failure (σ22 > 0),

f2t =

(
σ22

S2t

)2
+

(
σ12

S12

)2
+

(
σ23

S23

)2
≥ 1 (3)

For matrix compression failure (σ22 < 0),

f2c =
1
4

(
−σ22

S12

)2
+

σ22

S2c

((
S2c

2S12

)2
− 1

)
+

(
σ12

S23

)2
≥ 1 (4)

where f 1t, f 1c, f 2t, and f 2c are failure indices corresponding to each damage mode, respectively. The first
subscripts, 1, 2, and 3, indicate the fiber axial direction, in-plane transverse direction, and out-of-plane
direction, respectively. When the stress state of an element make one of the four failure indices
larger than 1, the corresponding damage mode will be initiated in this element and constitutive law
entering the stage of damage evolution. S1t, S1c, S2t, S2c, S12, and S23 are axial tensile strength, axial
compressive strength, transverse tensile strength, transverse compressive strength, longitudinal shear
strength, and transverse shear strength of the fiber bundle. α is the shear failure coefficient which
plays an important role in failure prediction of textile composite. The previous research conducted
by Zhang et al. [18] indicated that the coefficient α has an obvious impact on the global stress–strain
response and mainly on the failure prediction. The value of α was determined to be 0.06 for fiber
bundles of triaxially-braided composite through correlation with an experimental ultimate strength
of straight-sided coupon specimens [18,22]. The same value of parameter α is adopted in the present
study in consideration that the studied materials are totally the same.

3.2. Damage Evolution

For the damage evolution behavior, the Murakami–Ohno [30] damage theory is adopted to predict
the post-peak softening, and the crack band model developed by Bazant and Oh [30] is also employed
to mitigate the mesh size dependency of the proposed mesoscale model in this study. A characteristic
element length is introduced into damage evolution expression, aiming to dissipate the constant
energy release rate per unit area in the solid element [31,32], and the element dissipated energy can be
expressed as

G f ,I =
1
2

σ
f
eqε

f
eqlc (5)

where lc is the characteristic length of element, which calculates by extracting the cubic root of the
volume of each element; Gf,I is fracture energy of fiber bundles corresponding to the specific damage
mode I. The values for the fracture energies of axial and bias fiber bundles used in this study (listed in
Table 2) were cited from Li et al. [17]. σ

f
eq and ε

f
eq are the equivalent peak stress and equivalent failure
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strain, respectively. The evolution of each damage variable is governed by an equivalent displacement
expressed by the following equation.

dI =
δ

f
I,eq

(
δI,eq − δ0

I,eq

)
δI,eq

(
δ

f
I,eq − δ0

I,eq

) , I = f t, f c, mt, mc (6)

where δ
f
I,eq is the fully damaged equivalent displacement of the corresponding failure mode and δ0

I,eq
is the equivalent displacement at which the failure criterion is satisfied. For a certain failure mode,
the equivalent displacement used in the initiation criteria is expressed in terms of the components
corresponding to the effective stress components. Detailed algorithm equations of equivalent
displacement and stress for each failure mode can be found in Zhang and coworkers’ work [18].
As material parameters of fiber bundles, δ0

I,eq and δ
f
I,eq be computed by the following equations.

δ
f
I,eq =

2G f

σ0
I,eq

(7)

δ0
I,eq =

δI,eq√
f I

(8)

Table 2. Fracture energies of the fiber bundle.

Gft (mJ/mm2) Gfc (mJ/mm2) Gmt (mJ/mm2) Gmc (mJ/mm2)

12.5 12.5 1 1

Here, σ0
I,eq denotes the equivalence stress when each kind of damage criteria is satisfied.

Meanwhile, the value of fI can be obtained from Equations (1)–(4).
To simulate the softening process of damage element, a second-order symmetric tensor is used

to describe the damage state. The corresponding damaged compliance matrix S(d) is obtained as
Equation (9), and the damaged stiffness matrix C(d) is the inverse of S(d).

S(d) =



1
d f E11

− ν21
E22

− ν31
E33

zero

− ν12
E11

1
dmE22

− ν32
E33

− ν13
E11

− ν23
E22

1
E33

1
d f dmG12

1
dmG23

zero 1
d f G13


(9)

where df and dm are global damage variables associated with fiber and matrix failure, which are
introduced to control the degree of stiffness degeneration of damaged elements, and also satisfy the
following equations, respectively.

d f = 1−min
{

max
(

d f t, d f c

)
, γ f

}
(10)

dm = 1−min{max(dmt, dmc), γm} (11)

Here γf and γm are defined as the damage thresholds of global fiber and matrix damage,
respectively. Numerically, the nonzero constants γf and γm address the singularity issue, and physically
represent the effective resultant resistance of the homogeneous damaged elements. The effect of γf
and γm on the global stress–strain responses will be discussed in a later section. Also, the Duvaut
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and Lions regularization model [33] is applied to promote the numerical computation and smooth the
stiffness degradation process.

3.3. Cohesive Element Model for Interface

Interface is the bridge between the fiber bundle and matrix, which determines how stresses
are transferred. The damage status of interface influences significantly the damage initiation and
propagation of the composite material [34]. Littell [13] indicates that failure in the transverse tests
was a result of edge delamination which occurred quickly and propagated along the bias fibers; and
in the axial tensile direction, the subsurface delamination caused the nonlinearities in the global
stress–strain response curves. In this study, the tow-to-tow interface is simulated by using the cohesive
zone modeling approach, which has been embedded into ABAQUS as an optional element type.
The responses of cohesive elements are governed by a typical bilinear traction–separation law, and a
quadratic nominal stress criterion is used to describe interfacial damage initiation [32,34,35]. Besides, a
power law criterion is adopted, which claims that failure under mixed-mode conditions is governed
by a second-order power law interacting of the energies required to cause failure in the individual
(normal and two shear) modes. The quadratic nominal stress criterion for damage initiation and a
power law criterion for failure are represented in Equations (12) and (13).(

〈tn〉
t0
n

)2
+

(
〈ts〉
t0
s

)2
+

(
〈tt〉
t0
t

)2
= 1 (12)

(
Gn

Gc
n

)2
+

(
Gs

Gc
s

)2
+

(
Gt

Gc
t

)2
= 1 (13)

where tn denotes the traction normal stress, and ts and tt denote shear stresses. The Macaulay brackets
are used to signify that a pure compressive deformation or stress state does not initiate damage. t0

n,
t0
s , and t0

t represent the interface strength in normal and two shear directions. Similarly, Gn, Gs, and
Gt refer to the work done by the traction and its conjugate relative displacement in the normal, first,
and second shear directions, respectively; and Gc

n, Gc
s , and Gc

t are critical fracture energies required
to cause failure in each of the three directions. Table 3 presents the interface properties, and the
values of interface strengths and fracture toughness, which are cited from Zhang et al. [18]. Detailed
formulations of the mixed-mode cohesive zone model can be found in the ABAQUS user’s manual.

Table 3. Strengths and fracture toughness of cohesive elements.

tn
0 (MPa) ts

0 (MPa) tt
0 (MPa) Gn

0 (mJ/mm2) Gn
0 (mJ/mm2) Gn

0 (mJ/mm2)

122 136 136 0.268 1.45 1.45

4. Finite Element Model Development

The mesoscale finite element (FE) model simulates explicitly the fiber bundles of a braided
composite structure and defines locally the realistic local fiber volume ratios and bundle orientations
of the impregnated bundles. The advantage of the mesoscale model is its ability to analyze the
local damage and failure of each component implemented individually through specific failure
models for the various constituents and to predict the response of each constituent and their
contribution to the global behavior. In this work, a mesoscale finite element model is introduced
to study the internal damage and failure mechanism of the notched tensile specimen for 0◦/± 60◦

triaxially-braided composite.
Based on the geometric parameters identified by Zhang et al. [18], a FE model of a single unit cell,

which can represent the composite’s geometric features, was generated using 8-node solid element.
As shown in Figure 2a, the mesh of a unit cell was constructed through TexGEN software by keying
the dimensions of the unit cell and fiber bundles. In Figure 2, the axial fiber bundle, +60◦ and −60 ◦
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bias fiber bundles and matrix elements, which fill the space between fiber bundles to form plate, are
represented by light blue, dark blue, yellow, and green colors, respectively. Cohesive element layers
(colored red), which have the same in-plane size as brick elements but zero thickness, are manually
inserted between each two fiber bundles, and fiber bundle and matrix, see Figure 2a. It should be
pointed out that the pure matrix is modeled as an elastic perfectly-plastic material. It is assumed that
the pure matrix elements will not fail before the fracture of the specimen, due to the much larger failure
strain of matrix than that of the fiber bundle. The resultant mesh may have different fiber bundle
volume values than the real material, so the fiber volume ratio in each fiber bundle is adjusted to match
the real fiber volume content. As identified by Zhang et al. [18], the realistic fiber volume ratios for
axial and bias fiber bundles are 77% and 74.5%, respectively. The resultant fiber volume ratio in the
present FE model is 86% for the axial fiber bundles and 69% for the bias fiber bundles. Mechanical
properties of fiber bundles are listed in Table 4 referring to Zhang’s work [18] for the same materials.
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notched model.

Table 4. Mechanical properties of axial and bias fiber tows.

Axial Fiber Tows Bias Fiber Tows

Fiber volume fraction Vf 86% 69%
E11 (GPa) 198.18 159.54

E22 = E33 (GPa) 11.22 8.30
G12 = G13 (GPa) 8.58 4.48

G23 (GPa) 3.71 2.71
v12 = v13 0.29 0.30

v23 0.51 0.53
S1t (MPa) 4222 3398.8
S1c (MPa) 1478.48 1386.21

S2t = S3t (MPa) 49.87 49.70
S2c = S3c (MPa) 122.80 124.64

S12 = S13 = S23 (MPa) 80.60 78.53

Figure 2b shows the detailed dimensions of the FE model for the notched specimen. The FE
model of the notched tension specimen consists of 208,000 linear brick elements (C3D8R) and 29,412
eight-node three-dimensional cohesive elements (COH3D8), with four unit cells through the width and
length direction, respectively. Two whole unit cells (37 mm) are assembled through the width direction
of the notched gauge for the axial tension model, which is consistent with the experimental specimen.
The length of the finite element model is 20.68 mm with four unit cells for axial tension, which are
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shorter than the gauge length of experimental specimens fabricated by Kohlman [14] (Figure 1b).
These reasonable simplifications of model size are intended to reduce the computational time, in
consideration of the minor effect of the remote sections. The numerical models are solved by ABAQUS
Explicit using a 24-core workstation and each job costs ~20 h. By evaluating the various energies
generated during the computation process, the accumulated kinetic energy was always less than 1% of
the internal energy of the model, which ensures a quasi-static loading status of the problem.

5. Results and Discussion

In this section, the damage initiation and propagation behavior of the notched tension specimen
modeled using the proposed mesoscale FE scheme is correlated with experimental results. The effect
of specimen geometry on the internal damage evolution behavior and the effective strength of this
notched specimen are further discussed through numerical parametric studies. These results show the
applicability and reliability of the mesoscale FE model for failure study of braided composites.

5.1. Model Correlation

In our previous works [15,18,21,22], the failure behavior of straight-side coupon specimens of
2DTBC has been intensively studied. Figure 3 shows the comparison of the experimental and numerical
predicted results for the single-layer straight-side coupon specimen under axial tension. The results
indicate that the mesoscale FE model can not only predict well the global stress–strain curve, but also
the strain distributions which are highly sensitive to the local braided architecture.
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global strain level of 2.0%.

The applicability of the mesoscale FE model is further demonstrated through the model validation
for the notched specimen. For both the experimental characterization and numerical simulations,
the effective strength of the tensile specimen is determined as the ratio of total reaction force at the
loading section against the cross-section area at the gauge section (two unit cells wide for both notched
and straight-sided coupon specimen). Table 5 compares the numerical predicted and experimental
measured effective strength of triaxially-braided composite under axial tension, for both straight-sided
coupon and notched specimens. The measured strength values of the straight-sided coupon and
notched specimen are referred to as Kohlman [14]. It is evident from Table 5 that the mesoscale
FE model predicted effective strength values are in good agreement with the experimental values,
suggesting the accuracy of this modeling scheme. The effective strength of the notched specimen
tends to be lower than the straight-sided coupon specimen, which is due to the presence of stress
concentration at the notched section.
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Table 5. Comparison of simulation predicted and experimental measured the effective tensile strength
of the triaxially-braided composite.

Type of Specimen Ultimate Strength

Simulation (MPa) Experiment (MPa)

Straight-side coupon 800 814 ± 30 *
Double-notched 751 765 *

* Refer to Kohlman et al. [14].

To further demonstrate the reliability of the meso-FE model, the numerically predicted strain
distributions are compared with DIC results. As seen in Figure 4, the simulation results match
well with the local strain distribution of the notched specimen and additionally capturing the local
strain concentration around the notch area and the diagonal distribution along the bias fiber bundles.
The axial strain (εyy) and shear strain (εxy) distributions show higher strain at the pure matrix zone
between bias fiber bundles, which coincides with the damage propagation paths of fiber bundle
damage. The damage of fiber bundles will induce the decrease of fiber’s capability in carrying the
load and as a result, more load will be transferred to the matrix material, thereby causing the strain
concentration in this area (red and blue in Figure 4). On the other hand, the shear strain shows more
obvious strain concentration effect at the notched section. Unlike the traditional isotropic material
where strain concentration effect propagates in a circular shape, the shear strain concentration effect
of this braided composite propagates along the fiber bundle directions. The mesoscale FE model
simulations capture the strain distribution and its magnitude accurately for the axial tension of the
notched specimen. The result also reflects the advantages of mesoscale finite element model in studying
the internal damage of textile composite that is difficult to achieve from experiments.
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Figure 4. Comparison of numerical predicted and experimentally measured strain contours of the
notched specimen under axial tension.

Furthermore, another reason for the localized strain concentration effect is because of the lower
local fiber volume ratio at the corresponding regions. The inconspicuous discrepancy between
numerically predicted and experimental axial strain contours is very likely results from the idealization
of the geometry in the FE model. However, the manufacturing defects like axial fiber bundle undulation
are inevitable in actual specimens. The cutting process may also introduce unexpected fiber damage,
which could lead to more significant strain concentration area near the notch. Regardless of these
factors, the capability and accuracy of this 3D mesoscale model are highly acceptable.
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As mentioned before in the introduction section, both Littell [13] and Zhang et al. [15] observed
out-of-plane warping behavior along the free edges in their tensile tests using the straight-side
coupon specimen, which would lead to the premature damage initiation from the free edges.
Kolhman et al. [14] also discovered the same phenomena in the notched specimen. Figure 5 compares
the out-of-plane displacement (U3) contours from simulation and experiment for the notched tension
test. The out-of-plane displacement is formed due to the tension–torsion coupling resulting from
the termination of fiber bundles at the free edges. In the simulation results, the specimen shows
the antisymmetric distribution of out-of-plane warping at the four corners of the notched specimen,
which is related to the antisymmetric mesoscopic structure of this material. In addition, no obvious
out-of-plane deformation was observed in the gauge section of the specimen indicates that the failure
of the specimen is not affected by the free-edge effect. However, the out-of-plane deformation still
consumes partially the energy from external loading, leading to a relatively lower measured modulus
of the specimen. Thus, the notched specimen may not be suitable for modulus measurement. This is
one of the contents which need to be studied in the future.
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5.2. Progressive Damage Analysis

The progressive damage process is then studied using the correlated mesoscale FE model, as
shown in Figure 6. The status of damage corresponds to the value of the particular damage variable
ranging from 0 to 1, where a value of 0 indicates that damage has not occurred yet while a value of 1
indicates that the element is totally damaged.
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The matrix damage initiated at the global strain level of ~0.5% and spread to the whole central
region at the global strain level of 0.80%. The distribution of internal damage inside the bundles
reveals that there is no fiber tension damage occurring at these strain levels while matrix tension
damage (matrix cracking in fiber bundles) is observed to start from the notched area. The matrix
tension damage propagates along the notches and the bias fiber bundles; while in the meantime, in the
central region matrix tension damage occurs mainly where bias fiber bundles intersect. The interfaces
are found to be intact at the first two status of Figure 6 as there is no damage in cohesive elements.
This behavior is similar to the observations during the test of straight-sided coupon specimen [13].

At the global strain level of 1.8%, unloading is identified followed by fiber tensile damage of
axial fiber bundles and almost all elements of bias fiber bundles are dominated by matrix tension
damage. The fiber tension damage initiates at the notched area same as the matrix tension damage.
It is also found that interface failure appears only near the notches due to localized shear stress
concentration. The inert of interface for all other areas indicates the excellent interface properties of
this triaxially-braided composite, which is consistent with the previous experimental examinations
where delamination is rarely observed during axial tension tests of this material [14].

Figure 7 shows the numerically predicted stress distributions of axial and biaxial tows before
the specimen failure. The stresses on both sides of the notches are not symmetrical because of the
asymmetry geometry feature. As seen from the stress contours, most of the applied loads are afforded
by the axial bundles across the notched sections. Similar to the strain distribution contours in Figure 4,
the shear stress concentration at the notched area is more significant than the normal stress. The shear
stress concentration will then result in shear tension-dominated failure of axial fiber bundles at the
notched area and tension dominated failure of axial fiber bundles at the central area, corresponding
to the inclined (along bias fiber bundle direction) failure pattern of the two axial fiber bundles near
the notches and horizontal failure pattern of fiber bundles at other region (fiber tension damage at
global strain level 1.8% as shown in Figure 6). Similarly, the stress distribution of bias fiber bundles
also explains the initiation and propagation behavior of matrix tension damage behavior at global
strain levels 0.5% and 0.8% (Figure 6).
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Overall, matrix tension damage appears firstly around the notched areas and propagates along
the bias fiber bundles, resulting in a slight decrease of effective stiffness. With the increase of external
loads, the fiber tension damage and delamination will initiate around the notches due to shear stress
and strain concentration in this region. The notch-induced stress/strain concentration effect disturbs
only a limited region of the specimen and the failure of the specimen is mainly due to normal tension
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stress-induced fiber tension damage in the axial fiber bundles. Thus, the measured tensile strength of a
notched specimen can be representative and can be a lower bound of the realistic strength.

The damage areas at strain level 1.8% of Figure 6 are in good correlation with the strain
concentration region of the experimental results reported by Kolhman et al. [14]. As observed by
Kolhman, the highest strain appears near the notch tips, which mainly attribute to the fiber tension
failure. The relatively high strain concentrated along bias fiber is a result of matrix damage within
the fiber bundles. The results of this section demonstrate the capability of a mesoscale model in
predicting the internal damage initiation and propagation behavior of textile composites using various
specimen shapes.

5.3. Numerical Parametric Study

Numerical studies were carried out to further investigate the features of the proposed mesoscale
FE model and how the specific material parameters contribute to the global response of the model.
This is a difficult task mainly because of the tedious modeling process and the considerable
computational quantity. Due to nonuniformity of the strain distribution for the entire specimen,
smooth stress–strain curves can hardly be produced in the notched tension tests, which were used
mainly for strength measurement in Kohlman’s work [14]. For numerical comparison, in the meso-FE
simulations, stress–strain curves are generated based on the method of “digital strain gauge” proposed
by Littell [13]. The macroscopic effective stress for the analyzed section is computed by determining
the summation of the reaction forces on the face of the loaded cross-section divided by the area of
the cross-section between two notches. The effective strain is calculated by dividing the relative
displacement along the loading direction between two nodes by the initial distance between these
two nodes before loading, where the relative displacement is calculated as the midpoints on each end
(through load direction) section of the gauge region.

Figure 8a shows the variation of global stress–strain responses with different damage thresholds
(γf and γm). The dashed line in the figure corresponds to the experimental measured effective strength
of this notched specimen by Kohlman [14]. As mentioned previously, γf and γm are the damage
thresholds of df and dm, which are the global damage variables associated with fiber-dominated and
matrix-dominated failure, respectively. df and dm control the descent of element stiffness along with
damage accumulation, while γf and γm determine the extent of stiffness degradation. As we can see
in Figure 8a, there is a sudden force drop with damage accumulation when γf is lower than 0.3 and
γm is lower than 0.5, which is not physically consistent with the experimental stress–strain response
of this material where the slope of the stress–strain curve tends to degrade gradually. Numerically,
the stress–strain curves become smooth when γf and γm are larger than 0.3 and 0.5, respectively.
Combined with the progressive damage behavior of this specimen discussed in the previous sections,
the effect of γf and γm is concluded as follows; a smaller value of γf leads to premature unloading
of the stress–strain curve and γm impacts the extent of nonlinearity of the curve. This is because
the external load is mainly carried by axial fiber bundles under axial tension and the fiber tension
damage mainly presences in the axial bundles. Then a rapid degradation of stiffness caused by fiber
damage will result in a loss of load-bearing capacity instantaneously in the local area and correspond
to a sharp drop of the stress–strain curve. On the other hand, γm may not affect much the global
responses at the initial stage due to the anisotropic feature of fiber bundles. However, as the matrix
damage accumulates and propagates, γm becomes more significant and could result in unexpected
slope change followed by the initiation of fiber damage (see Figure 8a γf = 0.3 and γm = 0.5). Also,
the predicted effective strength is found to be sensitive to the parameters γf and γm. In this work, the
numerical predicted effective strength correlates with experimental results when γf = 0.3 and γm = 0.5.
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The shear failure coefficient α controls the contribution of shear stress on fiber tension damage.
The results exhibited in Figure 8b are similar to the conclusion for the same material reported in
Zhang [18]. It is found that the effect of α on effective strength is not apparent when the value of α is
lower than 0.5. As expected, the notch induced shear stress/strain concentration produces slightly
higher sensitivity of the global stress–strain responses to the shear coefficient. The results of parameter
analysis also declare that the present constitutive model of fiber bundles needs further improvement
to enhance accuracy and applicability.

5.4. Effect of Specimen Shape

The mesoscale FE model proposed in this study can also be used to assess the rationality of the
designed specimen. The effect of geometrical characteristics of the notched specimen on the test results
was not considered by Kohlmen [14], due to the enormous consumption of time and availability of
specimens. In this work, the correlated mesoscale FE model is employed to address this concern.

Referring to the 0◦/± 60◦ braided architecture shown in Figure 2a, a unit cell of this braided
composite can be discretized into four adjacent subcell regions depending on the presence of axial
and braided tows or lack thereof. A subcell-based modeling approach has been used by many
researchers [12,36] to investigate the static and impact behavior of this triaxially-braided composite.
Subcells A and C contain both axial and bias bundles while subcells B and D contain only bias bundles,
so the distinction of fiber volume in each subcell leads to the different local mechanical properties
in a unit cell. As from the top view and front-side view of the unit cell (Figure 2a), subcells C and
D are antisymmetric against subcells A and B in the thickness direction. The section studies the
relationship of different subcell distributions in the gauge region with damage evolution behavior and
the ultimate strength property of the notched specimen. Figure 9 compares the geometry and damage
contours of different notched specimens, where the subcells adjacent to the notches of the specimens
are inequitable. The label above each specimen represents the two subcells which are closest to the two
notches. For instance, “A-D” indicates that subcell A and D are located in the ends of gauge region
while “A/2-A/2” expresses that half of subcell A connects with the notches.



Materials 2019, 12, 833 15 of 19Materials 2019, 12, x FOR PEER REVIEW 15 of 19 

 

  

Figure 9. Numerical predictions of matrix damage in fiber bundles for notched tension specimen with 
different architectures across the gauge section. 

As from Figure 9, the damages of all specimens initiate and concentrate at the notched area at a 
global strain level of 0.5%. For specimens “A-D” and “B-A”, the damage initiates and concentrates at 
one of the two notched zones, and the damage initiation locations of the two specimens are 
asymmetrically suggesting the asymmetric fabric architecture of the two specimens. This damage 
behavior is related to the fabrics subcells layout (Figure 9), where subcells A and C consist of both 
axial and bias bundles and are supposed to be stronger in the axial direction than subcells B and D. 
Thus, when subcells A/C and B/D are subjected to the same extent of load, subcells B and D are likely 
to damage earlier. Similarly, specimens “B/2-B/2” and “A/2-A/2” show symmetric damage 
progression behavior, as they both have the same fabric subcells layout at the notched area. Besides, 
comparing the specimens “B/2-B/2” and “A/2-A/2”, it is found that the presence of axial fiber bundles 
along the notches restrict the amount of matrix damage and its propagation in fiber bundles, 
especially obvious at the global strain level of 0.75% where the matrix damage area is much smaller 
than that in the other three specimens. However, matrix damage in fiber bundles has little influence 
on the axial stiffness of fiber bundles and shows the negligible impact to the ultimate strength of the 
notched specimen. Table 6 lists the predicted effective strength of the four different notched 
specimens shown in Figure 9. While all specimens have more or less the same effective strength, 
specimen “A/2-A/2” shows relatively lower strength attributing to the incomplete axial fiber bundles 
in the gauge region. In the numerical simulations, the crossing of the fiber damage through the width 
(x-direction) of a single fiber bundle corresponds to the fracture of the specimen. Thus, the presence 
of incomplete axial fiber bundles at both ends of the gauge region in specimen “A/2-A/2” results in 
an earlier failure of the specimen. It should be noted that the fiber volume ratio in the gauge region 
of these four kinds of specimens is the same to ensure the comparability. 

Table 6. The effective strength of notched specimen with different architecture across the gauge 
section. 

Specimen A-D B-A A/2-A/2 B/2-B/2 
Strength 764 MPa 772 MPa 751 MPa 768 MPa 
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different architectures across the gauge section.

As from Figure 9, the damages of all specimens initiate and concentrate at the notched area at a
global strain level of 0.5%. For specimens “A-D” and “B-A”, the damage initiates and concentrates
at one of the two notched zones, and the damage initiation locations of the two specimens are
asymmetrically suggesting the asymmetric fabric architecture of the two specimens. This damage
behavior is related to the fabrics subcells layout (Figure 9), where subcells A and C consist of both axial
and bias bundles and are supposed to be stronger in the axial direction than subcells B and D. Thus,
when subcells A/C and B/D are subjected to the same extent of load, subcells B and D are likely to
damage earlier. Similarly, specimens “B/2-B/2” and “A/2-A/2” show symmetric damage progression
behavior, as they both have the same fabric subcells layout at the notched area. Besides, comparing
the specimens “B/2-B/2” and “A/2-A/2”, it is found that the presence of axial fiber bundles along
the notches restrict the amount of matrix damage and its propagation in fiber bundles, especially
obvious at the global strain level of 0.75% where the matrix damage area is much smaller than that
in the other three specimens. However, matrix damage in fiber bundles has little influence on the
axial stiffness of fiber bundles and shows the negligible impact to the ultimate strength of the notched
specimen. Table 6 lists the predicted effective strength of the four different notched specimens shown
in Figure 9. While all specimens have more or less the same effective strength, specimen “A/2-A/2”
shows relatively lower strength attributing to the incomplete axial fiber bundles in the gauge region.
In the numerical simulations, the crossing of the fiber damage through the width (x-direction) of a
single fiber bundle corresponds to the fracture of the specimen. Thus, the presence of incomplete axial
fiber bundles at both ends of the gauge region in specimen “A/2-A/2” results in an earlier failure of
the specimen. It should be noted that the fiber volume ratio in the gauge region of these four kinds of
specimens is the same to ensure the comparability.

Table 6. The effective strength of notched specimen with different architecture across the gauge section.

Specimen A-D B-A A/2-A/2 B/2-B/2

Strength 764 MPa 772 MPa 751 MPa 768 MPa
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To investigate the effect of notch geometry on the effective strength of the specimen numerically,
specimens with three different notch sizes (dimension in y-direction as shown in Figure 10a) and five
different widths of the gauge section (dimension in x-direction as shown in Figure 10b) were studied.
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(a) Different notch sizes. (b) Different widths of the gauge section (with complete axial tows
between notches).

The numerically predicted effective strength results are also listed in Table 7, where the effective
strength values are found to be insensitive to the height (y-direction value) of the notch size for the
cases studied in this work. However, the axial ultimate strength for the specimen changes with the
changing of widths for the notch, as shown in Table 7. The predicted values of specimens denoted
by “1.5UC” and “2.5UC” are slightly higher than the other three models, which may attribute to the
integrity of axial tows in the gauge region. On the other hand, axial fibers among gauge regions of
the other three specimens are all incomplete resulting in earlier failure of the specimens than that of
specimens with complete fiber bundles.

Table 7. The predicted strength of notched specimens with different geometrical characteristics.

Notch Size Predicted Strength (MPa) Section Size Predicted Strength (MPa)

0.5 × Base 762 1 UC 756
Base 751 1.5 UC * 780 *

2 × Base 755 2 UC 751
2.5 UC * 772 *

3 UC 760

* With complete axial tows between notches.

The fiber damage behavior of two different specimens (“1.5UC” and “2UC”) is shown in Figure 11.
As we can see, fiber damage starts in the specimen “2UC” at the global strain level of 1.4%. The damage
will spread quickly across the axial fiber bundles of half-width and propagate into the central area.
By contrast, fiber damage is not observed in the “1.5UC” specimens at the global strain level of 1.4%.
Fiber damage at a global strain level of 1.8% was found to be less significant compared to that in the
specimen “2UC”. The results further confirm the necessity of including complete axial fiber bundles in



Materials 2019, 12, 833 17 of 19

the gauge section when preparing the notched specimens, which could avoid possible variation from
cutting and provides more stable and reliable measured properties of the material.Materials 2019, 12, x FOR PEER REVIEW 17 of 19 
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Figure 11. Comparison of predicted damage in in-complete (a) and complete (b) axial fiber bundles in
gauge region.

The appropriate design of the specimen is the prerequisite for determining accurately the
mechanical properties of braided composites, which is a big challenge due to the lack of advanced test
standards. It is an onerous and costly process to optimize the specimen through an experiment only,
and the presented numerical method is an alternative and efficient tool for specimen design.

Overall, the fabrics architecture across the gauge section has little influence on the effective
strength of the notched sample. However, the simulation capability of the mesomechanical model in
predicting the impacts of mesoscale geometric features on the global effective properties of the samples
is valuable and advantageous.

6. Conclusions

The progressive damage behavior of a notched single-layer triaxially-braided composite under
axial tension is analyzed using a three-dimensional mesoscale FE model with anisotropic damage
model and an interlaminar tow-to-tow cohesive zone. The proposed model is correlated and validated
against full field strain distributions and strength value acquired in the open literature. This mesoscale
model is successfully applied to predict the damage propagation of each constituent, including an
axial fiber bundle, bias fiber bundle, and interface.

The nonlinearity of global effective stress–strain curve of this notched specimen under axial
tension is caused by matrix damage among bias fiber bundles, and the final unloading is identified
followed by the fiber tensile damage of axial fiber bundle. The numerical parametric studies identify
the sensitivity of stress–strain response to damage parameters. Through geometric characteristic
analysis, the different subcell arrangements in the gauge region and dimensions of the notched region
are further investigated. The integrity of axial fiber bundles in the test region is considered as the key
factor which affects obviously the effective strength of notched specimen. The geometric layout of the
subcells in the gauge region shows the negligible impact on the effective strength.

The develop mesoscale FE model could be extremely useful in understanding the failure behavior
of this braided composite material. For further studies, this mesoscale model could be used to
investigate notched specimens under different loading conditions, like transverse tension. The results
of this work demonstrate the feasibility of using a mesoscale FE model as a virtual testing tool
framework for braided composites.
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