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Abstract: Temperature distribution gradient in metal powder bed additive manufacturing (MPBAM)
directly controls the mechanical properties and dimensional accuracy of the build part. Experimental
approach and numerical modeling approach for temperature in MPBAM are limited by the restricted
accessibility and high computational cost, respectively. Analytical models were reported with high
computational efficiency, but the developed models employed a moving coordinate and semi-infinite
medium assumption, which neglected the part dimensions, and thus reduced their usefulness in
real applications. This paper investigates the in-process temperature in MPBAM through analytical
modeling using a stationary coordinate with an origin at the part boundary (absolute coordinate).
Analytical solutions are developed for temperature prediction of single-track scan and multi-track
scans considering scanning strategy. Inconel 625 is chosen to test the proposed model. Laser power
absorption is inversely identified with the prediction of molten pool dimensions. Latent heat is
considered using the heat integration method. The molten pool evolution is investigated with respect
to scanning time. The stabilized temperatures in the single-track scan and bidirectional scans are
predicted under various process conditions. Close agreements are observed upon validation to the
experimental values in the literature. Furthermore, a positive relationship between molten pool
dimensions and powder packing porosity was observed through sensitivity analysis. With benefits
of the absolute coordinate, and high computational efficiency, the presented model can predict the
temperature for a dimensional part during MPBAM, which can be used to further investigate residual
stress and distortion in real applications.

Keywords: in-process temperature in MPBAM; analytical modeling; high computational efficiency;
molten pool evolution; laser power absorption; latent heat; scanning strategy; powder packing

1. Introduction

Metal powder bed additive manufacturing (MPBAM), alternatively named powder bed fusion
(PBF), is one of the widely used additive manufacturing processes, in which high-density laser power
is used to selectively melt and fuse powders to the build part in a layer by layer manner. MPBAM is
capable of producing geometrically complex parts with effective cost [1]. The large temperature
gradient in MPBAM is frequently observed due to the repeatedly rapid heat and solidification,
which are detrimental to the quality of the produced part by causing defects, such as cracking [2],
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undesired residual stress [3], and part distortion [4,5], and thus alternating the part’s mechanical
properties and functionality [6–8]. Therefore, the monitor or prediction of the temperature distribution
in MPBAM is needed.

In situ temperature measurement is difficult and inconvenient due to the restricted accessibility
under elevated temperature conditions [9,10]. Non-contact and contact techniques are employed
for temperature measurements in the additive manufacturing (AM) process. Non-contact thermal
photographic techniques, such as an infrared (IR) pyrometer and an IR camera, can only
measure temperatures on the exposed surfaces [11,12]. Contact techniques, such as an embedded
thermocouple, can only measure temperatures inside the substrate rather than the build [13,14].
In fact, the temperatures inside the build have a direct influence on the quality of the produced
part. More in situ measurement techniques in the AM process can be found in the review
literature [15,16]. In addition, molten pool measurement using an optical microscope based on the
solidified microstructure is a post-processing technique for thermal analysis, which requires extensive
experimental work for sample preparation, such as cutting, polishing, and etching [17,18].

Numerical models based on finite element method (FEM) were developed to address the difficulty
and inconvenience in monitoring the additive manufacturing (AM) process. Roberts developed a FEM
model to predict the temperature distribution in selective laser melting (SLM) of Ti-6Al-4V involving
multiple layers with an element birth and death technique [19]. Similar numerical models were
developed with different types of heat sources considering the absorptivity and the different shape
of the heat source [20,21]. Fu et al. developed a FEM model to predict the temperature distribution
in the SLM of Ti-6Al-4V using powder material properties and bulk material properties. Improved
prediction accuracy was reported using powder material properties upon validation to experimental
molten pool dimensions [22]. FEM models were also developed for temperature prediction in SLM of
various materials, including aluminum, titanium, stainless steel, and Inconel alloy [23–26]. Criales et al.
investigated the sensitivity of material properties and process parameters in the prediction of SLM of
Inconel 625 [27]. Papadakis et al. developed a computational reduced model for prediction in SLM
with improved computational efficiency, in which the heat in each scanning vector was quantified
as an input [28]. The recent numerical models have considered the influence of powder packing
and molten pool dynamics in the temperature prediction, which allowed the investigation of defects
in the produced parts [29–31]. Qi et al. and Kolossov et al. developed FEM models to predict the
temperature distribution in a coaxial laser cladding process and selective laser sintering (SLS) process,
respectively [32,33]. Residual stress and part distortion in the AM process were also investigated
through numerical modeling [34–36]. The detailed discussion of FEM models is out of the scope of
this work. More details can be found in the review literature [37–39]. Although FEM models have
made considerable progress in predicting the AM processes, the high computational cost is still the
major drawback.

Analytical models have demonstrated their high computational efficiency, high prediction
accuracy, and broad applicability in predicting the manufacturing processes, and in the inverse
determination of the material constants [40,41]. To overcome the drawback in computational efficiency,
analytical models were also developed to predict the AM process. Peyre et al. developed a
semi-analytical model to predict the temperature in direct metal deposition (DMD), in which an
analytical model and a FEM model were used to characterize the deposition geometry and temperature
distribution, respectively [42]. Yang et al. developed another semi-analytical model to predict the
temperature in SLM, in which an analytical model and a FEM model were used to characterize the
moving heat source and impose heat transfer boundary condition, respectively [43]. Van Elsen et al.
summarized three moving heat source solutions based on the coordinate with a moving origin at
the heat source location, namely moving point heat source, moving semi-ellipsoidal heat source,
and moving uniform heat source [44]. Isotropic and homogeneous material and semi-infinite medium
were assumed in those models. The aforementioned heat source solutions were originally developed
by Carslaw and Jaeger [45]. The moving point heat source was further developed with consideration
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of heat source shape for temperature prediction in SLM [46]. Rosenthal developed a moving line
heat source solution to predict the temperature in welding for an infinite thin plate [47]. The line
heat source solution was adopted to predict the temperature in coaxial laser cladding, in which
single-track scan prediction and semi-infinite medium assumption were enforced [48]. Tan et al.
further developed the line heat source solution by transforming the moving coordinate to the absolute
coordinate for consideration of the part dimensions. The final solution was constructed from the
superposition of the actual heat source and two image heat sources [49]. This solution is limited
only for continuous single-track scans. However, the FEM models used in semi-analytical models
prevent optimized computational efficiency; most developed analytical models employed a moving
coordinate and assumed a semi-infinite medium and steady-state condition through the process.
Those assumptions reduced the usefulness of the developed model in real applications because
of the lack of time-dependence and location-dependence related to part dimensions. Moreover,
Green’s Function has been widely used for temperature and stress predictions of the bounded medium
due to thermal and mechanical loads, but the high mathematical complexity resulted in an unoptimized
computational efficiency [45,50,51]. The temperatures in a dimensional part cannot be accurately and
efficiently predicted with the developed analytical models for multi-track scans in MPBAM.

This paper presents an analytical model to predict in-process temperatures in MPBAM based
on a stationary coordinate, whose origin is located at the part boundary (absolute coordinate),
with consideration of the laser power absorption, latent heat, scanning strategy, and powder packing
porosity. Analytical solutions are developed to predict temperatures in single-track scans and
multi-track scans under various process conditions. Molten pool dimensions are then obtained
by comparing the predicted temperatures to the material melting temperature. Inconel 625 was chosen
to test the presented models with validation to the molten pool dimensions in the literature, which were
measured based on the solidification microstructure [18]. The following tasks were performed in this
study: (1) to inversely determine the laser power absorption with comparison between predicted
molten pool dimensions and experimental values using trial-and-error method; (2) to investigate
the molten pool evolution with respect to scanning time; (3) to predict the stabilized molten pool
dimensions in single-track scans and bidirectional scans under various process conditions, and then
perform validations against experimental values; (4) to record and present the computation time;
(5) to investigate the influence of powder packing porosity on the predicted temperatures through
sensitivity analyses.

The employed absolute coordinate and time consideration allows the temperature prediction
for a dimensional part, which significantly improves the usefulness of the developed model in real
applications. For comparison, other analytical models assume steady-state condition, and thus they
are not applicable for temperature prediction at the beginning of the scan, where the part boundary
is located at. The in-process temperature analysis allows the investigation of molten pool evolution,
specifically the growth and stabilization of the molten pool. The high computational efficiency allows
the inverse determination of laser powder absorption based on the experimental measurements.

2. Methodology

In this work, the in-process temperature in MPBAM is predicted through analytical modeling
based on the absolute coordinate. The heat balance governing equation is expressed as

∂ρu
∂t

+
∂ρHV

∂x
= ∇·(k∇T) +

.
q (1)

where u is internal energy, H is enthalpy, ρ is density, k is conductivity, and
.
q is a volumetric heat

source, t is time, x is distance, V is heat source moving speed, and T is temperature. With V = 0,
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and du = CpdT, where Cp is specific heat, the heat balance equation becomes the heat conduction
equation expressed as

∂2T
∂x2 +

∂2T
∂y2 +

∂2T
∂z2 =

1
κ

∂T
∂t

+
.
q (2)

where κ is thermal diffusivity (κ = k/ρCp), x, y, z denote three mutually perpendicular directions in
the absolute coordinate.

A point heat source solution is developed by Carslaw and Jaeger [45] with satisfaction of the heat
conduction equation as the following.

θ(x, y, z) =
Q

8(πκt)
3
2

exp
[
− x2 + y2 + z2

4κt

]
(3)

where Q is the amount of heat, θ is temperature change (θ = T − T0).
The moving point heat source solution at the current time (t) and location (X−V(t− t′), Y, Z)

due to the heat input at the previous time (t′) was derived from the point heat source solution as
the following.

θ(x, y, z, t) =
Pdt′

8ρc[πκ(t− t′)]
3
2

exp

[
−{x−V(t− t′)}2 + y2 + z2

4κ(t− t′)

]
(4)

where P, V are laser power and laser scanning velocity, respectively, x-direction is assumed to be laser
scanning direction, y-direction is assumed to the hatch direction, as illustrated in Figure 1a.
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The 3D in-process temperature can be calculated by integrating the temperature solution with a
time range from 0 to t. With the consideration of laser power absorption (η), the temperature solution
becomes the following.

θ(x, y, z, t) =
Pη

8ρCp(πκ)
3
2

∫ t

0

exp
[
− (x−V(t−t′))2+y2+z2

4κ(t−t′)

]
(t− t′)

3
2

dt′ (5)
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The temperature solution can be further derived by integrating t′ from 0 to t as the following.

θ(x, y, z, t) =
Pη

2Rktπ
3
2

exp
(

Vx
2κ

) ∫ ∞

R
2
√

πt

exp
[
−ξ2 −

(
V2R2

16κ2ξ2

)]
dξ (6)

where R2 = x2 + y2 + z2, t is the current time, t′ is previous time, x, y, z are the corresponding
distances from the laser source, ξ is an integration variable which leads to the concise expression.

The 2D in-process temperatures in the single-track scan can be calculated by setting y-direction
distance as zero.

θ(x,0,z,t) =
Pη

8ρCp(πκ)
3
2

∫ t

0

exp
[
− (x−V(t−t′))2+z2

4κ(t−t′)

]
(t− t′)

3
2

dt′ (7)

The 2D in-process temperatures in the multi-track scan with hatch space (h) is calculated by
combining temperature at the current track location due to the energy input from the previous track
(θ1) and the temperature due to the added energy input from the current track (θ2). The in-process
temperatures can be expressed as the following.

θ(x, 0,z, t) = θ1 + θ2 (8)

θ1(x,h,z,t1) =
Pη

2Rktπ
3
2

exp
(

Vx
2κ

) ∫ ∞

R
2
√

πt

exp
[
−ξ2 −

(
V2R2

16κ2ξ2

)]
dξ (9)

θ2(x,0,z,t) =
P

8ρCp(πκ)
3
2

∫ t

t1

exp
[
− (x−V(t−t′))2+y2+z2

4κ(t−t′)

]
(t− t′)

3
2

dt′ (10)

θ2(x,0,z,t) =
P

8ρCp(πκ)
3
2

∫ t

t1

exp
[
− (x+V(t−t′))2+y2+z2

4κ(t−t′)

]
(t− t′)

3
2

dt′ (11)

where a positive scanning velocity is used for unidirectional scans, as in Equation (9); a negative
scanning velocity is used for bidirectional scans, as in Equation (10). The unidirectional scans and
bidirectional scans are illustrated in Figure 1b. Additionally, t1 is the required time for completing
previous track in two consecutive tracks and t is the current time in two consecutive tracks. Then,
the transient temperature in multi-track scans can be calculated in the same manner.

In addition, the latent heat is considered using the heat integration method, in which the
temperature of the molten pool material is lowered by an amount as the following, due to the phase
transformation [44].

∆T = H f /Cp (12)

The influence of powder packing porosity on the predicted temperatures is investigated using
effective material properties as the following.

ρe = (1− τ)γρ (13)

ke = (1− τ)βk (14)

where subscript e denotes effective values, τ is powder packing porosity, γ, β are coefficients that can
be taken as 1, as suggested by Criales et al. [27].

3. Results and Discussion

To investigate the accuracy and effectiveness of the presented model, temperatures in MPBAM of
Inconel 625 were predicted under different process conditions in single-track scans and bidirectional
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scans. Six different process conditions were used for single-track scans and bidirectional scans
separately, as given in Table 1. Molten pool dimensions were then obtained from the comparison
between the predicted temperatures and material melting temperature, as illustrated in Figure 2.
The determined molten pool dimensions were validated by the experimental measurements in the
literature, in which an EOS M2070 machine (ASTM International, West Conshohocken, PA, USA) was
used in the MPBAM process with gas atomized powders, and a digital optical microscope was used
to measure the molten pool dimensions based on the solidification microstructure. The machining
uses a single-mode, continuous wave ytterbium fiber laser under nitrogen gas ambiance. The gas
automized powder has an average size of 35 µm with powder size distribution of D60% = 29.4 µm,
D10% = 13.5 µm, D90% = 43 µm (D denotes powder diameter). More details of experimental design
can be found in the reference [18].

Table 1. Process conditions for single-track scans and bidirectional scans in SLM of Inconel 625 [18].
The layer thickness is 20 µm.

Test Laser Powder P (W) Scanning Velocity V (mm/s) Hatch Space h (mm)

1 169 875 0.1
2 195 875 0.1
3 182 800 0.1
4 195 725 0.1
5 169 725 0.1
6 195 800 0.1
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temperature contours.

The thermophysical material properties of Inconel 625 alloy are given in Table 2. Laser power
absorption is affected by laser and powder materials, such as laser wavelength, powder material
properties, powder packing-related surface roughness, laser-workpiece standoff distance, etc. [52,53].
Therefore, a given laser power absorption should be valid only for a specific experimental setup.
Since the laser power absorption has not been measured and reported in the literature, the absorption
was inversely determined using the presented model by minimizing the difference between
predicted molten pool depth and experimental molten pool depth under test 6 process conditions.
Inverse analysis has been widely used in the determination of materials constants and physical
parameters [54]. The trial-and-error method was employed with varying absorption values. The laser
absorption was determined as 40% for the current study, as shown in Figure 3. A linear relationship
was observed with underestimated absorptions. A non-linear relationship was observed with
overestimated absorptions, which might be caused by the more significant influence of latent heat
on the overestimated temperature zone. The determined laser absorption (40%) was used in the
following studies in this work. The simple calculations in the presented solutions without mesh and
iteration, which FEM models rely on, lead to the high computational efficiency of the developed
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model. Computational time and implementation details were provided for the investigation of the
computational efficiency of the presented model. A MATLAB program was used to implement the
predictions using the presented model on a personal computer running at 2.8 GHz. The computation
time under each process condition was 27 s less for an area near a heat source, which has a length
(x = 1 mm) with 5 µm increments and a height (z = 0.3 mm) with 1 µm increments. Other related
variables of molten pool length, molten pool depth, and corresponding prediction error are given in
Table 3.

Table 2. Material properties of Inconel 625 and inversely determined laser absorption
(T0 = 20 ◦C) [14,27].

Density ρ
(kg/m3)

Thermal
Conductivity
k (W/m–◦C)

Specific
Heat Cp

(J/kg–◦C)

Solidus
Temperature

Ts (◦C)

Liquidus
Temperature

TL (◦C)

Latent
Heat Hf
(J/kg)

Absorption
η (%)

8840 9.8 410 1290 1350 227,000 40
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Table 3. Inverse determination of laser power absorption in this study.

Absorption
η (%)

Molten Pool
Length
L (µm)

Molten Pool
Depth
D (µm)

Molten Pool
Depth Error

Error (%)

Computation
Time
tc (s)

20 180 29 29.27 26.11
25 225 32 21.95 24.46
30 270 35 14.63 23.06
35 310 38 7.32 22.95
40 355 41 0.00 23.04
45 395 44 7.32 23.23
50 440 46 12.20 22.95
55 480 48 17.07 23.10
60 525 51 24.39 23.20

To investigate the evolution of molten pool during the MPBAM, the in-process temperatures were
predicted in a single-track scan under test 6 process conditions. Predicted temperature profiles on the
top view and the cross-sectional view along the laser scanning direction were illustrated in Figure 4.
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temperature contours.

The molten pool growth for the stabilization process was investigated with a time interval from
0.001 ms to 10 ms, which corresponded to a distance interval from 0.0008 mm to 8 mm. The trends
of molten pool length, molten pool width, and molten pool depth over time were predicted using
the presented model, as shown in Figure 5a. The molten pool became stable after 1 ms. The trend
of molten pool volume over time is shown in Figure 5b, which was calculated as the following [22].
All associated data is given in Table A1 in the Appendix A.

Vol =
πDLW

6
(15)
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depth, and (b) molten pool volume.

Moreover, the molten pool growth and stabilization process in the second track of two consecutive
bidirectional scans was predicted, as shown in Figure 6. The molten pool in the second track of
bidirectional scans became stable after 0.5 ms, which was faster than that in the single track scan (1 ms).
In addition, the larger molten pool length and width were observed in the bidirectional scan after
stabilization because of the heat affected zone due to the previous track.
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Figure 6. The growth and stabilization of predicted molten pool in the second track of bidirectional
scans using the determined absorption of 40% in terms of molten pool length and molten pool depth.

The stabilized melting depth values under various process conditions were predicted and
validated to the experimental values in the literature [18]. The temperature distributions along the
depth (z-direction) in a single-track scan and bidirectional scans under test 6 process conditions were
predicted, as shown in Figure 7. The maximum temperature in a bidirectional scan is higher than that in
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the single-track scan. The constant temperature region in both scans is due to the consideration of latent
heat, in which phase transformation takes place rather than temperature increase with continuous heat
input. A similar trend was also reported in the literature [19,32,44]. Close agreements were observed
upon validation to experimental values under various process conditions for single-track scans and
bidirectional scans, as shown in Figure 8a,b, respectively. The deviations between predictions and
experiments might be caused by the molten pool shrinkage [55], which was assumed to be negligible.
The predicted melt length, melt depth, and computation time are given in Table 4. The average
computation time for 2D temperature prediction in single-track scans was 19.44 s; the average
computation time for 2D temperature prediction in bidirectional scans was 88.17 s. However, a 3D
temperature prediction requires much longer computational time, especially in bidirectional scans,
because a large number of 2D temperature profiles need to be calculated iteratively with consideration
of the influence of the heat affected zone produced by the previous scans.
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Figure 8. Validation of predicted molten pool depth in (a) a single track scan and (b) a bidirectional
scan after stabilization. Black color represents predicted melt depth. Red color represents experimental
melt depth based on solidified microstructure. The determined absorption of 40% was used in
the predictions.
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Table 4. Predicted molten pool dimensions for single-track scans and bidirectional scan under
steady-state conditions at x = 4 mm, y = 0.1 mm, with 2 µm increments in x and z directions.

Single-
Track
Test

Molten
Pool

Length
L (µm)

Molten
Pool

Depth D
(µm)

Computation
Time tc (s)

Bidirectional
Test

Molten
Pool

Length
L (µm)

Molten
Pool

Depth D
(µm)

Computation
Time tc (s)

1 310 36 19.60 1 450 44 87.78
2 360 39 18.90 2 510 47 88.18
3 330 39 19.72 3 480 48 91.38
4 360 43 19.73 4 510 52 89.68
5 310 40 19.64 5 450 48 85.91
6 360 41 19.04 6 510 49 86.12

Moreover, the influence of powder packing porosity on predicted temperature was investigated
by sensitivity analyses for single-track tests and bidirectional tests separately. The packing porosity
was deliberately given as 0%, 20%, 40%, and 60% in an increasing trend. The simple fraction models
(in Equations (13) and (14)) were employed to correlate between material properties and powder
packing. A similar method has been employed for sensitivity analysis, as reported in the literature [27].
It should be noted that the fraction models calculate materials’ properties considering the porosity
of packed powder rather than the porosity of the build. The build porosity is affected by powder
packing and process conditions. Positive correlations were observed between the packing porosity
and melt depth, as illustrated in Figure 9. Therefore, the increase in powder packing porosity leads
to an increase in molten pool dimensions, and vice versa. This finding confirms the instinctive trend
because larger porosity leads to a lower value for thermal conductivity, which prevents energy being
dissipated into the build.
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This work investigated the molten pool evolution, including the growth and stabilization of
the molten pool using the presented temperature model with analytical solutions. The recorded
and presented computation time demonstrated the high computational efficiency of the presented
model. With the absolute coordinate and the extended predictive capability for multi-track scans,
the temperature distribution can now be predicted for a dimensional part, which significantly improved
the usefulness of the presented model in real applications. The high computational efficiency also
allows the process-parameters planning for desired temperature conditions. The predicted temperature
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can be used to further investigate residual stress and part distortion [56,57]. It should be noted
that the cooling state after laser turning off and cooling-associated molten pool shrinkage were not
considered in this study. The limitations of the presented model are the following: the limited
predictive capability for single layer scanning; the assumption of temperature-independent material
properties; the assumption of simplified point heat source. The cooling state, extended predictive
capability for multiple layer scans, temperature-dependent material properties, and three-dimensional
heat source should be considered in future works.

4. Conclusions

This work investigates the in-process temperature in MPBAM by further developing a moving
point heat source solution, as originally proposed by Carslaw and Jaeger [45], to extend its applicability
from a single-track scan to multi-track scans with consideration of laser power absorption, latent heat,
scanning strategy, and powder packing porosity. The absolute coordinate allows the temperature
prediction for a dimensional part with consideration of time-dependence and location-dependence,
with respect to the beginning time and location of MPBAM. The laser power absorption was inversely
determined using trial and error method based on experimental measurement of molten pool
dimensions. The latent heat was considered by heat integration method. The extended applicability and
the absolute coordinate significantly increase the usefulness of the developed model in real applications.
For comparison, other analytical models predicted temperature distribution in single-track scans with
the semi-infinite medium assumption, in which a moving coordinate was defined with the origin
located at the laser heat source. To test the presented model, Inconel 625 alloy was chosen to predict
the temperatures in MPBAM under various process condition. Good agreements were observed upon
validation against experimental values in the literature. The molten pool evolution was investigated to
demonstrate the molten pool growth and stabilization during the scanning process. It should be noted
that the cooling state in the post-process has not been considered in the presented model. A positive
correlation between molten pool dimensions (temperature distribution) and powder packing porosity
was revealed through sensitivity analyses using the presented model. With the benefits of extended
applicability for multi-track scans, the absolute coordinate, and the high computational efficiency, the
developed model can be used for temperature investigation in real applications.
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Nomenclature

MPBAM metal powder bed additive manufacturing
PBF powder bed fusion
SLM selective laser melting
SLS selective laser sintering
DMD direct metal deposition
FEM finite element method
IR infrared
u internal energy
H enthalpy
ρ density
ρe effective density
k thermal conductivity
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ke effective thermal conductivity
cp specific heat
κ thermal diffusivity
.
q a volumetric heat source
Q amount of heat
H f latent heat
P laser power
η absorption
V laser heat source moving velocity
h hatch space
w track length
x, y, z coordinate
T, T0, Tm temperature, room temperature, material melting temperature
∆T temperature change due to the consideration of latent heat
θ temperature change due to the moving laser heat source
t time
ξ time related integration variable
τ, γ, β powder packing related coefficients
L, D, W, Vol molten pool length, depth, width, volume

Appendix A

Table A1. Variables in studying molten pool growth and stabilization during a single-track scan under
test 6 condition.

Scan Time
t (ms)

Melt Length
L (µm)

Melt Width
W (µm)

Melt Depth
D (µm)

Melt Volume
Vol (µm3)

0.001 15 12 6 565
0.005 20 24 10 2513
0.01 30 28 14 6158
0.05 70 56 28 57,470
0.1 105 68 34 127,109
0.5 330 84 40 580,566
1 350 84 40 615,752
5 350 84 40 615,752

10 350 84 40 615,752
50 350 84 40 615,752
100 350 84 40 615,752
500 350 84 40 615,752

1000 350 84 40 615,752
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