



Supplementary Information

Thermoelectric Properties of Scandium Sesquitelluride

Dean Cheikh ¹, Kathleen Lee ¹, Wanyue Peng ², Alexandra Zevalkink ², Jean-Pierre Fleurial ¹ and Sabah K. Bux ^{1,*}

- ¹ Thermal Energy Conversion Research and Advancement Group, Jet Propulsion Laboratory/California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA; dean.a.cheikh@jpl.nasa.gov (D.C.); Kathy.Lee@jpl.nasa.gov (K.L.); Jean-Pierre.Fleurial@jpl.nasa.gov (J.-P.F.)
- ² Chemical Engineering and Materials Science Department, Michigan State University, East Lansing, MI 48824, USA; pengwany@msu.edu (W.P.); alexzev@msu.edu (A.Z.)
- * Correspondence: Sabah.K.Bux@jpl.nasa.gov; Tel.: +1-818-393-7067

Figure 1. EDS map of compacted Sc₂Te₃ sample. Sc and Te were found to be evenly distributed. The detected O resulted from surface oxidation.

Table 1. Measured and theoretical sample densities for Sc₂Te₃. Measurements were made using sample geometry. The sample was over 99% dense.

Sample Density	Theoretical Density
5.29 g/cm ³	5.32 g/cm^3