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Abstract: This research is focused on the dynamic behavior and failure mechanisms of an ecologically
vegetated bituminous mixture applied in a riverbank revetment model. The dynamic bearing
capacity of the vegetated riparian slope was evaluated. The dynamic soil pressure distribution and
deformation were analyzed, followed by 3D elastic–plastic finite element modeling. Experimental
results showed that the cumulative vertical settlement increased rapidly with the loading time.
Vegetation added into bituminous mixtures was found to be effective in inhibiting the development
of the vertical displacement of sand. The research described in this paper provides a theoretical basis
and guidelines for the protection of riverbank slopes.

Keywords: cyclic loading; vegetated bituminous mixture; dynamic characteristics; failure mode;
numerical simulation

1. Introduction

With the rapid urbanization movement in China, urban ecological friendliness is becoming an
emerging issue. Ecological systems including vegetation and plants around riverbanks have been
damaged in some areas of China, leading to potential slope failure, and a series of environmental
problems such as soil erosion, debris flow, and food chain destruction. These environmental problems
have occurred in several coastal areas both in China and overseas and have aroused public attention [1–8].
A porous planting asphalt concrete or vegetated bituminous mixture could be applied in riparian
revetments as one potential solution to mitigate these environmental problems. Ecological grass or
plants can be incorporated into the bituminous mixture. Due to the widely distributed pores, moisture
and air can easily enter a vegetated bituminous mixture. Growing vegetations in bituminous mixture
could become a new technology. It is suitable for application in housing, municipal engineering and for
the slope structures of urban river revetments, subgrades and pavement surfaces. It is also believed to
be an effective method of solving existing environmental problems in riverbank revetments, especially
given that the stability of riverbank revetments has become a hot research topic worldwide [9–12].

Some theoretical and experimental studies have been performed to target the engineering stability
of riverbanks and for slope protection. For example, Van Beek and Bogaard [13] found that unstable
soil was significantly stabilized when completely planted with vegetation. When vegetation was
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planted deep into the unstable soil, the enhancement of soil stability was generally limited to the soil
surface [13]. Osman and Barakbah [14] identified the root density and soil moisture content as the slope
stability index. It was further found that the planting root density was positively correlated with the
soil shear strength, and the soil moisture content was negatively correlated to the stability of riverbank
revetments [14]. Zhou and Zhao [15] found that the shear strength of soil on the revetment surface
increased significantly by adding grass roots, and the cohesion was about 35%~100% higher than that
of the revetment soil without grass roots. The stability coefficient of the shallow layers of the revetment
increased by about 2%~11% due to the reinforcement effect from grass roots [15]. Zhang et al. [16]
focused on the mechanism of bonding between lateral roots and soil and developed a failure model of
frictional root-soil bond. The shear tests performed by Zhang et al. [17] revealed that planting root
density had a significant impact on the shear strength of soil. Basically, root density had a positive
correlation with the soil shear strength before the density reached a certain limit [17]. Afterwards,
the root density would cause the reduction of the shear strength of soil [17]. Ahmed and EI-Kourd [18]
analyzed porous vegetated concrete slopes and suggested that surface cover materials should be able
to resist rain erosion. Malhotra and Carette [19] developed a slope protection technology to prevent
planting from flooding and to mitigate the difficulty of restoring moisture within planting. Zhou and
Chen [20] found that the linear viscoelastic behavior of the asphalt concrete was characterized by the
generalized Maxwell model according to the results of dynamic modulus test. Si and Cao [21] studied
the stress and deformation distribution characteristics of HMAC (high-modulus asphalt concrete)
pavements and found that under the action of moving loads, the strain and displacement generated
in HMAC pavements were lower than that in conventional asphalt pavements. Bazzaz et al. [22]
indicated that a straightforward procedure method was capable of characterizing the NVE (nonlinear
viscoelastic) response of asphalt concrete materials.

A review of the existing literature indicated that research into the stability of riparian revetment
adopting vegetated bituminous mixtures is mostly limited to static loading conditions [23–27]. Existing
review-based studies [28] have not sufficiently addressed the dynamic features of bituminous mixtures,
especially under cyclic loading [29]. However, studying the dynamic behavior of bituminous mixtures
is important, especially for those applied in transportation infrastructure under high traffic loads [30].
The existing studies of sustainable bituminous mixtures [31–33] have not sufficiently addressed their
ecological friendliness when applied in riverbank structures. On the other hand, the riparian revetment
will be inevitably subjected to cyclic loads such as rainwater scouring, rolling, and adjacent construction [34].
The failure mode of revetments under dynamic cyclic loading has not been widely studied.

In the current study, a physical riverbank revetment facility was built to represent the
real-world scenario of the failure progress of a riverbank revetment. Adopting reasonable ratios
of heterogeneous raw materials, the vegetated bituminous mixture samples were obtained for testing
in the natural gravity environment. The revetment test facility was subjected to dynamic cyclic
loading. The experimental tests were designed to analyze the revetment’s dynamic bearing capacity,
deformation, and dynamic soil pressure. Afterwards, the experimental test results were compared to a
numerical simulation adopting a three-dimensional elastic-plastic finite element model (FEM), in order
to explore the failure mechanism of the vegetated riverbank revetment under long-term cyclic loading.

2. Test Schemes

In order to investigate the dynamic characteristics of vegetated riparian revetment under cyclic
loading, the control sample, made of unvegetated bituminous mixture, was prepared as the comparison
to the bituminous mixture with grown plants applied in the riverbank revetment. The bituminous
mixture layer had a thickness of 60 mm, which was considered to be suitable for growing vegetation.

2.1. Vegetated Bituminous Mixture

The purpose of studying the vegetated bituminous mixture was to enable the plants or grass to
grow within bituminous materials, as a method for soil-less cultivation. To enable vegetation in the
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porous bituminous mixture, it is critical that raw materials and vegetation growth are present before
applying the vegetated bituminous mixture to the revetment facility.

2.1.1. Raw Materials

The vegetated bituminous mixture was prepared using multiple raw materials including SBS
(i.e., Styrene-Butadiene-Styrene) modified bitumen, vermiculite powder (absorption rate between 18%
and 20% and the expansion ratio from 10 to 20), perlite powder (density of 70 kg/m3 and compressive
strength of 0.5 MPa), sodium carboxymethyl cellulose (CMC-Na), soilless cultivation nutrient solution,
ferrous sulfate, soil nutrition, organic compound fertilizer, and Setaria.

The SBS modified bitumen was made by adding SBS modifier into the original bitumen.
SBS modifier was evenly dispersed in the bitumen by shearing and stirring. A stabilizer was also added
into the SBS bitumen to form an SBS blend. The original bituminous mixture was firstly compressed
into desired forms using machines in the factory. The compressed and shaped mixture samples were
then cooled down before the porous asphalt was infiltrated with the cultivation solution. More detailed
steps of growing vegetation and preparing the vegetated bituminous mixture are described below:

• Adopting an appropriate proportion of nutrient solution, ferrous sulfate particles and water to
form a mixed solution;

• Properly mixing vermiculite powder, perlite, nutritive soil, compound fertilizer and seeds to
prepare the cultivation environment for vegetation;

• Adding CMC-Na thickener into the cultivation solution until it reached a uniform state;
• Finally, infiltrating the viscous cultivation solution from the last step into the porous bituminous

mixture; an alternative approach would be to immerse the porous bituminous mixture into the
cultivation solution for half an hour (see Figure 1). The cultivation solution should be abundant
to immerse the asphalt samples. Theoretically, the porous asphalt has a porosity rate of around
20% and could be fully filled with cultivation solution. In practice, however, volumes between
10% and 15% of asphalt samples were filled by cultivation solution.
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Figure 1. Mixing cultivation solution with the porous bituminous mixture.

2.1.2. Vegetation Preparation and Growth

Following the raw material preparation and planting procedure, the maintenance work
became critical, including watering the vegetation, fertilizing, and removing impurities. Generally,
the vegetation was watered twice or three times per day, and a higher frequency of watering would
be required in hot weather to ensure the growth of vegetation roots. The growth status of vegetation
should also be watched to ensure the proper amount of fertilization. Generally, fertilization once every
ten to 14 days would be sufficient. It was also recommended to mix the nutrition solution and ferrous
sulfate into a diluted solution to water the vegetation. During the growth period, plastic film covering
was also needed to protect vegetation from low temperature on cold days. The growth of vegetation at
different cultivation days is illustrated in Figure 2.

It can be seen from Figure 2 that Setaria grew throughout the cultivation days, with its roots
growing in both size and quantity. On day 33, fibrous roots were also observed to be growing beside the
main root. A longer cultivation period would lead to a more developed root system of the vegetation.
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Figure 2. The growth of vegetation in bituminous mixture

The layering method was applied to set the thickness of 30 cm for each soil layer to ensure that the
surface layer would achieve the required density and moisture content. The experimental revetment
model was constructed by specified forming devices. After the revetment was formed, water was
added until the saturated state was reached. The saturation rate was measured using the electrical
resistivity method. After stalling for a certain period of time, water was released.

Once the revetment was formed and properly saturated, the vegetated mixture was placed
evenly on the revetment surface. Continuous irrigation was applied to nurture the vegetation roots to
grow downwards until they were fully consolidated with the foundation soil. Two main steps were
implemented to ensure the full consolidation of vegetation with the foundation soil. Firstly, an asphalt
concrete mixture was added with a mineral admixture (i.e., CMC-Na thickener) to increase its internal
porosity and allow more internal space for vegetation growth. The pH value was also reduced to meet
the planting growth requirements. The local climate was considered to select proper vegetation species,
and proper seeding and cultivation methods were adopted by observing and evaluating the vegetation
growth. More details of the vegetation nurturing and growth can be found in the researchers’ earlier
publication [35]. The growth and nurturing of vegetation in asphalt concrete was also tested and
evaluated in the earlier research [35]. The details of the vegetated bituminous mixture are presented in
Table 1.

Table 1. Properties of vegetated bituminous mixture.

Porosity
(%)

Compressive
Strength Under

15 ◦C (MPa)

Compressive
Modulus Under

15 ◦C (MPa)

Dynamic Stability
Under 60 ◦C

(Number/mm)

Total
Deformation

(mm)

Three-Day
Flying Loss

(%)

Permeability
Coefficient

(cm/s)

23 2.19 412.12 2875 2.90 12.7 0.039

Secondly, the evaluation of the consolidation of vegetation within foundation soil was based on
the utilization of a scale dynamometer to determine the maximum resistance of plant roots at test
failure. A vernier calliper was used to measure the root fracture surface diameter. Then, the tensile
strength of the test root sample would be calculated using Equation (1):

P = 4F/πD2 (1)
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where F denotes the maximum resistance at root failure, and D is the diameter of the fracture surface.
Up to 28 trails were performed for the test of consolidation between the vegetation and foundation soil.

2.2. Physical and Mechanical Properties of Foundation Soil

In order to accurately simulate the actual condition of riparian revetment, the sand and soil
from the local coastal areas were collected and used for the experimental study. Sieve analysis was
conducted to define the particle size distribution. According to the high-pressure direct shear test
(results shown in Figure 3b), the cohesion was identified at 2.2 kPa and the internal friction angle ϕ

was determined as 34.5◦. Consistent geotechnical tests (i.e., high-pressure direct shear tests, as shown
in Figure 3a) were conducted on the bituminous mixture. The physical and mechanical properties
of the foundation soil and the bituminous mixture are summarized in Table 2. These geotechnical
parameters are effective for numerical modelling afterwards.
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Figure 3. Shear test facility and test results: (a) high-pressure direct shear test facility; (b) direct shear
test curves of foundation soil.

Table 2. Physical and mechanical properties of the foundation soil and bituminous mixture.

Raw Material µ E/MPa c/kPa ϕ/(◦) ρ/g.cm−3 Moisture (%)

Foundation soil 0.32 10.82 2.2 25 1.91 35.7
Asphalt mixture 0.27 395 — — 1.92 23.52
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The compaction index and the void ratio of the tested materials were 0.95 and 0.85, respectively,
for the later physical experimental models (i.e., unvegetated and vegetated slopes).

2.3. Loading Device and the Monitoring Scheme

The dynamic triaxial cell supplied by GDS Instruments from the UK was adopted in this research
to apply the static load or semi-sinusoidal cyclic load. The type of load was controlled by air pressure.
The vertical load could be measured by the pressure sensor connected to the jack. The vertical
displacement could be measured by the deformation gauge connected between the jack and the loading
head. Another displacement transducer (i.e., LVDT or Linear Variable Differential Transformer) was
used to record the lateral deformation. A soil pressure box was used to record the additional soil
pressure of the revetment slope. When the inclination of the slope is low, the soil on the revetment can
be stabilized even in the unreinforced state. If the revetment is too steep, the stability of the soil will be
poor, and a slide could easily occur. In this research, the test facility shown in Figure 4 with a slope of
35◦ was designed and built. The schematic diagram of the test facility is shown in Figure 4.
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Figure 4. The schematic diagram of the test facility with various measurement instruments (unit: mm).

According to Figure 4, the slope of the embankment considered in this study was 35◦. Sand
was used as the foundation soil. It should be noticed that erosion issues due to continuous irrigation
supply were not considered in this study. Therefore, the erosion effects were excluded in the numerical
modeling afterwards. The displacement transducer and cyclic loading facility are further shown in
Figure 5.
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The dynamic load was simulated by the semi-sinusoidal wave. The amplitude of dynamic loading
was set at 60% of the maximum bearing capacity (i.e., 78.8 kPa). The frequency was 1 Hz, and the
number of cycles was equal to 10,000. The loading waveform is shown in Figure 6.
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After the test facility was set up, the lateral LVDT was installed, and the loading plate was
placed. The top of the loading plate was placed at the right center of the loading head. After the
installation of all measuring instruments, the data acquisition software was also set. The loading
process started from the zero-loading condition. During the loading process, the dynamic deformation
of the revetment model was observed. Loading was stopped immediately when the deformation was
increased, suddenly leading to revetment damage.

3. Analysis of Test Results

3.1. Displacement of Revetment

The settlements of the two physical models (i.e., unvegetated and vegetated models) of riverbank
revetments were analyzed with the loading time. Figure 7 displays the vertical displacements of these
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Figure 7. Vertical displacement in the initial 20 s.

Figure 7 only demonstrates the vertical displacement during the first 20 s of the loading period.
No rebound was observed after the initial 20 s test. Settlements after 20 s followed similar trends,
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as shown in Figure 7. It can be seen that at the beginning of the dynamic semi-sinusoidal loading,
the two models displayed similar linear trends during which the soil was compacted. As the loading
time increased, the settlements of the two models began to differ. The unvegetated revetment tended
to have a significantly higher vertical displacement. The vegetation reduced the vertical displacement.
The cumulative settlement of the riverbank revetment models is shown in Figure 8.
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Figure 8. Vertical displacements during the loading process.

Both of the two cumulative settlement curves in Figure 8 showed a linear trend until they
reached their own maximum bearing capacity. There was then a critical or transitional point where
the revetment models had a suddenly increased deformation leading to brittle failure. As a result,
the sloped displacement curves shown in Figure 8 suddenly changed their directions. Figure 9 displays
the displacement vector of slip surface at failure during the physical modeling using the PIV (particle
image velocimetry) method.
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(a) vegetated revetment; (b) unvegetated revetment.

The displacement vectors for both vegetated and unvegetated physical models are shown
in Figure 9. The arrow indicates the displacement direction and its length shows the amount of
displacement. Figure 9a displays the displacement vector of vegetated revetment, where the soil
particles moved towards right and upwards during the test. Figure 9b is the failure of unvegetated
revetment. It was found that the soil displacement of the vegetated revetment turned out to be larger
than that of unvegetated revetment, indicating that the stress was diffused in the vegetated sample.
The vegetated revetment had a more uniform soil stress distribution.
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The boundary conditions were based on two-way (i.e., horizontal and vertical) restrictions.
The boundary constraint is a significant factor that influences the stability evaluation of revetment in
finite element analysis. It significantly affects the safety factor and potential sliding surface within a
revetment. The full constraint boundary creates the highest safety factor, around 30% higher than that
in the free boundary condition [36]. Compared to the full constraint boundary, the semi-constraint
boundary condition has a deeper sliding surface [36]. Considering the actual working conditions of
this physical modeling and test, the fully constraint condition was set by applying horizontal and
vertical restrictions.

After 4000 cycles of loading, the settlement of the unvegetated revetment was around 5.43 mm
before the failure occurred. In comparison, the vegetated revetment model failed after 8000 loading
cycles with a maximum cumulative settlement of 12.85 mm. This indicates that the vegetation
reinforced the revetment slope and mitigated its instability, extending its life two-fold.

3.2. Lateral Cumulative Deformation of Revetment

Three test points, namely the top of the revetment slope (Point C), the middle of the revetment
slope (Point B), and the revetment slope crest (Point A), were selected for the test of lateral deformation,
as shown in Figure 4. The three test points were instrumented with LVDT. The lateral deformation
curve of each test point on the bank revetment is shown in Figure 10.

It should be noticed that a higher settlement in the vegetated revetment at 4000 cycles does
not necessarily mean a reduction in stability. Instead, the vegetated revetment displayed a better
stability. The higher settlement that occurred in the vegetated revetment was due to the lower overall
stiffness of the revetment and foundation soil. It is seen from Figure 10 that all the three test points
had higher cumulative settlement and underwent significantly more cycles of loading vibration due
to the reinforcement effects from vegetation. Comparisons among the three test points show that the
top position (i.e., point C) had a higher ultimate bearing capacity at 78.8 kPa and also higher lateral
deformation, because the top position was closer to the loading center.

According to Figure 10, after the maximum 4000 cycles of loading, the lateral deformation of the
three test points (i.e., top, middle, and bottom) of the unvegetated revetment model reached 4.85 mm,
4.73 mm, and 4.21 mm, respectively. The vegetated revetment model underwent 8000 loading cycles,
and the lateral deformations of the same three test points reached 14.35 mm, 15.22 mm, and 17.18 mm,
respectively, representing increase rates of 196%, 221% and 303% compared to those in the unvegetated
revetment slope. The vegetated bituminous mixture displayed a significant influence on the lateral
displacement of the riverbank slope by increasing its overall stability.
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3.3. Soil Pressure in Revetments under Dynamic Cyclic Loading

For comparison purposes, three measurement points (i.e., E1, E2 and E3 as shown in Figure 4)
were selected to measure the dynamic soil pressure. The three measurement points were in the same
elevation, where E1 and E2 were right below the loading plate, and E3 was below the revetment slope.
Figures 11–13 demonstrate the dynamic soil pressures for the three measurement points.

Figures 11–13 also highlight the comparison between the unvegetated revetment and the vegetated
model. It is seen that the soil pressure at E2, which was right below the loading center, was significantly
higher than in E1 and E3. That was because E2 was closer to the loading position, with a denser soil
and a higher pressure.

In the initial loading stage, each measurement point had a more fluctuating value of soil pressure;
afterwards, the fluctuation gradually decreased and tended to stabilize to a constant value. This was
because, in the initial test period, the soil underwent a fast compaction with a higher pressure.
As the cyclic loading continued, the soil was softened. The settlement was increased and the soil
pressure decreased.

Table 3 summarizes the soil pressure at the three measurement points by comparing the vegetated
and unvegetated conditions.
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Figure 11. Dynamic earth pressure at E1: (a) unvegetated revetment slope (E1); (b) vegetated revetment
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Figure 12. Dynamic earth pressure at E2: (a) unvegetated revetment slope (E2); (b) vegetated revetment
slope (E2).
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Figure 13. Dynamic earth pressure at E3: (a) unvegetated revetment slope (E3); (b) vegetated revetment
slope (E3).

Table 3. Monitoring results of soil pressure.

Measurement Point Un-Vegetated
E1

Vegetated
E1

Un-Vegetated
E2

Vegetated
E2

Un-Vegetated
E3

Vegetated
E3

Mean value/kPa 9.57 9.49 34.02 37.68 0.23 0.30
Maximum value/kPa 15.79 18.65 57.45 67.43 3.32 0.95

Compared to the unvegetated slope, the peak and mean values of soil pressure within the
vegetated revetment were generally larger, indicating that vegetated bituminous mixtures could
solidify the revetment slope and increase its stiffness.

4. FEM Analysis of the Stability of Vegetated Revetments

The physical test facilities in the indoor environment were further validated by comparing the
experimental results to the FEM numerical simulation. The validation highlighted the effects of
long-term cyclic loading on the lateral and vertical displacements, the soil stress distribution along the
vertical direction, and the overall trend of revetment sliding.

4.1. Method of Applying Cyclic Loading

During the ABAQUS modeling, the custom load codes (i.e., DLOAD and VDLOAD) were used
to define non-uniform distributed load. The load magnitude was the function of location, time and
unit. The subroutine DLOAD was suitable for ABAQUS/standard computation, and VD-LOAD
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fitted ABAQUS/explicit computation. The cyclic load modeling in this study was based on implicit
integration to solve the dynamic finite element equation, corresponding to dynamic/implicit in the
ABAQUS program standard. Therefore, the load subroutine DLOAD was chosen [37].

4.2. Establishment of the Three-Dimensional Finite Element Model

To verify the experimental test results of the dynamic characteristics of the vegetated revetment
under cyclic loading, the size of the riparian revetment model was consistent with the physical model
displayed in Figure 4. The geotechnical parameters of the vegetated slope were directly incorporated
into the finite element model (FEM). These geotechnical parameters were obtained from the prior
physical tests, including the exact values of cohesion and internal friction angle shown in Table 2,
with a Poisson’s ratio of 0.3. It should be noticed that only geotechnical parameters were incorporated
in the FEM model. Hydraulic parameters were not considered. FEM could not exactly simulate the
real-site conditions, although the stiffness of the vegetated river bank surface could be adjusted in the
numerical modeling. In the numerical simulation, the X and Z axes represented the lateral directions,
and the Y axis denoted the vertical direction. The three directional deformations along X, Y and
Z axes were restrained. The surface of the revetment slope was set to allow sliding. All relevant
attributes were assigned to the vegetated revetment, and then the cyclic loadings were applied to
simulate and obtain the deformation and stress distribution of the revetment. The bottom of the
slope was fully constrained, and horizontal constraints were applied to the left and right sides of the
slope. The ideal elastoplastic constitutive model with the associated flow law was applied to the soil.
The three-dimensional finite element model is shown in Figure 14.
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Figure 14. Three-dimensional finite element model.

4.3. Analysis of Numerical Simulation

4.3.1. Comparison between Test and Numerical Calculation

The comparison of cumulative settlement between experimental tests and numerical simulations
for vegetated and unvegetated revetment models is shown in Figure 15.

The settlements of the unvegetated revetment were 6.4 mm and 7.3 mm, respectively, according to
the experimental and simulation results. The difference of settlement values between the experiments
and FEM was 14.06%. The tested and simulated values of the settlement were 11.32 mm and 9.48 mm,
respectively, for vegetated revetment, denoting a difference of 16.25%. The potential causes of the
difference between FEM and experimental tests include (1) the edge effects within the physical model;
and (2) the numerical modeling details such as the parametric selection and input, revetment material
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attributes, and the mesh partitioning details in FEM. It was further found that the results between
the experimental tests and simulation tended to be closer as the number of loading cycles increased,
indicating that the settlement values from FEM-based simulation were generally consistent with those
from the experimental tests.
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Figure 15. Comparison of cumulative vertical settlement results between experimental tests and
numerical simulations.

4.3.2. Displacements along the Depth of Revetments

Figure 16 illustrates the vertical and lateral displacement values measured when instability of
revetments occurred. The displacements were obtained along the depth right below the loading center,
as shown earlier in Figure 4.

It is found from Figure 16 that the vegetation played a significant role in restricting the vertical
displacement along the whole depth under the loading center. However, the reinforcement effect of
vegetation was more significant in the shallow depths of soil layers. The effect of vegetation decreased
as the depth increased. Therefore, the vegetative technique has limited reinforcing effects on slopes
prone to deep-level damage. Such a type of slopes should be first strengthened by other methods
before the vegetation protection approach is adopted.
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Figure 16. Displacement variations along the revetment depth: (a) vertical displacement; (b)
lateral displacement.

The lateral displacement of the vegetated revetment was significantly different from that within
the unvegetated model. When the slope depth was less than 150 mm, the lateral displacement of
the vegetated revetment was significantly lower than that of the unvegetated model. The vegetated
bituminous mixture effectively inhibited the lateral displacement. However, when the depth was
more than 200 mm, the lateral displacements in vegetated and unvegetated models were similar.
These observations suggest the lateral restraint effect of vegetation was more significant in the
lower-depth layers.

4.3.3. Sliding Trend of Vegetated Revetment

The sliding trend of the vegetated revetment is demonstrated in Figure 17.
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According to Figure 17, the vertical displacement right under the loading plate was the highest.
The vertical displacement decreased along the depth below the loading center. Upon the occurrence
of structural instability, the upper region of the revetment tended to slide outward. Under the cyclic
loading, soil under the loading plate experienced a downward deformation. In the meantime, the two
sides of the revetment were uplifted. The vegetation restricted the movement of the revetment surface
and enhanced the stability.

4.3.4. Internal Stress Distribution in Revetments

The vertical stress along the depth of revetments is demonstrated in Figure 18.
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Figure 18. Vertical stress along the revetment depth.

The vertical stress of the unvegetated revetment gradually decreased along the depth.
The transitional point of vertical stress in the soil occurred at around the depth of 100 mm, where the
vertical stress decreased sharply. This was mainly due to the existence of the vegetated bituminous
mixture in the structural layer, which diffused the vertical stress and changed the soil stress state.
The strength of the shallow soil increased with the root content in the soil.

It should be noticed that the effects of sulfate on soils were not investigated in this research. In fact,
the effects of sulfate on soils are complicated according to existing studies [38–40]. They will be further
studied in future research. The strength properties tested in this study were based on undrained
conditions, as only short-term mechanical properties of revetments were analyzed. Due to the fact that
drained conditions would prevail because of irrigation, future study should also consider the drained
condition in order to further investigate the long-term properties of revetments.

5. Conclusions

This study adopted indoor physical models to test the dynamic performance and failure modes
of riverbank revetments covered by vegetated bituminous mixtures. The dynamic characteristics
of vegetated revetments were analyzed based on the model tests under cyclic loading conditions.
The failure mode and dynamic behavior of vegetated revetments under cyclic loading were further
verified using numerical simulation based on a three-dimensional finite element model. The main
observations and findings are summarized as follows:

• As the loading cycle increased, accumulative settlement reached a critical point. Afterwards,
the cumulative settlement increased sharply as a result of the revetment slope failure;

• The top of the revetment slope, which was closer to the loading center, there was a higher lateral
deformation compared to the points at the middle and bottom of the slope;

• The vegetation in bituminous mixture had a significant influence on the lateral displacement of a
revetment by increasing its overall stability;

• Within the same horizontal layer, the peak and mean values of soil pressure at the test point right
below the loading center were significantly larger than the points on two sides;

• The maximum and mean values of soil pressure within the vegetated revetment were generally
higher than those in the unvegetated models, indicating that the vegetated bituminous mixture
increased the soil stiffness;

• The numerical simulation adopting a three-dimensional finite element model showed generally
consistent vertical settlement values as the experimental tests did for both vegetated and
unvegetated revetments. The potential causes of the differences between the numerical simulation
and experimental tests were identified, such as the mesh partitioning in the finite element model;
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• The vegetation had a reinforcement effect in restricting the vertical movement along the depth of
the revetment under the loading plate. However, the reinforcement effect was more significant in
the shallow soil layers.

The vegetated bituminous mixture added in the soil structural layers affected the soil stress
distribution by diffusing the soil stress. The interaction between vegetation and foundation soil
resulted in the stiffening effect on the riverbank revetment. This research provided the initial findings
on revetment stability under cyclic loadings. It offered the guidelines to predict the stability of
vegetated revetment in practice.

The physical and numerical modeling in this study did not consider other influencing factors
on riverbank conditions, such as waving effects on erosion, the changing soil–water pressures,
or saturation conditions during the high levels of open water. Future tests of dynamic characteristics of
vegetated revetment could extend the current research findings by introducing these influence factors.
For example, it is known that, under the condition of soil saturation, with the increase of water content,
the soil cohesion and internal friction angle of the phyto-sanitary layer would decrease. However,
the embedded effect of vegetation roots still exists to protect the river bank slope by constricting the
horizontal displacement. Whether and how the embedding effect will change due to soil saturation
require further research. Another recommended direction for future work would be to investigate the
plant root’s influence on the vegetated bituminous mixture by considering the long-term stiffness, root
density, and the aging bituminous part of the mixture.
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