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Abstract: Coordinate metrology techniques are widely used in industry to carry out dimensional
measurements. For applications involving measurements in the submillimeter range, the use of
optical, non-contact instruments with suitable traceability is usually advisable. One of the most
used instruments to perform measurements of this type is the confocal microscope. In this paper,
the authors present a complete calibration procedure for confocal microscopes designed to be
implemented preferably in workshops or industrial environments rather than in research and
development departments. Therefore, it has been designed to be as simple as possible. The procedure
was designed without forgetting any of the key aspects that need to be taken into account and is
based on classical reference material standards. These standards can be easily found in industrial
dimensional laboratories and easily calibrated in accredited calibration laboratories. The procedure
described in this paper can be easily adapted to calibrate other optical instruments (e.g., focus
variation microscopes) that perform 3D dimensional measurements in the submillimeter range.

Keywords: coordinate metrology; confocal microscopy; measurement; calibration; traceability;
uncertainty; quality assessment

1. Introduction

In industry, coordinate measuring machines (CMMs) are widely used to carry out dimensional
measurements, because these kinds of machines are capable of measuring many different types of
geometries with great flexibility and sufficient accuracy. For this reason, CMMs can be considered as
universal measuring devices [1]. In addition, modern advanced manufacturing processes demand a
deep study of surface textures. Probably the most common method for surface texture verification up to
recent years was to perform roughness measurements with a roughness measuring machine—usually
a 2D stylus instrument [2]. In many cases, manufacturers prefer to verify texture and geometry without
mechanical contact between the instrument and surface [3]. Due to this, optical instruments for
coordinate metrology have been developed. ISO 25178-6 lists optical methods for measuring surface
texture [4], and among them, it includes confocal microscopy, which permits both dimensional and
2D/3D roughness measurements [5] without mechanical contact.

The confocal microscope was developed in 1955 by Minsky [6,7] and allows images of optical
sections of samples to be obtained, from which the full 3D object geometry can be reconstructed.
Confocal microscopy is also important, because it is a powerful tool for observation and measurement
at both scientific research and workshop levels. It presents the following advantages [8]:

• It adds the Z-axis to traditional measuring optical microscopes, which only work in the XY plane.
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• It allows analysis of the 3D geometry of the object surface and characterization of its quality from
data points acquired while scanning it.

• Its lateral resolution is better than in traditional optical microscopy.
• It permits more precise 3D images of the objects being measured to be obtained that are of higher

quality and in less time compared to other methods. This allows many useful measurements to be
carried out in short intervals of time.

• Transparent specimens can be observed, as can sections with a certain thickness, without the need
to section the object under study.

Confocal microscopy has applications in many fields, both in research and industrial applications.
This type of microscope is widely used in biomedical science, material science, and surface quality
metrology at micro and macro scales [9]. However, there is no standardized procedure to calibrate
and provide traceability to these instruments in the fields of coordinate metrology and surface texture
metrology. Intense work is being done around ISO standard 25178-700, but it is still in the draft stage.
The calibration of measurement instruments is crucial to maintain the traceability of measurement
results [10]. As is widely known, traceability can be defined as the property of a measurement result by
which it can be related to a reference through an uninterrupted and documented chain of calibrations,
each of which contributes to measurement uncertainty [11].

The purpose of this paper is to describe a way to provide suitable traceability to a confocal
microscope when performing metrological activities using single topography measurements, in the
fields of both coordinate metrology and roughness metrology. Please note that when image stitching is
not used (single topography), there is no movement of the XY stage, and there is therefore no need
to calibrate the displacements of this stage. The calibration procedure presented by the authors is
intended to be simple and is based on classical mechanical standards. Note that the objective was not
to perform a state-of-the-art calibration of a confocal microscope [12–15], neither was it to achieve
very low uncertainties; the objective was to ensure adequate traceability with adequate uncertainty
estimation in the field of dimensional metrology in the submillimeter range.

Prior to carrying out the calibration, an analysis of the operating principle of the confocal
microscope is necessary for a better understanding of the device. This kind of microscope usually
uses a low-power, high-intensity, monochromatic laser system for illumination [16–19]. A laser beam
passes through a beam splitter, and one of the beams is then redirected to the sample, passing through
complex optics [7]. Once the scanning surface is illuminated, the reflected beam travels back along
the same path. If the illumination is properly focused on the surface, the reflected beam will go to
the detector without losing intensity, but if the surface is out of focus, the intensity will be lower.
The filtered beam arrives at the detector and a computer system processes the signal, making a 3D
reconstruction of the surface [9,16,18].

Several factors affect the quality of these measurements [5,20]:

• Metrological characteristics of the instrument: measurement noise, flatness deviation, non-linearity
errors, amplification coefficients, and perpendicularity errors between axes.

• Instrument geometry: alignment of components and the XY stage and rotary stage error motions.
• Source characteristics: focal spot size and drift.
• Detector characteristics: pixel response, uniformity and linearity, detector offset, and bad pixels.
• Reconstruction and data processing: surface determinations, data representation,

and calculation approaches.
• Environmental conditions: temperature, humidity, and vibration.

As can be seen in Figure 1, the confocal microscope projects, through a complex optical system,
illumination patterns over the surface that is being explored and captures the returned beam through
the same pattern of illumination. As a result, it is possible to discriminate if the returned beams are out
of focus and filter them [5,7,16,17,21]. In Figure 2, this property is shown in detail.
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with in-focus signal (green).

Once the in-focus image goes to the detector, the computational treatment starts. The electronic
controller moves the objective along the Z-axis in order to permit the confocal microscope to capture
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2D images at different z coordinates. As 2D images are composed of pixels, 3D images obtained with
confocal microscopes are composed of voxels, as shown in Figure 3. If an interpolation if made between
consecutive 2D images, it is possible to create a 3D model of the scanned surface [23].
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In order to achieve dimensional traceability in dimensional measurements carried out with
confocal microscopes, it is necessary to perform a 3D calibration of the instrument. This calibration
should provide estimations of voxel sizes along X, Y, and Z axes, but it would also be advisable to
provide estimations of perpendicularity errors between axes. Additionally, as the confocal microscope
can be used to perform roughness measurements, a specific calibration of the instrument for roughness
measurements is advisable.

2. Materials and Methods

In order to ease the understanding of the calibration procedures described later on, a calibration
example was carried with the following confocal microscope and software:

• Leica DCM3D confocal microscope (Wetzlar, Germany) with a 10× objective (EPI-L, NA = 0,30).
Field of view 1270 µm × 952 µm (768 × 576 pixels); 1.65 µm nominal voxel width. The overall
range of the Z-axis is 944 µm using 2 µm axial steps (voxel height), but the instrument is used in a
reduced working range of only 100 µm.

• SensoSCAN—LeicaSCAN DCM3D 3.41.0 software developed by Sensofar Tech Ltd. (Terrassa, Spain).

In this paper, we propose a calibration procedure that is only valid for single topography
measurements—that is, without using image stitching. In single topography measurements, the XY
stage is not moved during measurement, and its errors do not contribute to uncertainty. When using
image stitching (extended topography measurements), the XY stage does contribute to uncertainty,
and the calibration procedure described in this paper should be updated using techniques such as
those described in [14,15]. The complete calibration procedure includes the following:

• Calibration of the X and Y scales, using a stage micrometer as a reference measurement standard.
• Estimation of perpendicularity error between X and Y axes.
• Estimation of the flatness deviation of the focal plane using an optical flat.
• Calibration of Z scale using a calibrated steel sphere.
• Calibration of the confocal microscope for the measurement of 2D roughness using periodic and

aperiodic 2D roughness measurement standards.
• All uncertainties are estimated following the mainstream GUM method (Guide to the Expression

of Uncertainty in Measurement [24]) or EA-04/02 M:2013 document [25], as they are standard
procedures in calibration laboratories accredited under ISO 17025 [26].

All reference measurement standards used were chosen to be:

• Easy to find.
• Easy to calibrate with low enough uncertainties in National Measurement Institutes (NMIs) or

preferably in accredited calibration laboratories (ACLs).
• Stable mechanical artifacts that could guarantee long recalibration intervals.
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• Common in the field of dimensional metrology in order to facilitate their acquisition, calibration,
and correct use.

2.1. Flatness Verification

Before calibrating the X and Y axes, a flatness verification must be performed. This is necessary
because it is often observed that the XY plane of confocal microscopes is slightly curved. This is evident
when exploring a flat surface such as an optical flat whose total flatness error is usually lower than
50 nm. In these cases, the reference flat surface when observed by the confocal microscope appears
curved, as if it was a cap of a sphere or an ellipsoid. According to manufacturers, this error is usually
small enough, but it is impossible to carry out an accurate measurement without taking this component
of uncertainty into account [27].

For this verification, the authors propose following a procedure based on [28], but using a
confocal microscope instead of an interferometer. The software of the confocal microscope provides a
topographic map of the explored surface from which the total flatness error (peak to peak) or the RMS
(root mean square error) flatness can be estimated.

The calibration is done in two positions (0◦ and 90◦) and therefore, two measurements are obtained
(Figure 4):
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For this calibration, the authors recommend using the RMS flatness deviation, because it is more
statistically stable than the total flatness deviation. As discussed in [29] (Section 1.3.5.6 “Measures of
Scale”), the total flatness deviation—which is equivalent to the range—is very sensible to the presence
of outliers because it is determined as the difference between the two most extreme points. The problem
increases with the number N of points from which the range is determined. In our case, the number
of points was very large (N = 768× 576 = 442, 368). For these reasons, other parameters such as the
standard deviation (equivalent to the root mean square error), or even better, the median absolute
deviation (MAD) should be used. Since confocal software always includes the RMS flatness deviation
and it is not very easy to include MAD, we recommend the RMS flatness deviation.

2.2. XY Plane Calibration

In the literature, it is possible to find several procedures for this calibration. Following the studies
of de Vicente et al. [30] and Guarneros et al. [31], it is possible to calibrate X and Y scales and estimate
their perpendicularity error by making measurements of a stage micrometer in four positions (Figure 5).

A stage micrometer is easy to calibrate in a National Measurement Institute (NMI) or in an
accredited calibration laboratory (ACL) with sufficiently small uncertainty (equal to or lower than
1 µm) for the calibration of a confocal microscope.
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It is strongly recommended that the stage micrometer should be metallic and have the marks
engraved, not painted, such as those used to calibrate metallographic microscopes. Marks painted
over glass are difficult to detect with a confocal instrument.

The matrix model proposed for calibration by de Vicente et al. [32] is as follows:[
x
y

]
=

[
p
q

]
+

[
cxy + a θ/2
θ/2 cxy − a

]
·

[
p
q

]
, (1)

where (p, q) are the readings directly provided by the confocal microscope for the Cartesian coordinates
in the XY plane. (x, y) are the corrected Cartesian coordinates once the calibration parameters cxy, a,
and θ have been applied using the previous matrix model.

The meanings of these three parameters are as follows:
cxy represents the deviation of actual pixel width wxy from the nominal pixel width wxy,nom:

wxy = wxy,nom·
(
1 + cxy

)
. (2)

a represents the difference between pixel widths along X-axis (wx) and Y-axis (wy):

wx = wxy,nom·
(
1 + cxy + a

)
, (3)

wy = wxy,nom·
(
1 + cxy − a

)
, (4)

wxy =
(wx + wx)

2
. (5)

θ represents the perpendicularity error between the X-axis and Y-axis. The actual angle between
these axes is π/2− θ.

The amplification coefficients αx, αy, and αz of the axes (according to ISO 25178-70 [33]) are:

αx = 1 + cxy + a, (6)

αy = 1 + cxy − a, (7)

αz = 1 + cz. (8)
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We recommend using the average pitch ` of the stage micrometers. ` is the average of all
individual pitches (distances between two consecutive marks) observed in the images provided by the
confocal microscope. Figure 6 summarizes the measurement of the stage micrometer in one position.
Using special software for this task, written in Matlab®R2019a and developed at the Laboratorio de
Metrología y Metrotecnia (LMM), it is possible to automatically detect and estimate the distance di of
each mark from the zero mark. Using this software, all the distances (pitches) between two consecutive
marks in the stage micrometers were estimated (Figure 6a). Moreover, pitches can be measured in
different positions—in the middle and in higher and lower positions—which permits the estimation
of the repeatability during the pitch measurements. In Figure 6a, for each pitch, the average value
is represented by a circle, and the measurement variability around this value is represented with a
vertical line. In order to estimate the non-linearity errors ei (Figure 6b), a straight line di � m + `·i was
fitted, and the errors were estimated as ei = di − (m + `·i). The coefficient m represents the deviation of
the zero mark from its estimated position and ` represents the average pitch.
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(b) non-linear errors in µm.

If the previously mentioned special software is not available, measurements of distances between
marks must be done by hand. However, although it is more laborious, the entire procedure described
above for the estimation of the average pitch ` and non-linearity errors ei can be carried out without
any problem.

Let `0 be the average pitch of the stage micrometer certified by a suitable laboratory with a
standard uncertainty u(`0). `1, `2, `3, and `4 are the average pitches measured with the confocal
microscope in positions 0◦, 90◦, 45◦, and 135◦, respectively. Their corresponding standard uncertainties
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are u(`1), u(`2), u(`3), and u(`4), where only the variability observed in Figure 6 (or equivalent ones)
was taken into account.

When the matrix model is applied to positions 0◦, 90◦, 45◦, and 135◦, we obtain the following
expressions that permit simple estimations of calibration parameters cxy, a, and θ:

Position 0◦ : `1·
(
1 + cxy + a

)
� `0, (9)

Position 90◦ : `2·
(
1 + cxy − a

)
� `0, (10)

Position 45◦ : `3·

(
1 + cxy +

θ
2

)
� `0, (11)

Position 135◦ : `4·

(
1 + cxy −

θ
2

)
� `0. (12)

From these expressions, it is easy to conclude that possible estimations of cxy, a, and θ are:

cxy =
`0

4
·

(
1
`1

+
1
`2

+
1
`3

+
1
`4

)
− 1, (13)

with u
(
cxy

)
=

√
u2(`0) + [u2(`1) + u2(`2) + u2(`3) + u2(`4)]/16

`0
, (14)

a =
`0

2
·

(
1
`1
−

1
`2

)
, (15)

with u(a) =

√
u2(`1) + u2(`2)

2`0
. (16)

θ = `0·

(
1
`3
−

1
`4

)
, (17)

with u(θ) =

√
u2(`3) + u2(`4)

`0
. (18)

Correlations between these parameters (cxy, a, and θ) are usually very small (lower than 0.01).
Therefore, these correlations can be neglected.

2.3. Z-Axis Calibration

Document [34] proposes calibrating the Z-axis using a step gauge built with gauge blocks over an
optical flat (Figure 7). However, the short field of view of confocal microscopes makes it difficult to
carry out the calibration with this type of measurement standard.

To solve this problem, several authors [5,35] have proposed the use of step height standards
(Figure 8). Wang et al. [35] used them with the nominal values 24, 7, 2, and 0.7 µm. This kind of
measurement standard has several grooves whose nominal depths cover the range of use of the
confocal microscope on the Z-axis. Following their procedures, every groove has to be measured
10 times, changing the position of the standard on the objective.



Materials 2019, 12, 4137 9 of 28

Materials 2019, 12, x FOR PEER REVIEW 8 of 27 

 

Position 0°:  ℓଵ ∙ ൫1 + 𝑐௫௬ + 𝑎൯ ≅ ℓ଴, (9)

Position 90°:  ℓଶ ∙ ൫1 + 𝑐௫௬ − 𝑎൯ ≅ ℓ଴, (10)

Position 45°:  ℓଷ ∙ ቀ1 + 𝑐௫௬ + ఏଶቁ ≅ ℓ଴, (11)

Position 135°:  ℓସ ∙ ቀ1 + 𝑐௫௬ − ఏଶቁ ≅ ℓ଴. (12)

From these expressions, it is easy to conclude that possible estimations of 𝑐௫௬, 𝑎, and 𝜃 are: 𝑐௫௬ = ℓ଴4 ∙ ൬ 1ℓଵ + 1ℓଶ + 1ℓଷ + 1ℓସ൰ − 1, (13)

with 𝑢൫𝑐௫௬൯ = ඥ௨మ(ℓబ)ା[௨మ(ℓభ)ା௨మ(ℓమ)ା௨మ(ℓయ)ା௨మ(ℓర)]/ଵ଺ℓబ , (14)

𝑎 = ℓ଴2 ∙ ൬ 1ℓଵ − 1ℓଶ൰, (15)

with 𝑢(𝑎) = ඥ௨మ(ℓభ)ା௨మ(ℓమ)ଶℓబ . (16)

𝜃 = ℓ଴ ∙ ൬ 1ℓଷ − 1ℓସ൰, (17)

with 𝑢(𝜃) = ඥ௨మ(ℓయ)ା௨మ(ℓర)ℓబ . (18)

Correlations between these parameters (𝑐௫௬, 𝑎, and 𝜃) are usually very small (lower than 0.01). 
Therefore, these correlations can be neglected. 

2.3. Z-Axis Calibration 

Document [34] proposes calibrating the Z-axis using a step gauge built with gauge blocks over 
an optical flat (Figure 7). However, the short field of view of confocal microscopes makes it difficult 
to carry out the calibration with this type of measurement standard. 

 

Figure 7. A step gauge built on an optical flat (with total flatness error 0.00005 mm) and a set of gauge 
blocks. 

To solve this problem, several authors [5,35] have proposed the use of step height standards 
(Figure 8). Wang et al. [35] used them with the nominal values 24, 7, 2, and 0.7 µm. This kind of 
measurement standard has several grooves whose nominal depths cover the range of use of the 

Figure 7. A step gauge built on an optical flat (with total flatness error 0.00005 mm) and a set of
gauge blocks.

Materials 2019, 12, x FOR PEER REVIEW 9 of 27 

 

confocal microscope on the Z-axis. Following their procedures, every groove has to be measured 10 
times, changing the position of the standard on the objective.  

  

(a) (b) 

Figure 8. This figure shows (a) a typical model of a step height standard; and (b) different models of 
step height standards’ grooves (ISO 5436-1 types A and B) [30,35–37]. 

This kind of standard is typically used for roughness calibration. If the purpose is to make a 
calibration on the Z-axis, these standards have the limitation of the groove depth, which usually is 
small to cover the range of the Z-axis. 

In order to solve this problem, we propose using a small metallic sphere, as shown in Figure 9, 
with a nominal diameter between 1 and 10 mm, similar to the one used in [38]. This kind of 
measurement standard is easy to find and easy to calibrate in both NMIs and ACLs with uncertainties 
equal to or lower than 0.5 µm. The software of confocal microscopes usually permits a spherical 
surface to be fit to the points detected over the surface of the spherical measurement standard. If not, 
coordinates (𝑝, 𝑞, 𝑟)  obtained with the confocal microscope can be exported to a text file and 
processed with a routine similar to that described in Appendix A. Therefore, it is possible to compare 
the certified diameter 𝐷଴ of the sphere against the diameter 𝐷௠ of the spherical surface fitted by the 
confocal microscope. We propose the use of an extended matrix model to take into account the 
calibration of the Z-axis: 

ቈ𝑥𝑦𝑧቉ = ቎1 + 𝑐௫௬ + 𝑎 𝜃/2 0𝜃/2 1 + 𝑐௫௬ − 𝑎 00 0 1 + 𝑐௭቏ ∙ ቈ𝑝𝑞𝑟቉ (19)

where 𝑝, 𝑞, and 𝑟  are readings provided by the confocal microscope for the Cartesian 
coordinates 𝑥, 𝑦, and 𝑧. The calibration parameters are those described in Section 2.2 (𝑐௫௬, 𝑎, 𝜃), and 
the new parameter 𝑐௭  is introduced to permit the calibration in the Z-axis. The corrected 𝑧 
coordinate is: 𝑧 = (1 + 𝑐௭) ∙ 𝑟. (20)

This simple matrix model supposes that there is no (or negligible) perpendicular error between 
the Z-axis and the XY plane. This hypothesis is very close to reality when the Z-axis range is clearly 
lower than ranges of the X and Y axes. When the Z-axis range is equal to or greater than X and Y 
ranges, a more complex model must be used (zero terms in the matrix of the model are no longer 
zero—see, for example, [39]). It is easy to demonstrate that, using the matrix model, the corrected 
diameter 𝐷 of the spherical surface fitted by the confocal microscope software is: 𝐷 = 𝐷௠ ∙ 1 + 2𝑐௫௬1 + 𝑐௭  (21)

where 𝐷௠ is the diameter provided by the confocal microscope prior to applying any calibration 
parameter. Therefore, an estimation of 𝑐௭ is 

Figure 8. This figure shows (a) a typical model of a step height standard; and (b) different models of
step height standards’ grooves (ISO 5436-1 types A and B) [30,35–37].

This kind of standard is typically used for roughness calibration. If the purpose is to make a
calibration on the Z-axis, these standards have the limitation of the groove depth, which usually is
small to cover the range of the Z-axis.

In order to solve this problem, we propose using a small metallic sphere, as shown in Figure 9, with
a nominal diameter between 1 and 10 mm, similar to the one used in [38]. This kind of measurement
standard is easy to find and easy to calibrate in both NMIs and ACLs with uncertainties equal to or
lower than 0.5 µm. The software of confocal microscopes usually permits a spherical surface to be fit to
the points detected over the surface of the spherical measurement standard. If not, coordinates (p, q, r)
obtained with the confocal microscope can be exported to a text file and processed with a routine
similar to that described in Appendix A. Therefore, it is possible to compare the certified diameter
D0 of the sphere against the diameter Dm of the spherical surface fitted by the confocal microscope.
We propose the use of an extended matrix model to take into account the calibration of the Z-axis:

x
y
z

 =


1 + cxy + a θ/2 0
θ/2 1 + cxy − a 0

0 0 1 + cz

·


p
q
r

 (19)

where p, q, and r are readings provided by the confocal microscope for the Cartesian
coordinates x, y, and z. The calibration parameters are those described in Section 2.2 (cxy, a,θ),
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and the new parameter cz is introduced to permit the calibration in the Z-axis. The corrected z
coordinate is:

z = (1 + cz)·r. (20)

This simple matrix model supposes that there is no (or negligible) perpendicular error between
the Z-axis and the XY plane. This hypothesis is very close to reality when the Z-axis range is clearly
lower than ranges of the X and Y axes. When the Z-axis range is equal to or greater than X and Y
ranges, a more complex model must be used (zero terms in the matrix of the model are no longer
zero—see, for example, [39]). It is easy to demonstrate that, using the matrix model, the corrected
diameter D of the spherical surface fitted by the confocal microscope software is:

D = Dm·
1 + 2cxy

1 + cz
(21)

where Dm is the diameter provided by the confocal microscope prior to applying any calibration
parameter. Therefore, an estimation of cz is

cz =
Dm

D0
·

(
1 + 2cxy

)
− 1 (22)

where D0 is the certified diameter of the sphere by the ACL. The standard uncertainty of cz is

u(cz) =

√
u2(D0) + u2(Dm)

D2
0

+ 4u2
(
cxy

)
. (23)

Equation (22) of cz shows a clear positive dependency with cxy. Therefore, the correlation
coefficient r

(
cz, cxy

)
should be estimated, and it can be done using the following expression:

r
(
cz, cxy

)
= 2·

u
(
cxy

)
u(cz)

. (24)

Note that the correlation coefficient is denoted as r
(
cz, cxy

)
. Do not confuse it with the reading of

the confocal microscope for the Z-axis, which is denoted as r.
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Figure 9. Steel sphere used in calibration.

2.4. Calibration for Roughness Measurements

The calibration of the Z-axis against the reference sphere (previous section) guarantees the
traceability of the vertical measurements performed with the confocal microscope to the SI unit of
length (the meter). Therefore, any vertical roughness parameter will have an adequate traceability once
the instrument has been calibrated along its Z-axis. Notwithstanding, we followed the recommendation
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included in documents DKD-R 4-2 [40–42], which propose performing an additional calibration against
roughness standards to validate the Z-axis calibration for roughness measurements.

Many parameters are used to characterize surface texture. Among the 2D roughness parameters,
one of the most widely used is the Ra parameter, which is the arithmetic mean of the absolute
values of the profile deviations from the mean line of the roughness profile [43]. We only consider
the Ra parameter during calibration, but readers interested in other 2D roughness vertical parameters
(Rq, Rp, Rv, Rz, . . . ) can use the same calibration procedure described in this paper but with minor
variations. Calibration was performed in the range 0.1 < Ra ≤ 2 µm. For this range, according to ISO
4288 [44], the sampling length should be lr = 0.8 mm, which is possible to carry out with a field of view
of 1270 µm × 952 µm. For Ra > 2 µm, the sampling length should be lr = 2.5 mm or higher, and it is
impossible to achieve this with a field of view of 1270 µm × 952 µm (10× objective). It makes no sense
to measure roughness lower than Ra = 0.1 µm with an instrument with repeatability in the Z-axis of
around 0.5 µm. Therefore, calibration for Ra < 0.1 µm and Ra > 2 µm was discarded.

Figure 10a shows three metallic, aperiodic 2D roughness standards. Figure 10b shows three glass,
periodic 2D roughness standards. Other types of 2D roughness profile types are described in Section 7
of ISO 25178-70 [33]. We recommend the use of aperiodic standards because they cover a wide range of
wavelengths, in contrast to periodic standards that only cover a single wavelength. However, periodic
standards were used in this case in order to complete the range of measurements between 0.1 µm and
2 µm for different calibration points and for different materials (glass instead of metallic items).
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Figure 10. Step height standards used during calibration: (a) aperiodic, metallic standards and
(b) periodic, glass standards.

These standards were measured over five different zones in two different orientations (Figure 11a,b).
In each zone, the measurement was carried out along a line perpendicular to the roughness lines
(Figure 11c) and located at the center of the zone. Therefore, a total of 2 × 5 = 10 roughness
measurements were obtained from each standard.

Materials 2019, 12, x FOR PEER REVIEW 11 of 27 

 

between 0.1 µm and 2 µm for different calibration points and for different materials (glass instead of 
metallic items). 

  

(a) (b) 

Figure 10. Step height standards used during calibration: (a) aperiodic, metallic standards and (b) 
periodic, glass standards. 

These standards were measured over five different zones in two different orientations (Figure 
11a,b). In each zone, the measurement was carried out along a line perpendicular to the roughness 
lines (Figure 11c) and located at the center of the zone. Therefore, a total of 2 ൈ 5 = 10 roughness 
measurements were obtained from each standard.  

  
(a) (b) (c) 

Figure 11. Location of the five scanning positions for roughness calibration: (a) horizontal orientation; 
(b) vertical orientation; and (c) location of measurement lines. 

We recommend using at least three different roughness standards with nominal values of 𝑅௔ 
uniformly distributed along the range where the instrument must be calibrated. However, it is 
advisable to use five or more standards and, if possible, standards made of different materials (e.g., 
metallic and glass). 

It is important to note that there will be differences between measurements obtained with a 
confocal microscope and measurements obtained with a stylus instrument [4,45]. 

The main reasons for this are as follows.  

• The way the surface is detected is totally different: microscopes use light, and stylus instruments 
use a mechanical tip. Usually, optical instruments present higher instrument noise than stylus 
instruments. Possible reasons are the effects of multiple scattering and discontinuities [45]. As a 
consequence, optical instruments tend to overestimate surface roughness. 

• Stylus instruments permit evaluation lengths 𝑙௡ that are as long as necessary (see ISO 4288 [44]). 
Microscopes usually have small fields of view that limit the maximum length of the profile that 
can be scanned. For example, for samples with 0.1 µm < 𝑅௔ ≤ 2 µm, ISO 4288 recommends 
using five sampling lengths 𝑙௥ = 0.8 mm for a total evaluation length 𝑙௡ = 4 mm. This is not a 
problem for stylus instruments, which can cope with longer evaluation lengths (up to 100 mm 
in some cases). However, the confocal microscope described at the beginning of Section 2 has a 
maximum evaluation length of 1.27 mm. Therefore, only one sampling length 𝑙௥ = 0.8 mm 
could be used. Using only one sampling length instead of five usually causes a bias toward lower 

Figure 11. Location of the five scanning positions for roughness calibration: (a) horizontal orientation;
(b) vertical orientation; and (c) location of measurement lines.



Materials 2019, 12, 4137 12 of 28

We recommend using at least three different roughness standards with nominal values of Ra uniformly
distributed along the range where the instrument must be calibrated. However, it is advisable to use five
or more standards and, if possible, standards made of different materials (e.g., metallic and glass).

It is important to note that there will be differences between measurements obtained with a
confocal microscope and measurements obtained with a stylus instrument [4,45].

The main reasons for this are as follows.

• The way the surface is detected is totally different: microscopes use light, and stylus instruments
use a mechanical tip. Usually, optical instruments present higher instrument noise than stylus
instruments. Possible reasons are the effects of multiple scattering and discontinuities [45]. As a
consequence, optical instruments tend to overestimate surface roughness.

• Stylus instruments permit evaluation lengths ln that are as long as necessary (see ISO 4288 [44]).
Microscopes usually have small fields of view that limit the maximum length of the profile that
can be scanned. For example, for samples with 0.1 µm < Ra ≤ 2 µm, ISO 4288 recommends using
five sampling lengths lr = 0.8 mm for a total evaluation length ln = 4 mm. This is not a problem
for stylus instruments, which can cope with longer evaluation lengths (up to 100 mm in some
cases). However, the confocal microscope described at the beginning of Section 2 has a maximum
evaluation length of 1.27 mm. Therefore, only one sampling length lr = 0.8 mm could be used.
Using only one sampling length instead of five usually causes a bias toward lower Ra values,
which are accompanied by an increase in variability. The effect is considerably higher when even
the sampling length lr has to be reduced.

In order to ensure a good match between roughness measurements performed with stylus
instruments and optical instruments, the concept of “bandwidth matching” should be correctly
applied. This term refers to the good correspondence between the spectral bandwidths of two
different instruments used for roughness measurements [45]. The effective spectral bandwidth of a
roughness-measuring instrument is limited by the two cut-off wavelengths, λS (a high-pass filter),
and λC (a low-pass filter), and it is influenced by the X-axis resolution and tip radius in stylus
instruments or lateral resolution and pixel size in optical instruments.

2.5. Summary of Characteristics of Measurement Standards Used during Calibration

In this section, the nominal values and the uncertainties of the different reference measurement
standards used during calibration are summarized. All of them were calibrated in ACLs.

We include the calibration of the confocal microscope against roughness standard #6 only for
informative purposes. Its measurements were made using a sampling length of lr = 0.8 mm because
of the reduced field of view of the instrument (with an 10× objective). However, ISO 4288 [44]
recommends the use of a sampling length lr = 2.5 mm, which is a measurement that is impossible to
achieve with a 10× objective.

3. Results

3.1. Flatness Verification

The following figure shows a topographic image of the optical flat of Figure 4 that was used as
a flatness calibration surface. This optical flat was previously calibrated in an accredited laboratory.
The total flatness error was 118 nm with a standard uncertainty of 25 nm (k = 1), and its RMS flatness
was 28 nm with a standard uncertainty of 7 nm (k = 1); see Table 1.
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Table 1. Nominal values and the uncertainties of the material reference standards used during
calibration.1 Sm is a spacing parameter defined as the mean spacing between peaks. Sm values included
in this table are only informative. RMS: root mean square error.

Reference Measurement Std. Parameter Certified Value
(µm)

Std. Uncertainty
(k=1)(µm)

Optical flat Total flatness error 0.118 0.025
RMS flatness 0.028 0.007

Stage Micrometer Average pitch `0 9.980 0.005
Sphere Diameter Do 4 001.08 0.25

Roughness std. #1 metallic, aperiodic Ra (R0)
Sm

1
0.183

48 0.039

Roughness std. #2 metallic, aperiodic Ra (R0)
Sm

1
0.512
185 0.041

Roughness std. #3 metallic, aperiodic Ra (R0)
Sm

1
1.677
176 0.057

Roughness std. #4 glass, periodic Ra (R0)
Sm

1
0.460
100 0.030

Roughness std. #5 metallic, aperiodic Ra (R0)
Sm

1
0.850
120 0.030

Roughness std. #6 glass, periodic Ra (R0)
Sm

1
2.440
200 0.080

Figure 12 shows the absence of significant curvature in the XY plane. A slight uncorrected
curvature of about 0.6 µm (peak to peak) was observed, which is small and could be neglected when
compared with the Z-axis axial step (2.0 µm) and observed instrument noise (about 1.0 µm peak
to peak). This could be an empirical demonstration of a good adjustment and/or correction of the
microscope by the manufacturer. In a situation such as this, there is no need to apply any further
correction to compensate the curvature of the XY plane.
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Figure 12. Result of the flatness measurement performed over the optical flat.

Table 2 shows the results of the measurements performed with the confocal microscope (in both
positions 0◦ and 90◦).
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Table 2. RMS flatness measured with the confocal microscope in positions 0◦ and 90◦.

Position RMS Flatness (µm)

0◦ 0.48
90◦ 0.59

The RMS values of Table 2 are small when compared with the Z-axis axial step of 2.0 µm. Therefore,
they were probably caused by the lack of repeatability of the instrument. In any case, the most conservative
option is to estimate a component of the uncertainty associated with the possible curvature of the XY
plane equal to the average value of both RMS values of Table 2:

uFLT = 0.54 µm (25)

A better estimation for uFLT would likely be to quadratically subtract the RMS flatness of the
optical flat (0.28 µm):

uFLT =

√
(0.54 µm)2

− (0.028 µm)2 = 0.539 µm (26)

Regardless, we considered that the first estimation (uFLT = 0.54 µm) is slightly more conservative
and clearly simpler.

3.2. XY Plane Calibration

Figure 13 shows the four positions (0◦, 45◦, 90◦, 135◦) in which the stage micrometer was measured
in the confocal microscope during the XY plane calibration.
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Figure 13. Different measurement positions (0◦, 45◦, 90◦, 135◦) of the stage micrometer.

In each position, the average pitch `i was determined from readings provided by the confocal
microscope. The results are shown in Table 3.

Table 3. Measurements of the average pitch `i in different orientations.

Position Average Pitch `i (µm) Uncertainty u(`i) (µm) Repeatability s
(µm)

Non-Linearity
RMS (µm)

1 0◦ 9.892 34 0.000 53 0.34 0.71
2 45◦ 9.897 33 0.000 57 0.38 0.60
3 90◦ 9.891 56 0.000 49 0.42 0.69
4 135◦ 9.889 50 0.000 47 0.34 0.61

The average value for repeatability in the XY plane was sr(x) = sr(y) = 0.4 µm. This is a reasonable
value when compared with the 1.65 µm lateral resolution (nominal voxel width).

The stage micrometer had a certified average pitch `0 = 9.980 µm with a standard uncertainty
u(`0) = 0.005 µm.
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Using the expression for Section 2.2, we obtained the following estimations for calibration
parameters cxy, a, and θ:

cxy =
`0

4
·

(
1
`1

+
1
`2

+
1
`3

+
1
`4

)
− 1 = 0.00883 (27)

with u
(
cxy

)
=

√
u2(`0) + [u2(`1) + u2(`2) + u2(`3) + u2(`4)]/16

`0
= 0.00050 (28)

a =
`0

2
·

(
1
`1
−

1
`2

)
= −0.000040 (29)

with u(a) =

√
u2(`1) + u2(`2)

2`0
= 0.000036 (30)

θ = `0·

(
1
`3
−

1
`4

)
= −0.000798 (31)

with u(θ) =

√
u2(`3) + u2(`4)

`0
= 0.000074 (32)

All three parameters are dimensionless.
Observing the non-linearity RMS values in Table 3, the overall standard uncertainty estimation

for non-linearity in the XY-plane was uNL,xy = 0.7 µm.

3.3. Z-Axis Calibration

Figure 14 shows an example of a measurement of the spherical cap of a stainless steel reference
sphere with a 4-mm nominal diameter (see Figure 9). It is a three-dimensional reconstruction of the
sphere surface.Materials 2019, 12, x FOR PEER REVIEW 2 of 27 
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Figure 14. Results of the measurement of a bearing sphere with white light.

Using this information, the confocal microscope software can perform a least-square fitting to a
spherical surface from which we could estimate the diameter of the sphere and RMS error of the fit.
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If the confocal software does not permit fitting a spherical surface, a code similar to the one described
and listed in Appendix A can be used.

In this calibration, two different types of illumination were used (white and blue light),
and measurements were taken in three orientations: 0◦, 45◦, and 90◦. Finally, there were n = 6
measurements. Results obtained during the measurement of the bearing steel sphere of Figure 9 are
presented in Table 4.

Table 4. Root mean square error and diameter Dm of the spherical caps fitted using least squares.

Position Illumination RMS Error (µm) Diameter Dm (mm)

0◦ Blue 0.86 3.9740
45◦ Blue 1.08 3.9562
90◦ Blue 1.08 3.9638
0◦ White 0.86 3.9740
45◦ White 0.89 3.9828
90◦ White 0.87 3.9766

The average value Dm of the six diameters Dm was Dm = 3.9712 mm, and the standard deviation
s(Dm) was 0.0096 mm. We estimated u(Dm) as:

u(Dm) =
s(Dm)
√

n
= 0.0039 mm. (33)

The RMS error is an estimation of the repeatability in the Z-axis, which probably includes the
non-linearity in the Z-axis. The mean value for this Z-axis repeatability was sr(z) = 0.8 µm, which
seems to be a reasonable value when compared with the Z-axis axial step of 2 µm.

The certified diameter D0 of the reference sphere was D0 = 4.0011 mm with a standard uncertainty
u(D0) = 0.25 µm.

Using the expression of Section 2.3, the Z-axis calibration parameter cz can be estimated as follows:

cz =
Dm

D0
·

(
1 + 2cxy

)
− 1 = 0.0101 (34)

with u(cz) =

√√
u2(D0) + u2(Dm)

D2
0

+ 4u2
(
cxy

)
= 0.0014 (35)

The correlation coefficient r
(
cz, cxy

)
was

r
(
cz, cxy

)
= 2·

u
(
cxy

)
u(cz)

= 0.72 (36)

This correlation coefficient is clearly higher than zero, showing a strong positive correlation
between cz and cxy that should be taken into account after calibration when needed. Correlation
coefficients r(cz, a) and r(cz,θ) are usually very small (lower than 0.01); therefore, correlation between
cz and parameters a and θ could be neglected.

3.4. Calibration for Roughness Measurements

As an example of data acquisition results when measuring a material roughness standard,
the following figures show three-dimensional reconstructions of the surface of an aperiodic, metallic
roughness standard (Figure 15) and a periodic, glass roughness standard (Figure 16).
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Figure 15. Measurement of an aperiodic roughness standard with a confocal microscope: 3D view of
the measurement results.
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Figure 16. Measurement of a periodic roughness standard with a confocal microscope: 3D view of the
measurement results with roughness lines (a) parallel to the X-axis and (b) parallel to the Y-axis.

Calibration was performed by repeating the measurements of six roughness standards 10 times
(five zones, two orientations; see Table 1). The results are summarized in Table 5, showing average
results R of the 10 repeated measurements and corresponding standard deviations s(R). Direct readings
R provided by the confocal microscope were obtained prior to introducing the calibration parameter cz

using only one sampling length lr = 0.8 mm.
Therefore, these readings should be corrected by applying the following expression to take into

account the Z-axis calibration:
Rcorrected = R·(1 + cz). (37)

The authors followed the recommendations of ISO 4288 [44] that, for 0.1 < Ra ≤ 2 mm, recommend
five sampling lengths lr = 0.8 mm for a total evaluation length of ln = 4 mm. Due to the limitations of
the instrument’s field of view (see Section 2), only one sampling length lr = 0.8 mm could be used.
This reduction in the number of sampling lengths from five to one caused slightly lower values for
Ra and higher variabilities [45].

It can be concluded from Table 5 that a typical value for s(R) was s(R) = 0.07 µm, which was the
quadratic average of repeatabilities of the first five standards.

Note that corrected values R·(1 + cz) were always higher than the certified values R0 (compare the
results from Table 5 to those from Table 1). It seems that for surface roughness similar to the nominal
voxel height (wz = 2 µm), readings provided by the confocal microscope presented a positive bias
caused by noise observed, for example, when measuring an optical flat (see Section 3.1, Figure 12).
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The RMS flatness observed when measuring the optical flat (0.54 µm) was slightly higher than the
Ra values that were observed when measuring roughness standard #1, which is a quasi-flat surface
(certified value Ra = 0.183 µm) for an instrument with a voxel height of 2 µm. The definition of Ra is
similar but not equal to the definition of RMS flatness, but most importantly, Ra was evaluated after
filtering the readings using a low-pass filter (defined through the sampling length lr).

Table 5. Results obtained when calibrating the confocal microscope described in Section 2 using six
roughness standards (Table 1).

Reference Meas. Std.
Average Ra

¯
R (µm)

Repeatability
s(R) (µm)

Corrected Ra
¯
R·(1+cz) (µm)

Bias Estimation
b (µm) Standard Uncertainty u(b) (µm)

Roughness std. #1 0.43 0.06 0.43 0.25 0.04
Roughness std. #2 0.59 0.06 0.60 0.08 0.05
Roughness std. #3 1.70 0.11 1.71 0.04 0.07
Roughness std. #4 0.51 0.04 0.52 0.06 0.03
Roughness std. #5 0.95 0.05 0.96 0.11 0.03

Roughness std. #6 1 2.50 0.06 2.53 0.09 0.08
1 Values obtained when measuring roughness standard #6 are included in this table only for informative reasons.
Measurements of this standard were made using a sampling length lr = 0.8 mm, because of the reduced field of
view of the instrument, instead of a sampling length lr = 2.5 mm, as recommended by ISO 4288 [44].

We suggest estimating the positive bias at each calibration point using the following expression,
where R0 is the Ra certified value for the standard used at each calibration point:

b = R·(1 + cz) −R0. (38)

Its corresponding standard uncertainty u(b) is:

u(b) =

√
u2(R0) + R

2
·u2(cz) +

s2(R)
n

. (39)

Using this approach, the calibration results are those values, bi and u(bi), which are presented in
the two columns on the right side of Table 5. Index i refers to the roughness standard used. These
results are represented graphically in Figure 17 in order to analyze their metrological compatibility.
Red lines represent values corresponding to metallic, aperiodic standards #1, #2, and #3. Green lines
represent values corresponding to standards #4 and #5. The blue line is the result from standard #6
that will not be taken into account. Vertical lines represents uncertainty intervals bi ± U(bi) where the
expanded uncertainties U(bi) = k·u

(
b
)

were evaluated for a coverage factor k = 2 (see Section 6.2.1
in [24] for definitions of coverage factor and expanded uncertainty). When analyzing the compatibility
between measurement results, it is very common to use a coverage factor of k = 2 to estimate the
expanded uncertainties. The horizontal black solid line in Figure 17 corresponds to the average value b
of the first N = 5 roughness standards:

b =

∑N
i=1 bi

N
=

b1 + b2 + b3 + b4 + b5

5
= 0.11 µm (40)

In order to make a correct estimation of average bias b, the correlation between bias bi, b j at each
calibration points should be taken into account for the following reasons:

• Dominant contributions to uncertainties u(bi) are the calibration uncertainties u(R0) of the
roughness standards.

• There is a high probability that all roughness standards were calibrated in the same calibration
laboratory. Therefore, there will be strong correlation between them.
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There will be a high correlation between bias bi. We performed estimations in different situations,
and it is possible to see correlation coefficients r

(
bi, b j

)
as high as +0.8.

In order to simplify calculations, we suggest assuming r
(
bi, b j

)
= +1, which leads to higher

estimations for the uncertainty u
(
b
)

of b. Then, it can be demonstrated that u
(
b
)

was:

u
(
b
)
=

1
N

∑N

i=1
u(bi) =

u(b1) + u(b2) + u(b3) + u(b4) + u(b5)

5
= 0.05 µm (41)

In Figure 17, the uncertainty interval b±U
(
b
)

is represented by the space between the higher and

lower black dotted lines. U
(
b
)
= k·u

(
b
)

is the expanded uncertainty of b evaluated with a coverage

factor k = 2. Please note that all the uncertainty intervals bi ±U(bi) overlap the interval b ±U
(
b
)
.

Notwithstanding, point b1 is outside the interval b±U
(
b
)
. This could indicate that some variability of

the bias b was not taken into account in u
(
b
)
. Therefore, a conservative approach would be to assume

that there is a variability represented by δb that should be added to u
(
b
)
. Suppose that δb is a uniform

random variable of null mean and a full range bmax − bmin. Then, its standard uncertainty would be:

u(δb) =
bmax − bmin
√

12
= 0.06 µm (42)

In order to estimate the noise of the instrument, according to [40–42], we repeated 10 measurements
over an optical flat (that of Figure 4) in two orientations: 0◦ and 90◦. For a confocal microscope, an
optical flat is a specimen with null roughness (very small in comparison with its noise). Therefore,
values of Ra obtained over an optical flat are a very good estimation of the instrument noise. The average
value and the standard deviation of the 10 Ra values were

Ra = 0.09 µm (43)

s(Ra) = 0.003 µm (44)

Therefore, a good estimation for the uncertainty component associated with noise instrument is

unoise = Ra = 0.09 µm (45)

4. Discussion

Table 6 summarizes the results obtained during the confocal microscope calibration (Section 2).



Materials 2019, 12, 4137 20 of 28

Table 6. Results of calibration.

Parameter Value Units Standard Uncertainty

cxy 0.008 83 - 0.00050
a −0.000040 - 0.000036
θ −0.000798 - 0.000074
cz 0.0101 - 0.0014

r
(
cxy, cz

)
0.72 - -

uFLT 0.54 µm -
uNL,xy 0.70 µm -

sr(x) = sr(y) 0.40 µm -
sr(z) 0.80 1 µm -

b 0.11 µm 0.05
δb 0 µm 0.06

s(R) 0.07 µm
unoise 0.09 µm

1 Non-linearity in Z-axis is included in sr(z).

Note that these results are only valid for measurements made with the same objective (10×).
If other objectives are used, a whole recalibration is needed for each new objective.

The effects and their uncertainties were the highest for parameters cxy and cz. If their effects were
not corrected, their contribution to the relative expanded uncertainty would be around 1%.

Fortunately, the software of confocal microscopes usually permits users to introduce their value
in order to compensate their effects. If this compensation is done, their contribution to the relative
expanded uncertainty is reduced to 0.3%.

The effect of parameter a (difference between pixel lengths along X and Y axes) was negligible.
Its absolute value was lower than its expanded uncertainty U(a) = k·u(a) (for k = 2); therefore, the null
hypothesis a = 0 could not be rejected. Its contribution to the relative expanded uncertainty was very
low (around 0.01%).

The effect of parameter θ (perpendicularity error between X and Y axes) seemed to be significant
(its absolute value was clearly higher than its expanded uncertainty), but its contribution to the relative
expanded uncertainty (around 0.1%) was clearly negligible in comparison with cxy and cz.

The contributions of XY plane RMS flatness (uFLT) and the non-linearity in X and Y axes were
clearly lower than the voxel dimensions (wxy = 1.65 µm and wz = 2 µm). Therefore, the instrument
adjustment performed by the manufacturer seems to have been good.

Repeatabilities in the XY plane and in the Z-axis, in comparison with the voxels dimensions, were
low. Again, this can be used to conclude that the instrument was working well.

In roughness measurements (which only apply when using the Ra parameter), the repeatability s(R),
average bias b, bias variability u(δb), and instrument noise unoise were very small in comparison with
voxel height wz = 2 µm.

4.1. Expanded Uncertainty Estimation for Length Measurements in the XY Plane

As was pointed out, the instrument software usually permits users to introduce parameters cxy

and cz in order to apply the corresponding corrections. On the contrary, parameters a and θ cannot
be introduced. Therefore, the effect of uncorrected, non-null parameters a and θ would be taken into
account as a systematic effect whose equivalent standard uncertainties would respectively be |a|/

√
3

and |θ|/
√

3. We supposed that it was equivalent to the introduction of two components, δa and δθ,
uniformly distributed along [−a. + a] and [−θ. + θa], respectively.
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For length measurements performed in the XY plane, the following expression could be a good
estimate of its expanded uncertainty, where the pixel width component was estimated as wxy/

√
12

(uniformly distributed between ±wxy/2):

U
(
Lxy

)
= k·

√
L2

xy·
{
u2

(
cxy

)
+ a2

3 + u2(a) + 1
2

[
θ2

3 + u2(θ)
]}
+ u2

NL,xy + s2
r (x) +

w2
xy

12 ≤

≤ 1.9 µm + L
1600 .

(46)

Uncertainty components for which no distribution was described were supposed to have normal
distributions. In such situations, where there are many uncertainty components (eight components) and
most of them are normally distributed and they contribute similarly to the total combined uncertainty,
it can be supposed that the output variable Lxy is normally distributed [25]. Therefore, a coverage
factor k = 2 can be used when computing the expanded uncertainty, assuming a coverage probability
of approximately 95%.

4.2. Expanded Uncertainty Estimation for Height Measurements along the Z-Axis

For height measurement (0 ≤ h ≤ 100 µm—the Z range approximately covered by the sphere cap
measured), the following expression gives us a reasonable estimation of its expanded uncertainty U(h)
for a coverage factor k = 2:

U(h) = k·

√
h2·u2(cz) + u2

FLT + s2
r (z) +

w2
z

12
≤ 2.2 µm +

h
120

(47)

Now there are four uncertainty components, where three are distributed normally, and only one
wz is distributed uniformly, but wz is never the dominant contribution. Again, in a situation such
as this, a coverage factor k = 2 can be used when computing the expanded uncertainty, assuming a
coverage probability of approximately 95% [25].

4.3. Expanded Uncertainty for Roughness Measurements

Following the recommendations of DKD-R 4-2 [40–42], a model for a corrected Ra roughness
measurement performed after instrument calibration would be:

Ra = R·(1 + cz) −
(
b + δb

)
+ δRnoise (48)

where now R is the average of m repeated measurements made over the specimen being measured,
and δRnoise is a random variable of null mean distributed normally with standard deviation unoise.
The standard uncertainty of Ra is

u(Ra) =

√
s2(R)

m
+ R

2
·u2(cz) + u2

(
b
)
+ u2(δb) + u2

noise (49)

The expanded uncertainty U(Ra), using a coverage factor k is

U(Ra) = k·

√
s2(R)

m
+ R

2
·u2(cz) + u2

(
b
)
+ u2(δb) + u2

noise (50)

In this case, there are five uncertainty components, δb is distributed uniformly, and R follows a
t-Student distribution with ν = m− 1 degrees of freedom. If we compute the degrees of freedom of
the output variable Ra, the result is approximately ν(Ra) = 30. With ν(Ra) > 10, it is possible to use
a coverage factor k = 2 corresponding to a coverage probability of approximately 95% [25]. Then,
assuming that measurements will be repeated m = 3 times, the expanded uncertainty would be

U(Ra) < 0.25 µm (51)
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This value is very good for an instrument with a voxel height of wz = 2 µm.

4.4. Propagation of Uncertainty When Measuring the Radius of a Cylindrical Surface

As an example of uncertainty propagation in dimensional measurements not directly covered
in Sections 4.2 and 4.3, we present the case of a measurement of the radius of a cylindrical surface
(see Figure 18) of a steel bar with a nominal value of 2.75 mm.
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The uncertainty propagation was done using Monte Carlo simulation [46]. The model function
used during the simulation of the coordinates of the surface’s points was the following:

x
y
z

 =


1 + cxy + a + δa (θ+ δθ)/2 0
(θ+ δθ)/2 1 + cxy − a− δa 0

0 0 1 + cz

·


p
q
r

+

δx
δy
δz

 (52)

where (p, q, r) are the coordinates provided by the confocal microscope during the measurement. They
were not simulated. Table 7 enumerates variables that were simulated and how the simulation was
performed. Corrections a and t were not applied, because the instrument software cannot take them
into account. In order to take into account the effect of not applying these corrections, δa and δt
were introduced, and a and t are supposed to be normal distributions with zero mean (not applying
corrections) and typical uncertainty u(a) and u(t). δa and δt have uniform distribution with zero
mean and typical uncertainties |a|/

√
3 and |θ|/

√
3. δp, δq, and δr represent the repeatability effects

over coordinates x, y, and z. We supposed that they had normal distributions with zero mean and
typical uncertainties u(δp) = (δq) = sr(x) = sr(y) and u(δr) = sLS = 1.0 µm, where sLS is the root
mean squared error observed when fitting a cylindrical surface to measured points (x, y, z) using a
least-squares fit.
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Table 7. Variables simulation.1 Corrections a and t were not applied.

Variable Mean Value Units Standard Uncertainty Distribution Type

cxy 0.00883 - 0.00050 Normal
a 0 1 - 0.000036 Normal
δa 0 u(δa) = a

√
3
= 0.000023 Uniform

θ 0 1 - 0.000074 Normal
δa 0 u(δa) = a

√
3
= 0.00046 Uniform

cz 0.0101 - 0.0014 Normal
r
(
cxy, cz

)
0.72 - - -

δp, δq 0 µm sr(x) = sr(y) = 0.40 Normal
δr 0 µm sLS = 1.0 Normal

A total of N = 104 simulations were generated. For each simulation, a value Ri was obtained for
the radius of the cylindrical surface. Figure 19 shows the histogram of the simulated radius of the
cylindrical surface. The red smooth line represents the best approximation of the histogram through
a normal distribution. Differences between the red line and the histogram were small enough to be
negligible. It is likely that upon increasing the number of simulations (the advisable value for N when
there is no time limit during the execution to the simulation process is N = 106 [46]), these differences
would be smaller. For this reason, a coverage factor k = 2 (corresponding to an approximate coverage
probability of 95%) was chosen in previous sections: final distributions are usually very close to normal
distribution where k = 2 corresponds to a coverage probability of 95.45%.
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The final result was R = (2.7907± 0.0061) mm, where the expanded uncertainty U(R) = k·s(R),
where now s(R) is the standard deviation of N simulated values Ri. A coverage factor k = 2 for a
coverage probability of approximately 95% was used.

A similar approach could be used to propagate uncertainties when using the confocal microscope
for other types of dimensional or angular measurements.

5. Conclusions

A complete calibration procedure that provides adequate traceability to confocal microscopes used
in submillimeter coordinate metrology was presented. This procedure provides adequate traceability
for length and roughness measurements performed with confocal microscopes and can be easily
adapted to calibrate other 3D optical instruments (e.g., focus variation microscopes). The calibration
procedure is as simple as possible, as it was designed to be implemented in industrial environments.
Reference material standards were chosen to be easy to find and easy to calibrate again in industrial
environments. The calibration procedure covers all the key points of operation of a confocal microscope.
It permits the estimation of:

• Amplification coefficients αx = 1 + cxy + a, αy = 1 + cxy − a, and αz = 1 + cz.
• Non-linearity errors.
• Perpendicularity error θ between X and Y axes.
• Relative difference 2a in pixel dimensions along X and Y axes.
• Repeatabilities when measuring lengths or heights.
• Flatness deviations in the XY plane.
• Bias deviation b when measuring roughness.
• Instrument noise when measuring roughness.
• Repeatability when measuring roughness.

Some of these parameters (amplification coefficients, flatness deviation in XY plane) can usually be
introduced in the instrument software to compensate for their effects. Others cannot be compensated
(i.e., θ, a) but if high values are detected, the user can ask the instrument manufacturer to adjust and/or
repair the instrument to reduce their effects. Even if they are not introduced, an alternative approach is
presented here to account for the fact that these corrections were not applied.

Uncertainty estimations were carried out for all parameters following the mainstream GUM
method. In addition, for measurements of lengths and roughness, expressions for expanded
uncertainties of measurement carried out by the instrument were provided. There are other types of
measurements, such as angular measurements, that were not addressed in this paper due to limitations
in the extent of the text. Notwithstanding, all the information needed to propagate uncertainties
to these other types of measurements is provided in the paper, as can be demonstrated through an
example solved using Monte Carlo simulation.

The procedure described in this paper can be easily adapted to calibrate other optical instruments
in the submillimeter range, which are capable of providing 3D information of surfaces being observed
by them (e.g., focus variation microscopes). For example, the material of some of the reference material
standards would have to be changed, but the core of the procedure would remain the same.
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Appendix A Algorithm for Spherical Cap Fitting

At the end of this appendix, we include the source code of a routine written to be executed in
Matlab®(www.mathworks.com) or GNU Octave (www.gnu.org/software/octave/) that performs a
least-squares fitting of n points with Cartesian coordinates (xi, yi, zi) to a spherical surface of radius R
and center at (xC, yC, zC). The following equation is used to describe the surface:

z(x, y) = f (p, x, y) = zC +

√
R2 − (x− xC)

2
− (y− yC)

2. (A1)

Vector p = [R xC yC zC] stores the four parameters that define the spherical surface.
This expression works well when performing a least-square fitting when points (xi, yi, zi) are over

a spherical cap near zMAX = zC + R (sphere north pole) or zMIN = zC −R (sphere south pole).

The algorithm needs an initial solution p0 =
[
R(0) x(0)C y(0)C z(0)C

]
from which starts an iterative

process. In each iteration k, the following system of equations is solved by least squares:

R(k−1)

hi
·∆R +

xi − x(k−1)
C

hi
·∆xC +

yi − y(k−1)
C

hi
·∆yC + ∆zC = zi − f (pk−1, xi, yi), (A2)

where i = 1, 2, · · · , n and hi =

√(
R(k−1)

)2
−

(
xi − x(k−1)

C

)2
−

(
yi − y(k−1)

C

)2
.

In each iteration, a detection of outliers is made following the method described in Section 1.3.5.17
of [29]. The z coordinates obtained with a confocal microscope are usually noisy enough to make the
adjustment by least squares of the surface very difficult. Therefore, a good outlier detection algorithm
must be used. The iterative process finishes when no more outliers are detected and no decrease in
RMS residual is observed.

www.mathworks.com
www.gnu.org/software/octave/
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    % Initial parameters 
    p =[ Ro xo yo zo ]'; 
  
    while true 
        R     = p(1);  xo=p(2); yo=p(3); zo=p(4); 
        h     = sqrt( R^2 - (x-xo).^2 - (y-yo).^2 ); 
        zest = zo + h ; 
  
        A    = [ R./h  (x-xo)./h  (y-yo)./h  ones(size(x)) ]; 
  
        dp   = A\(z-zest) ; 
        e    = (z-zest)-A*dp ;      % Residuals 
         
        % Outliers detection following  
        % section 1.3.5.17. Detection of Outliers 
        % NIST - Engineering Statistical Handbook 
        % https://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm 
        se   = 1/0.6745*median(abs(e));       % Robust estimation of standard deviation 
        ii   = find(abs(e)<3.5*se);            % Outliers detection 
         
        if (length(ii)==length(e))&&(se/se_ans>=1) 
            break                                  % End of the iterations 
        else 
            se_ans=se; 
        end 
         
        x=x(ii); y=y(ii); z=z(ii); e=e(ii);  % Outliers elimination 
        p  = p + dp; 
    end 
  
    % Uncertainty Estimation 
    se = sqrt(sum(e.^2)/(length(e)-length(p))) ; 
    Cp = se^2*inv(A'*A); % Covariance matrix of parameters p 
  
    R = p(1);           % Estimate of R 
    xn=x; yn=y; zn=z; % Not discarded points coordinates 
  
    % Residuals 
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    s = sqrt(sum(e.^2)/(length(e)-length(p))) ; 
end 

References 

1. Carmignato, S.; Voltan, A.; Savio, E. Metrological performance of optical coordinate measuring machines 
under industrial conditions. CIRP Ann. Manuf. Technol. 2010, 59, 497–500, doi:10.1016/j.cirp.2010.03.128. 

2. European Committee for Standardization (CEN). ISO 3274:1996 Geometrical Product Specifications (GPS) 
Surface Texture: Profile Method. Nominal Characteristics of Contact (stylus) Instruments; CEN: Bruxelles, 
Belgium, 1996. 

3. Leach, R.K. Towards a complete framework for calibration of optical surface and coordinate measuring 
instruments. In Proceedings of the SPIE Optical Metrology Plenary Session, ICM, Munich, Germany, 26 
June 2019. 

4. European Committee for Standardization (CEN); ISO 25178-6:2010 Geometrical Product Specification (GPS) 
Surface Texture: Areal—Part 6: Classification Methods for Measuring Surface Texture; CEN: Bruxelles, Belgium, 
2010. 

References

1. Carmignato, S.; Voltan, A.; Savio, E. Metrological performance of optical coordinate measuring machines
under industrial conditions. CIRP Ann. Manuf. Technol. 2010, 59, 497–500. [CrossRef]

2. European Committee for Standardization (CEN). ISO 3274:1996 Geometrical Product Specifications (GPS) Surface
Texture: Profile Method. Nominal Characteristics of Contact (stylus) Instruments; CEN: Bruxelles, Belgium, 1996.

3. Leach, R.K. Towards a complete framework for calibration of optical surface and coordinate measuring instruments.
In Proceedings of the SPIE Optical Metrology Plenary Session, ICM, Munich, Germany, 26 June 2019.

4. European Committee for Standardization (CEN). ISO 25178-6:2010 Geometrical Product Specification (GPS) Surface
Texture: Areal—Part 6: Classification Methods for Measuring Surface Texture; CEN: Bruxelles, Belgium, 2010.

http://dx.doi.org/10.1016/j.cirp.2010.03.128


Materials 2019, 12, 4137 27 of 28

5. Giusca, C.; Leach, R.K. Measurement Good Practice Guide (No. 128): Calibration of the Metrological Characteristics
of Imaging Confocal Microscopes (ICMs); National Physical Laboratory (NPL): Teddington, UK, 2012.

6. Minsky, M. Memoir on Inventing the Confocal Scanning Microscope. Scanning 1988, 10. [CrossRef]
7. Claxton, N.S.; Fellers, T.J.; Davidson, M.W. Laser scanning confocal microscopy. In Encyclopedia of Medical

Devices and Instrumentation, 2nd ed.; Webster, J.G., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006;
pp. 1–37. [CrossRef]

8. Watson, T. Fact and Artefact in Confocal Microscopy. Adv. Dent. Res. 1997, 11, 128–138. [CrossRef]
9. Cheng, C.; Wang, J.; Leach, R.K.; Lu, W.; Liu, X.; Jiang, X. Corrected parabolic fitting for height extraction in

confocal microscopy. Opt. Express 2019, 27, 3682–3697. [CrossRef]
10. Alburayt, A.; Syam, W.P.; Leach, R.K. Lateral scale calibration for focus variation microscopy. Meas. Sci. Technol.

2019, 29. [CrossRef]
11. Joint Committee for Guides in Metrology (JCGM). International Vocabulary of Metrology (VIM)—Basic and

General Concepts and Associated Terms, 3rd ed.; JCGM: Paris, France, 2012.
12. Leach, R.K.; Giusca, C.; Haitjema, H.; Evans, C.; Jiang, X. Calibration and verification of areal surface texture

measuring instruments. CIRP Ann. Manuf. Technol. 2015, 64, 797–813. [CrossRef]
13. Caja, J.; Sanz, A.; Maresca, P.; Fernández, T.; Wang, C. Some Considerations about the Use of Contact and

Confocal Microscopy Methods in Surface Texture Measurement. Materials 2018, 11, 1484. [CrossRef]
14. Wang, C.; Gómez, E.; Yu, Y. Characterization and correction of the geometric errors in using confocal

microscope for extended topography measurement. Part I: Models, Algorithms Development and Validation.
Electronics 2019, 8, 733. [CrossRef]

15. Wang, C.; Gómez, E.; Yu, Y. Characterization and Correction of the Geometric Errors Using a Confocal
Microscope for Extended Topography Measurement, Part II: Experimental Study and Uncertainty Evaluation.
Electronics 2019, 8, 1217. [CrossRef]

16. Webb, R.H. Confocal optical microscopy. Rep. Prog. Phys. 1996, 59, 427–471. [CrossRef]
17. Webb, R.H. Theoretical Basis of Confocal Microscopy. Meth. Enzymol. 1999, 307, 3–20. [CrossRef] [PubMed]
18. Salerni, G. Uso de la microscopía confocal de reflectancia en dermatología. Dermatol. Argent. 2011, 17, 230–235.
19. Confocal Microscopy, Molecular Expressions. Available online: https://micro.magnet.fsu.edu/primer/

techniques/confocal/index.html (accessed on 26 October 2019).
20. Leach, R.K.; Bourell, D.; Carmignato, S.; Donmez, A.; Senin, N.; Dewulf, W. Geometrical metrology for metal

additive manufacturing. CIRP Ann. Manuf. Technol. 2019, 68, 677–700. [CrossRef]
21. Introduction to Confocal Microscopy. Available online: https://www.olympus-lifescience.com/en/microscope-

resource/primer/techniques/confocal/confocalintro/ (accessed on 26 October 2019).
22. Tata, B.V.R.; Raj, B. Confocal laser scanning microscopy: Applications in material science and technology.

Bull. Mater. Sci. 1998, 21, 263–278. [CrossRef]
23. Cohen-Or, D.; Kaufmann, A. Fundamentals of Surface Voxelization. CVGIP: Graph. Model. Image Process.

1995, 57, 453–461. [CrossRef]
24. Joint Committee for Guides in Metrology, Working Group 1 (JCGM/WG 1). JCGM 100:2008 Evaluation of

Measurement Data—Guide to the Expression of Uncertainty in Measurement (GUM), 1st ed.; JCGM: Paris, France, 2008.
25. European Accreditation (EA). EA-4/02—Evaluation of the Uncertainty of Measurement in Calibration; EA: London,

UK, 2013.
26. European Committee for Standardization (CEN). ISO/IEC 17025:2017 General Requirements for the Competence

of Testing and Calibration; CEN: Bruxelles, Belgium, 2017.
27. SENSOFAR-TECH LTD. Application Note: Flatness Error on Imaging Confocal Microscopes; Sensofar: Tarrasa,

Spain, 2009.
28. Centro Español de Metrología (CEM). Procedimiento DI-035 para la Calibración de Patrones de Planitud de Vidrio;

CEM: Madrid, Spain, 2004.
29. NIST/SEMATECH e-Handbook of Statistical Methods. Available online: http://www.itl.nist.gov/div898/

handbook/ (accessed on 27 November 2019).
30. De Vicente, J.; Molpeceres, C.; Guarneros, O.; García-Ballesteros, J. Calibración de Microscopios Confocales;

XVII National Congress of Mechanical Engineering: Gijón, Spain, 2008.
31. Guarneros, O.; De Vicente, J.; Maya, M.; Ocaña, J.L.; Molpeceres, C.; García-Ballesteros, J.; Rodríguez, S.;

Duran, H. Uncertainty Estimation for Performance Evaluation of a Confocal Microscope as Metrology
Equipment. MAPAN—J. Metrol. Soc. I 2014, 29, 29–42. [CrossRef]

http://dx.doi.org/10.1002/sca.4950100403
http://dx.doi.org/10.1002/0471732877.emd291
http://dx.doi.org/10.1177/08959374970110040901
http://dx.doi.org/10.1364/OE.27.003682
http://dx.doi.org/10.1088/1361-6501/aab949
http://dx.doi.org/10.1016/j.cirp.2015.05.010
http://dx.doi.org/10.3390/ma11081484
http://dx.doi.org/10.3390/electronics8070733
http://dx.doi.org/10.3390/electronics8111217
http://dx.doi.org/10.1088/0034-4885/59/3/003
http://dx.doi.org/10.1016/s0076-6879(99)07003-2
http://www.ncbi.nlm.nih.gov/pubmed/10506964
https://micro.magnet.fsu.edu/primer/techniques/confocal/index.html
https://micro.magnet.fsu.edu/primer/techniques/confocal/index.html
http://dx.doi.org/10.1016/j.cirp.2019.05.004
https://www.olympus-lifescience.com/en/microscope-resource/primer/techniques/confocal/confocalintro/
https://www.olympus-lifescience.com/en/microscope-resource/primer/techniques/confocal/confocalintro/
http://dx.doi.org/10.1007/BF02744951
http://dx.doi.org/10.1006/gmip.1995.1039
http://www.itl.nist.gov/div898/handbook/
http://www.itl.nist.gov/div898/handbook/
http://dx.doi.org/10.1007/s12647-013-0060-2


Materials 2019, 12, 4137 28 of 28

32. De Vicente, J.; Sánchez-Pérez, A.M.; Maresca, P.; Caja, J.; Gómez, E. A model to transform a commercial
flatbed scanner into a two-coordinates measuring machine. Measurement 2015, 73, 304–312. [CrossRef]

33. European Committee for Standardization (CEN). ISO 25178-70 Geometrical Product Specification (GPS) Surface
Texture: Areal—Part 70: Material Measures; CEN: Bruxelles, Belgium, 2014.

34. Centro Español de Metrología (CEM). Procedimiento DI-004 para la Calibración de Medidoras de una Coordenada
Vertical; CEM: Madrid, Spain, 2013.

35. Wang, C.; Caja, J.; Gómez, E.; Maresca, P. Procedure for Calibrating the Z-axis of a Confocal Microscope:
Application for the Evaluation of Structured Surfaces. Sensors 2019, 19, 527. [CrossRef] [PubMed]

36. European Committee for Standardization (CEN). ISO 5436-1:2000 Geometrical Product Specipications (GPS) Surface
Texture: Profile Method. Measurement Standards—Part 1: Material Measures; CEN: Bruxelles, Belgium, 2000.

37. Calibration standards, HALLE Präzisions-Kalibriernormale GmbH. Available online: http://halle-normale.
de/framesets/englisch/products/products.html (accessed on 29 October 2019).

38. Balcon, M.; Carmignato, S.; Savio, E. Performance verification of a confocal microscope for 3D metrology
tasks. Qual.—Access Success 2012, 13, 63–66.

39. De Vicente, J.; Raya, F. Simplified Statistical Method for Uncertainty Estimation in Coordinate Metrology.
In Proceedings of the 9th International Metrology Congress, Bordeaux, France, 18–21 October 1999.

40. Deutscher Kalibrierdienst (DKD). Guideline DKD 4-2 Calibration of Measuring Instruments and Standards for
Roughness Measuring Technique (Sheet 1: Calibration of Standards for Roughness Measuring Technique); DKD:
Braunschweig, Germany, 2011.

41. Deutscher Kalibrierdienst (DKD). Guideline DKD-R 4-2 Calibration of Devices and Standards for Roughness
Metrology (Sheet 2: Calibration of the Vertical Measuring System of Stylus Instrument); DKD: Braunschweig,
Germany, 2011.

42. Deutscher Kalibrierdienst (DKD). Guideline DKD-R 4-2 Calibration of Devices and Standards for Roughness
Metrology (Sheet 3: Calibration of Standards with Periodic Profiles in Horizontal Direction by Means of Stylus
Instrument); DKD: Braunschweig, Germany, 2011.

43. European Committee for Standardization (CEN). ISO 4287:1999 Geometrical Product Specifications (GPS) Surface
Texture: Profile Method. Terms, Definitions and Surface Texture Parameters; CEN: Bruxelles, Belgium, 1999.

44. European Committee for Standardization (CEN). ISO 4288:1996 Geometrical Product Specifications (GPS)
Surface Texture: Profile Method. Rules and Procedures for the Assessment of Surface Texture; CEN: Bruxelles,
Belgium, 1996.

45. Leach, R.K.; Haitjema, H. Bandwidth characteristics and comparisons of surface texture measuring
instruments. Meas. Sci. Technol. 2010, 21. [CrossRef]

46. Joint Committee for Guides in Metrology, Working Group 1 (JCGM/WG 1). JCGM 101:2008 Evaluation of
Measurement Data—Supplement 1 to the “Guide to the Expression of Uncertainty in Measurement”—Propagation of
Distributions using a Monte Carlo Method (GUM-S1), 1st ed.; JCGM: Paris, France, 2008.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.measurement.2015.05.029
http://dx.doi.org/10.3390/s19030527
http://www.ncbi.nlm.nih.gov/pubmed/30691214
http://halle-normale.de/framesets/englisch/products/products.html
http://halle-normale.de/framesets/englisch/products/products.html
http://dx.doi.org/10.1088/0957-0233/21/3/032001
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Flatness Verification 
	XY Plane Calibration 
	Z-Axis Calibration 
	Calibration for Roughness Measurements 
	Summary of Characteristics of Measurement Standards Used during Calibration 

	Results 
	Flatness Verification 
	XY Plane Calibration 
	Z-Axis Calibration 
	Calibration for Roughness Measurements 

	Discussion 
	Expanded Uncertainty Estimation for Length Measurements in the XY Plane 
	Expanded Uncertainty Estimation for Height Measurements along the Z-Axis 
	Expanded Uncertainty for Roughness Measurements 
	Propagation of Uncertainty When Measuring the Radius of a Cylindrical Surface 

	Conclusions 
	Algorithm for Spherical Cap Fitting 
	References

