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Abstract: In previous studies, the pounding tuned mass damper (PTMD) has been successfully
demonstrated to mitigate the undesired vibration of a variety of structures at room temperature.
The advantages of the PTMD over the traditional tuned mass damper (TMD) has been verified through
theoretical analysis and experimental investigations. However, the PTMD relies on an impact layer
made of viscoelastic material to improve its vibration control performance and robustness against
detuning effect. The energy dissipation of the viscoelastic material can be affected by the changes of
environmental temperature. Therefore, this paper aims to study the impact damping behavior of the
viscoelastic material in the low temperature environment of the sea bed where the PTMD is expected
to control vibrations of subsea pipelines. The experimental apparatus fabricated in the previous
study to generate and measure the lateral impact was housed inside a refrigerator. The experimental
results indicate that the pounding stiffness decreased whereas the energy dissipation increased in
the low temperature environment. Moreover, an impact fatigue test was also performed in the low
temperature environment and compared with the room temperature case. Experimental results from
a previous study show that the viscoelastic material was damaged after 36,000 cycles of impacts in
the room temperature and a cyclic hardening–softening process was observed. However, in the low
temperature environment, the viscoelastic material was damaged after 50,000 cycles of impacts and
the cyclic hardening–softening process was not observed. As the impact cycle grew, the pounding
stiffness decreased from 53,000 N/m1.5 to 17,000 N/m1.5 and the energy dissipation increased from
46.12 J/m per cycle to 65.4 J/m per cycle.

Keywords: pounding tuned mass damper (PTMD); vibration control; viscoelastic material; impact
fatigue; pounding; low temperature

1. Introduction

Undesirable vibrations occur in structures, such as buildings [1], bridges [2], engines [3,4]
and aerospace structures [5–7], and the mitigation of these vibrations has been investigated for
decades. Various vibration control techniques have been developed to reduce these unwanted
oscillations [8]. In general, the vibration control techniques can be divided into four groups: active
control [9–11], semi-active control [12,13], passive control [14–16] and hybrid control [17]. The tuned
mass damper (TMD), which belongs to the passive control techniques, has been widely accepted for a
variety of structures to mitigate wind-induced vibrations [18], seismic responses [19], vortex-induced
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vibrations [20] and human-induced vibrations [21], among other random excitations [22], due to its
advantages of conceptual simplicity, easy installation and good effectiveness.

The earliest TMD, invented by Frahm [23], was composed of a mass block mounted on a main
structure to be controlled with a specially designed spring. This device was effective in reducing the
vibration near its resonance frequency. To increase the damping ability and broaden the effective
band of the TMD, subsequent researchers introduced different damping components to the TMD
system, such as a viscous damper [24], a friction damper [24–26] and eddy current elements [27,28].
Another drawback of the classical TMD is that its vibration control effectiveness will downgrade if
the frequency of the TMD shifts away from the target frequency, which is termed a de-tuning effect.
Consequently, a variety of active and semi-active dampers were introduced to enhance the robustness
of the TMD [29–32]. However, combining with these smart dampers is financially expensive and
demands continuous energy input.

In recent studies, the pounding tuned mass damper (PTMD) was proposed by introducing impact
damping into the TMD system. The configuration and schematic of the PTMD is illustrated in Figure 1.
When the motion of the main mass (m1) is slight, the motion of the tuned mass (m2) is also small. In this
case, the tuned mass behaves like a classical TMD, which suppress the vibration of the main mass by
giving it a restoring force against its motion direction. However, if the motion of the main mass exceeds
a certain level, the tuned mass will impact on the delimiter and kinetic energy will be dissipated
during this collision process [33,34]. The PTMD has been applied for mitigating the undesired
vibration of a variety of structures, including long span power transmission tower–line systems [33,35],
subsea pipeline structures [36–39], offshore platforms [40,41], high rise buildings [42–45], long span
bridges [46,47], suspended building piping systems [19], and traffic signal poles [48,49]. In these
literatures, the vibration performance of the PTMD and its superiority over the traditional TMD have
been verified by theoretical analysis, numerical simulation and experimental studies.
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Figure 1. Configuration of the pounding tuned mass damper (PTMD).

As shown in Figure 1, the viscoelastic delimiter relies on a delimiter to dissipate energy via
the impact between the tuned mass and the viscoelastic material. However, the impact damping
behavior of the viscoelastic delimiter can be influenced by a variation of the temperature. This thermal
dependent damping behavior of the viscoelastic material has been widely studied in many previous
researches [50–62]. Several mathematical models have been proposed to consider the thermal effects
and to more precisely predict the structural responses with additional viscoelastic dampers. In early
studies, Chang et al. obtained empirical equations to describe the damper stiffness and loss factor [50].
Tsai [51] developed a finite-element formulation for the viscoelastic damper subjected to arbitrary
loads or temperatures. Ramrakhyani et al. [54] proposed a continuously yielding element to capture
the material behavior with fewer parameter. Xu et al. [55] developed a fractional-derivative equivalent
standard solid model to consider influence of load frequency, amplitude and ambient temperature.
Lewandowski [60] divided the models for viscoelastic dampers into two groups (i.e., the classical and
nonclassical models), and compared the pros and cons of those models.
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Despite the fact that extensive investigations have been carried out to reveal the thermomechanical
property of the viscoelastic damper, a low temperature test is still necessary for the viscoelastic
delimiter of the PTMD. In the aforementioned studies, the viscoelastic material is fabricated into
sandwich type dampers, which dissipate energy via the shear deformation of the viscoelastic material.
In the PTMD, however, the energy is dissipated by the compression deformation induced by impacts.
This impact damping property is not yet explored in a low temperature environment. Furthermore,
many intended applications of PTMD are for pipeline structures located in deep sea environment,
where the temperature is around 2 ◦C. Therefore, it is still necessary to conduct an impact test of the
viscoelastic material of the PTMD in a low temperature environment, to study the thermal influence
and to extend the applications of the PTMD.

Another issue with the viscoelastic material used in PTMD is that it may undergo cycles of impacts
during its long service life. An impact fatigue test has been performed to investigate the damping
behavior of the viscoelastic material subjected to repeated poundings [63]. However, this study was
conducted in room temperature. Thus, it is still necessary to carry out an impact fatigue test in a low
temperature environment.

This paper aims to study the impact damping property of the viscoelastic material in a PTMD in the
low temperature environment. The paper is organized as follows: After this introduction, a nonlinear
pounding force model is revisited, preparing parameters to characterize the impact damping capacity of
the viscoelastic material. Subsequently, a description of the experimental device and the test procedure
is presented in Section 3. Further, experimental results of the low temperature case are compared
with the room temperature case to reveal the influence of thermal effect. Conclusive findings and
suggestions for future work are provided as a closure.

2. Impact Damping Property of the Viscoelastic Material in a PTMD

Since the energy dissipation pattern of the PTMD is different from the sandwich type viscoelastic
damper, parameters such as storage modulus and loss modulus are not suitable to characterize the
damping property of the viscoelastic material in the PTMD. Pounding stiffness and the energy consumed
during each pounding are defined to interpret the damping behavior of the viscoelastic material.

2.1. Pounding Stiffness

The pounding stiffness is a parameter defined in a previous study [33] to predict the nonlinear
pounding force. In this pounding force model, the pounding stiffness can also indicate the energy
consumption ability. The mathematical expression is as follows:

F =

 βδ3/2 + c
.
δ (

.
δ > 0)

βδ3/2 (
.
δ ≤ 0)

(1)

in which δ and
.
δ are the impact depth and its velocity; β is the pounding stiffness which can be attained

using the displacement and the pounding force recorded in the impact test, with the Curve Fitting
Toolbox embedded in MATLAB/Simulink; and c is the pounding damping which can be computed by:

c = 2ξ
√
βδ

m1m2

m1 + m2
(2)

where m1 and m2 are the masses of the two colliding bodies, and ξ is the impact damping ratio.

2.2. Energy Dissipated per Impact Cycle

In order to compare the impact damping ability of the viscoelastic material in a room temperature
and low temperature environment, the energy dissipated during each pounding can be attained
as follows:
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∆W =

∫
Fδdδ (3)

where ∆W is the energy dissipated during each pounding; F denotes the nonlinear pounding force;
and δ is the impact depth. Since ∆W can be influenced by the impact intensity, a normalized energy
dissipation ∆W is defined as follows:

∆W = ∆W/δmax (4)

where δmax is the maximum value of the impact depth.

3. Experimental Setup

Figure 2 illustrates the experimental setup. The impact tester shown in Figure 2a had a configuration
similar to that of the PTMD designed for pipelines structures. One major part of the tester was an
L-shape beam with a mass block (1.5 kg) fixed at the cantilever end. The mass vibrates vertically and
pounds on the viscoelastic delimiter beneath it, when the motor (Type# 1105, produced by Pololu)
rotates an unbalanced mass. A force sensor and a noncontact displacement sensor were employed to
record the pounding force and the relative displacement. The sampling frequency was set to 1 kHz.
The experimental apparatus was assembled inside a refrigerator. A thermometer was also put in the
refrigerator to makes sure that the testing temperature was around 2 ◦C.
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Figure 2. Experimental setup: (a) schematic; (b) experimental device inside the refrigerator. 

4. Results and Discussion 

Figure 2. Experimental setup: (a) schematic; (b) experimental device inside the refrigerator.

4. Results and Discussion

4.1. Impact Damping Behavior in Low Temperature

An impact test was performed with the viscoelastic material, using the experimental device
illustrated in Figure 2. Due to the limited space inside the refrigerator, only the PTMD damper was



Materials 2019, 12, 3986 5 of 12

installed. The hysteresis loops of the specimen in room temperature and in low temperature are
compared in Figure 3. As illustrated in the figure, the maximum displacement was around 3.5 mm in
the low temperature environment, which is smaller than that of the room temperature (5 mm) under
similar pounding force level. This indicates that the pounding stiffness will be increased in a low
temperature environment. Moreover, the slope of solid line (low temperature) is steeper than the
dashed line (room temperature), also implying that the pounding stiffness will be increased in a low
temperature environment. It can be observed that the area surrounded by the hysteresis loops of
the low temperature case is smaller than that of the room temperature case, indicating that impact
damping will be decreased in a low temperature environment. It should be noted that the frequency
response function (FRF) is not included in this study, due to the limitation of the testing device. The FRF
of the PTMD damping system shall be investigated to further demonstrate the dynamic property,
with upgraded experimental apparatus.
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The impact stiffness and the energy dissipated during each pounding were also used to compare
the pounding behavior of the samples in room temperature and low temperature environments.
The estimated pounding stiffness in the 2 ◦C environment was 53,225 N/m1.5, while the pounding
stiffness in the room temperature was 17,259 N/m1.5 [33]. This indicates that the pounding stiffness
will be increased when the temperature is decreased. In previous studies [63], the ∆W of the room
temperature condition was attained to be 51.29 J/m, whereas ∆W of the low temperature case was
decreased to 46.12 J/m. This also implies that the energy dissipated via impacts of viscoelastic material
will decrease in low temperature environments.

4.2. Impact Fatigue Test in Low Temperature

In practical engineering, PTMDs are often used for vibration control of structures constructed in
remote and harsh environments (e.g., offshore platforms and power transmission tower in mountain
areas). It will be very difficult, if possible, to maintain a PTMD designed for these structures.
Consequently, the PTMD is expected to function well for a long service life. Therefore, this study
performed an impact fatigue test in a low temperature environment to investigate impact fatigue
behavior of the viscoelastic material. The impact fatigue test was conducted as shown in Figure 2.
As illustrated in the figure, when the motor rotates the unbalanced weight, the L-shape beam will
vibrate vertically and continuously impacts on the viscoelastic samples beneath it, causing impact
fatigue of the viscoelastic material. A similar experimental study was conducted in room temperature.
In this study, the impact fatigue test was conducted in the low temperature, and the experimental
results are presented and compared with the room temperature case.
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4.2.1. Appearance

During the low temperature impact fatigue test, the appearance of the viscoelastic material was
photographed after every 10,000 impacts. The pictures are compared with the room temperature
case in Figure 4. One common phenomenon, which was observed in both the room temperature case
and the low temperature case, was that the thickness of the viscoelastic sample was decreased after
repeated poundings and the damage of the viscoelastic material is more visible as the number of the
impacts increases. The difference between the two cases is that the damage of the low temperature case
was less severe than the room temperature case under same cycles of impacts. As shown in Figure 3i,
which is the room temperature case, the viscoelastic material was severely damaged and the metal was
exposed in some areas after only 360,000 cycles of impacts. In the low temperature case (Figure 3j),
the viscoelastic material was damaged to a similar level after 500,000 cycles of impacts.
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4.2.2. Pounding Stiffness

In Figure 5, the pounding stiffness, β, after continuous poundings in room temperature and in
low temperature environment is illustrated. A cyclic-hardening and cyclic-softening process can be
observed in the room temperature case. As shown by the triangle and the green dash line, β was
increased from 15,000 N/m1.5 to 35,000 N/m1.5 after the first 180,000 strokes; after that, the pounding
stiffness was decreased to 9000 N/m1.5 [63]. However, in the low temperature environment, β decreases
from 53,000 N/m1.5 to 17,000 N/m1.5 by the continued impacts; no cyclic-hardening and cyclic-softening
process can be observed.
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4.2.3. Damping Capacity

In order to further investigate the damping capacity of the specimen subjected to continued
impacts in low temperature environment, the hysteresis loops are compared in Figure 6. Figure 6a
corresponds to the low temperature case. The hysteresis loops of the room temperature case are also
provided in Figure 6b for comparison. As shown in Figure 6a, the maximum impact depth (the largest
deformation of the viscoelastic material) grew from around 3.5 mm to around 6 mm as the impact
cycles increased from 0 to 500,000. In Figure 6b, which is the room temperature case, the maximum
impact depth was first reduced from 5.6 mm (initial condition) to 4.7 mm (after 180,000 strokes),
then increased to 5.8 mm (after 350,000 strokes).

Energy dissipation ability can also be reflected by these hysteresis loops of Figure 6. The area
surrounded by the red lines in Figure 6a are larger than the blue lines (before the impact fatigue test),
which indicates that the energy dissipation was enlarged by the repeated impacts in low temperature
environment. Whereas in the room temperature case (Figure 6b), the surrounded area firstly decreased
when impact cycles grew from 0 to 180,000, then increased as impact cycles grew to 350,000.
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5. Conclusions and Future Work

In this study the impact damping behavior of the viscoelastic material of the PTMD in a low
temperature environment (2 ◦C, deep sea floor temperature) was investigated. A specially designed
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experimental device was established in a refrigerator. An impact test and an impact fatigue test were
conducted with this tester. The pounding stiffness, hysteresis loops and the energy consumed during
each pounding were applied for interpreting the pounding damping property of the viscoelastic
material used in the PTMD. Conclusions drawn from experimental results are summarized as follows:

1. When ambient temperature drops from room temperature to 2 ◦C, the pounding stiffness of
the viscoelastic material is significantly increased, while its energy dissipation ability is slightly
decreased, indicating that the PTMD can be applied for vibration control of structures in the low
temperature environment.

2. In low temperatures, continuous pounding will cause impact fatigue of the viscoelastic material
of the PTMD, with its pounding stiffness gradually reduced and the energy dissipation ability
increased. This is different from the room temperature case.

Due to the limitation of the experimental apparatus, impact tests were only conducted at 2 ◦C.
In future studies, the ambient temperature shall be set to other levels to further explore the relation
between temperature and impact damping behavior. Empirical formulas and analytical solutions shall
be developed to assist design of PTMD for other temperatures. A primary structure to be controlled
with a PTMD shall also be installed inside a larger refrigerator to perform forced vibration tests
under varied excitation frequencies and amplitudes. The frequency response function can further
demonstrate the dynamic property of the PTMD damping system.
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